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A New Audio Coding Scheme Using a Forward
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Vector Quantization
Yuan-Hao Huang, Member, IEEE,and Tzi-Dar Chiueh, Member, IEEE

Abstract—This paper presents a new audio coder that includes
two techniques to improve the sound quality of the audio coding
system. First, a forward masking model is proposed. This model
exploits adaptation of the peripheral sensory and neural elements
in the auditory system, which is often deemed as the cause of
forward masking. In the proposed audio coder, the forward
masking is first modeled by a nonlinear analog circuit and then
difference equations for finding the solution of this circuit are
formulated. The parameters of the circuit are derived from several
factors, including time difference between masker and maskee,
masker level, masker frequency, and masker duration. Inclusion
of this model in the coding process will remove more redundancy
inaudible to humans and thus improves coding efficiency. Sec-
ondly, we propose a new vector quantization technique, whose
codebooks are generated by a perceptually weighted binary-tree
self-organizing feature maps (PW-BTSOFM) algorithm. This
vector quantization technique adopts a perceptually weighted
error criterion to train and select codewords so that the quan-
tization error is kept below the just-noticed distortion (JND)
while using the smallest possible codebook, again reducing the
required coded bit rate. Experimental objective and subjective
sound quality measurements show that the proposed audio coding
scheme requires about 30% less bits than the MPEG layer III
audio coding standard.

Index Terms—Forward masking, perceptually weighted error
criterion, vector quantization.

I. INTRODUCTION

A UDIO SIGNAL compression has found application in
many areas, such as multimedia signal coding (e.g.,

motion picture expert group (MPEG) systems [1]) high-fidelity
audio for radio broadcasting (e.g., digital audio broadcasting
(DAB) system [2]), audio transmission for HDTV, audio data
transmission/sharing through internet, etc. High-fidelity audio
signal coding demands a relatively high bit rate of 705.6 kbps
per channel using the compact disc format with 44.1-kHz sam-
pling and 16-bit resolution. With the proliferation of exchange
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and transmission of audio information through internet and
wireless systems, efficient (i.e., low-bit-rate) audio coding
algorithms need be devised.

Two major classes of techniques can be used in audio source
coding to reduce coded bit rate. The first class employs some
signal processing so that essential information and perceptually
irrelevant signal components can be separated and the latter
removed. This class include techniques such as subband coding
[3], transform coding [9], critical band analysis [7], and masking
effects [7]. The second class takes advantage of the statistical
redundancy in audio signal and applies some form of digital
encoding. Examples of this class include entropy coding in
lossless compression [8] and scalar/vector quantization in lossy
compression [5], [6].

Since the terminal receiver of audio coding are humans, audio
coding algorithms that take into account psychoacoustic charac-
teristics of the human auditory system seem better positioned for
coding with better efficiency. In order to incorporate these char-
acteristics in audio coding, the human auditory system needs be
modeled to a certain degree of accuracy. Most psychoacoustic
analysis aims to determine the maximum quantization noise not
perceptible to even well-trained listeners. With this information,
audio signals can be coded more efficiently while keeping the
coding distortion below just-noticed distortion (JND). Among
these characteristics, masking effects are some of the most im-
portant and they have been adopted in various audio and speech
coders [4]–[7], [9].

Masking effects [10], [11] occur in the frequency domain as
well as in the time domain. There are three types of masking
effects: simultaneous masking, backward masking, and forward
masking (see Fig. 1). Simultaneous masking is a frequency-do-
main phenomenon, where a lower-level signal component
(maskee) is made inaudible by a simultaneously occurring
stronger signal (masker). The masking threshold depends on
the sound pressure level (SPL) of the masker and the frequency
difference between the masker and the maskee. Backward
masking, as its name suggests, masks signal components that
occur before the masker. It can help to mask pre-echoes caused
by the spreading of a large quantization error. This property
has been utilized in the pre-echo control of the psychoacoustic
model in MPEG Layer III standard [1]. Forward masking
masks signal components that occur after the masker, and it
has an effective duration ten times that of backward masking.
Therefore, the forward masking effect can improve coding
efficiency better than backward masking since more signal
components are masked and need not be coded.
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Fig. 1. Frequency and temporal masking effects.

Despite its potential, the forward masking effect receives little
attention from audio coding researchers due to the difficulties
in modeling its nonlinearity. In the first part of the paper, we
will introduce a nonlinear circuit, which models the behavior of
the forward masking effect. A discrete-time formulation of this
circuit is integrated with the frequency-domain psychoacoustic
model in the MPEG layer III standard. The resultant psycho-
acoustic analysis eliminates more signal components than the
original MPEG layer III coding, making the proposed forward
masking analysis even more efficient in eliminating impercep-
tible signal components and reducing coded bit rate.

Presently, most audio coding standards apply some sort of
signal processing to obtain a frequency-domain representation
of an audio frame. Then the coefficients are scalar quantized
because scalar quantization with psychoacoustic modeling can
achieve very good coding performance. On the other hand, only
a few studies addressed vector quantization of the coefficients.
Chan and Gersho [12] investigated using multi-stage tree-struc-
tured vector quantization (MSTVQ) technique in encoding
discrete cosine transform (DCT) coefficients. In another of
their study, with the constraint-storage VQ (CSVQ) [13], their
proposed audio coding system can strike a balance between
rate-distortion performance and codebook searching com-
plexity. Recently, Iwakami [14] developed transform-domain
weighted interleave vector quantization (TWIN-VQ), which is
adopted in the MPEG4 standard. In this method, the modified
DCT coefficients are first flattened by the signal spectral
envelope. Then, a subvector, formed by sample interleaving, is
quantized using a criterion weighted by the corresponding LPC
envelope components. Subjective evaluation showed that the
sound quality of the decoded audio of TWIN-VQ exceeds that
of the MPEG1 Layer II coder at the same bit rate [14]. Several
other reports also showed the advantages of vector quantization
in audio coding [15]–[19]. However, none of these methods
take psychoacoustic effects into account during codebook
design and vector encoding.

In the second part of this paper, we will propose a neural-net-
work-based vector quantization scheme that encodes the
MDCT-polyphase-filter coefficients using a psychoacoustic
feature related criterion. In this scheme, VQ codebooks are
derived from perceptually weighted binary-tree structured
self-organizing feature map (PW-BTSOFM), a modified
version of binary-tree structured self-organizing feature map
(BTSOFM) [20]. The distribution of the codewords in the
proposed tree-structured codebook not only reflects underlying
data statistics but also the signal-to-masking ratio (SMR)
values. Furthermore, a perceptually weighted SMR-based
error criterion is used to determine the best codeword during

encoding. Simulation results show that, at all fixed bit rates,
decoded sound quality of the PW-BTSOFM VQ audio coder
with the forward masking model outperforms that of the
MPEG1 audio layer III coder.

The rest of this paper is organized as follows. Section II de-
scribes the forward masking effect in psychoacoustics. In this
section, we also introduce a circuit model for forward masking
threshold estimation. The binary-tree structured self-organizing
feature mapping for VQ codebook training is introduced in Sec-
tion III. Section IV describes the algorithm of the perceptually
weighted BTSOFM VQ and the complete architecture of the
proposed audio coding scheme. Simulation and experimental re-
sults on the sound quality are then given in Section V. Finally,
Section VI summarizes and concludes this paper.

II. FORWARD MASKING MODEL

Forward masking effect, as shown in Fig. 1, occurs when a
signal (maskee) follows a masker signal. Its effective duration,
on the order of hundreds of milliseconds, is longer than that of
backward masking. The basic principle of forward masking is
still unclear. It is conjectured to be caused by ripple response in
basilar membrane filtering, reduction in sensitivity of recently
stimulated cells, or persistence in neural activity patterns evoked
by the masker [11]. On the other hand, experimental phenomena
of forward masking are well known. Forward masking lasts for
about 200 ms after the end of a long masker [21]. The decay rate
of the masking level depends nonlinearly on the masker level
and masker duration [21]–[23]. The decay rate is high for short
masker and masker with high energy level, while the decay rate
is low for long masker and masker with low energy level. In
addition, the decay rate also depends on the masker frequency
[24].

A. Psychoacoustic Forward Masking Model

Research has been carried out in building psychological
[25]–[28] and psychoacoustic models [21], [24], [29], [30] of
forward masking using electronic circuits. Since the movement
of electrons in a circuit is similar to the adaptation of the
neural charges in the neural system, forward masking can be
modeled fairly well by a nonlinear circuit. In psychoacoustics,
forward masking has long been regarded as an indication of the
decay of the hearing system’s internal loudness [31]. So, it is
often modeled using psychoacoustic specific loudness versus
critical-band rate and time. For theth critical band, we can
first compute, as specified in [1], the excitation level by
convolving the signal with a spreading function

(1)

where is scaled signal energy in theth critical band and
is the spreading function and

(2)

The convolution actually spreads the signal among neighboring
frequency components and is used to model the simultaneous
frequency-domain masking.

A nonlinear circuit, as shown in Fig. 2, was proposed in [29]
to estimate the output specific loudness, one circuit for each
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Fig. 2. RC circuit for loudness estimation.

critical band. In each circuit, input is the th critical-band
specific loudness of the current frame, which is given by

(3)

where is excitation at absolute threshold, and is
the excitation that corresponds to the reference intensity

W/m . The above equation transforms the external
physical energy values to the internal loudness values

[10]. Then, the low-pass circuit in Fig. 2 is used
to emulate the nonlinear loudness processing in the neural
system and generates the output specific loudness .
Two resistors and capacitors are used to model the two time
constants in the specific loudness decay profiles [21], [24].
One constant is smaller (for short maskers), and the other is
larger (for the maskers with duration longer than 100 ms).

Some simulation results of the aforementioned nonlinear
circuit are shown in Fig. 3. The output specific loudness (
of the corresponding critical band) of input 2-kHz signals
with different duration [shown in Fig. 3(a)] are depicted in
Fig. 3(b). The total loudness (), defined as the sum of the
output specific loudness in all critical bands, is known to be
directly related to the forward masking level [10]. As shown
in Fig. 3(c), the total loudness () saturates and the forward
masking level reaches its maximum if the masker duration
is longer than 100 ms. After saturation, the total loudness
decreases with a large time constant. On the other hand, if the
masker duration is less than 100 ms, the total loudness starts
to decrease, without even reaching saturation level, with a time
constant that increases with increasing masker duration. The
above simulated total loudness behavior in cases with different
masker duration agree quite well with the observed forward
masking level [10]. Therefore, in the proposed audio coding
system we use the simulated total loudness as an estimate of
the forward masking level.

B. Application of the Forward Masking Effect to Audio Coding

We now propose a model that integrates the frequency-do-
main simultaneous masking effect and the time-domain forward
masking effect. The proposed model depends not only on the
current frame but also on previous frames. To determine the
total masking level of theth critical band at time, one com-
putes the maximum of the current simultaneous masking level
and the total masking level of the previous frame decayed by
some constant

(4)

Fig. 3. Loudness profiles of the maskers with different durations (adapted from
[8]).

where and are the total masking levels of the
current frame and the previous frame, respectively;
is the masking level computed from the simultaneous masking
model [1]; is the time difference between two frames;
is the maximum decay time constant in each critical band [24];
and is the total loudness level. Note thatis now normalized
by the total loudness of a 60 dB uniform masking noise (UMN).
If is larger than one, is set to one. So, lies between zero
and one. When is one, the energy in the basilar membrane
saturates and total masking level decays with a maximum time
constant. When is zero, there is no signal energy spilt over
from previous frames and thus no forward masking.

The nonlinear RC circuit in Fig. 2 is used to find the output
specific loudness in each critical band. For numerical com-
putation, we convert the differential equations into the following
difference equations:

(5)

where is on resistance of diode , and and are
the specific loudness of the current frame and output specific
loudness of the previous frame, respectively. If , it is
set to zero since diode D1 is off. Let and be the voltages
across capacitors and in the previous frame, respectively.
If (meaning diode D2 is off), then

(6)

and

(7)
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(a)

(b)

Fig. 4. (a) Forward masking patterns for a 5-ms tonal probe at 2 kHz. The
masking at are drawn both for the estimated and measured cases with 5, 10, 30,
and 200 ms UMN maskers at 60 dB. (b) Forward masking levels of 6.5, 8.5, and
11 kHz tonal probes by a 8.5 kHz CBN masker.

On the other hand, if diode D2 is on, then

(8)

In the RC circuit, the increase in masker duration corresponds
to storing more charges into the capacitors. Therefore, if the
capacitors are charged with a longer pulse,will be larger.
On the contrary, if the impulse is short, the output of the circuit
will be smaller. The values of the resistors and capacitors are
determined with a view to matching the phenomena measured
using maskers longer than 200 ms [21], [22].

(a)

(b)

Fig. 5. (a) Piece of orchestra music and (b) the dominance pattern in the
time-frequency space: simultaneous (frequency) masking effect (black) and
forward masking effect (white).

C. Simulation of the Forward Masking Model

Three kinds of masker signals, uniform masking noise
(UMN), critical band noise (CBN), and an orchestra signal are
used in the following simulations about the forward masking
model.

UMN [10] is filtered from white noise so as to produce con-
stant masking level at all critical bands. Using a signal that has
absolute masking level of 0 dB as the reference signal, we gen-
erate a 60-dB UMN as masker to find the threshold of a 5-ms
tonal probe (maskee) at 2 kHz. In Fig. 4(a), both the masking
level predicted by the simulation, denoted by solid line, and
the measured data in [21], denoted by dashed line, are depicted
for different masker duration . The figure shows that the
predicted total masking level always lies within 5 dB of the
measured results. Fig. 4(b) shows both the simulated and the
measured forward masking levels of a CBN masker centered at
8.5 kHz. The probes are 6.5, 8.5, and 11 kHz tonal signals, re-
spectively. Again in most cases, the predicted masking levels
agree quite well with the measured data.

Finally, we use a piece of orchestra music to examine the
forward masking effect in a more realistic setting. Referring to
(4), the total masking level is determined either by simultaneous
maskingor forwardmaskingdependingonwhicheffectproduces
stronger masking level. An interesting issue is to examine
which of the two masking effects is more dominant. The
orchestra music segment as shown in Fig. 5(a) is encoded
using the proposed masking model. In Fig. 5(b), the white
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Fig. 6. Architecture of a vector quantization system.

regions denote time-frequency slots where the forward masking
effect is dominant and the black regions mean otherwise.
All white regions imply higher masking level than if only
simultaneous masking is considered, as in the traditional audio
coders [1]. Therefore, more quantization noise can be tolerated
and fewer bits are needed for coding. Since the forward masking
effect is dominant in quite a significant portion of the whole
time-frequency space, we expect the proposed masking model
will improve audio coding efficiency significantly.

III. V ECTOR QUANTIZATION AND SELF-ORGANIZING

FEATURE MAP

In this section, we introduce the basic formulation of vector
quantization (VQ) and the algorithm of self-organizing feature
map (SOFM). Furthermore, a binary-tree-structured SOFM
(BTSOFM) is introduced as a flexible VQ coding scheme for
perceptual audio coding.

A. Vector Quantization

In a vector quantization system shown in Fig. 6, there are two
mappings: one in the encoder and the other in the decoder. For
each input pattern , an encoder assigns a symbol from
the symbol set according to the nearest neighbor rule. The de-
coder then looks up the codeword corresponding to the symbol,

. So, a vector quantizer can be defined as a mapping
from the -dimensional Euclidean space into a finite set
consisting of points in . Thus, the vector quantizer,, is
defined as

where ; is the set of code-
words (codebook) and is the size of . Usually, a VQ system
chooses the codeword whose Euclidean distance to the input
pattern is minimum. Thus, the reconstructed signal suffers
minimal sum-of-squared-error distortion.

B. Self-Organizing Feature Map

A famous neural network model, self-organizing feature
map (SOFM) [32], is often used for training vector quantiza-
tion codebooks in various lossy signal compression systems
because of its capability of clustering without supervision and
the flexibility of the codebook structure it generates. SOFM has
been shown to yield VQ codebooks that are better than those
generated by the conventional generalized Lloyd algorithm
[33].

Typically, SOFM network is composed of a discrete
one-dimensional (1-D) or two-dimensional (2-D) lattice of

(a)

(b)

Fig. 7. (a) One-dimensional neuron structure in SOFM and (b) binary tree
neuron structure in BTSOFM.

Fig. 8. Self-organizing feature map learning algorithm.

neurons. Each of the neurons in the network has a weight
vector with dimension . The weight vector of each neuron
represents one codeword in the codebook. In the beginning,
all weight vectors are initialized. During the training of the
network, the neuron whose weight vector is closest to the
current input training pattern is identified. Then, the weight
vectors of the winning neuron and all neurons in its “current
neighborhood” are updated in the direction toward the input
pattern. In other words

(9)

where and are the updated and original weight
vector of the th neuron, respectively; is the training iteration
count; is the distance between the neuronand the winning
neuron; and is the learning rate that controls the speed
of the training process.

After the neurons are trained by all input patterns, anepoch
is completed and the network is retrained by all input patterns
for another epoch. For each epoch in the training process, the
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Fig. 9. Neuron distributions during the training process for (a) the 1-D SOFM network and (b) the BTSOFM network.

“current neighborhood” for updating weight vectors must be
redefined. For a better clustering performance, the learning rate
and the size of the current neighborhood should be gradually
decreased. Fig. 7(a) depicts the generic 1-D SOFM network.
The three neighborhoods contain all neurons inside the regions
centered at the winning neuron with radius two, one, and
zero, respectively. Similarly, the current neighborhood of other
neuron structures (e.g., 2-D lattice) can be defined as a set
of neurons centered at the winning neuron. At the end of the
training process, the weight vectors of the neurons are dis-
tributed to reflect the statistical nature of the training patterns
and they are used as codewords in the codebook. Moreover,
neighboring neurons will represent codewords that are alike
since neighboring neurons are updated almost simultaneously.
The SOFM learning algorithm is summarized in Fig. 8.

An example of the training process of a 1-D SOFM network
is shown in Fig. 9(a). The learning rate is defined as

(10)

where is the radius of the current neighborhood andis
the distance between the winning neuron and the neuron
being updated. Input patterns are randomly and uniformly
distributed in the rectangular region. Early in the training
process, the learning rate is high and the neighborhood is large,

so the neurons are quickly pulled apart. Later in training, the
neurons move slowly because the learning rate is low and the
neighborhood is small. The learning rate and the neighborhood
decrease gradually during the training process. Therefore, the
SOFM algorithm is less likely to be stuck at local minima
and it usually yields better codebooks than those designed by
traditional descent-based methods with fixed learning rate.

The SOFM algorithm generates vector quantization code-
books with better quality. However, 1-D and 2-D SOFM
networks are not suitable for designing high-dimensional
codebooks. To remedy this, a binary-tree structure SOFM
(BTSOFM) is proposed [20]. With binary-tree structure among
the codewords, BTSOFM is suitable for progressive coding
and variable bit-rate coding. In addition, the tree-structured
codebook makes tree search of the codebook possible, thus
reducing the encoding complexity.

The BTSOFM learning algorithm is similar to SOFM except
for the neuron structure and the current neighborhood definition.
In BTSOFM, tree search is used to locate the nearest neuron to
a training pattern. Fig. 7(b) illustrates a three-level, eight-ter-
minal-node BTSOFM structure. The numbers shown under the
terminal nodes are the distance between the fourth node ()
and all respective nodes. The distance is defined by the number
of hops between two nodes along the binary tree. Initially, all the
nodes, including the terminal nodes and inter-level nodes, form
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a full binary-tree. As the training goes on, this high-dimensional
tree is gradually stretched so that the terminal nodes reflect
training-pattern distribution. At the same time, the inter-level
nodes are also updated in such a way that a binary tree struc-
ture is always retained, so progressive coding using different
bit rates (codebook sizes) can be adopted. Another example of
using a six-level BTSOFM network is depicted in Fig. 9(b). Ini-
tially, neurons are all located in the center and input patterns are
again randomly and uniformly distributed in the rectangular re-
gion. The neurons are finally stretched to reflect the distribution
of the input patterns.

The BTSOFM possesses one characteristic that is crucial for
codebooks for perceptual audio coding. Note that in addition
to the codebook made up of all the terminal nodes, progres-
sively smaller codebooks, each consisting of all nodes on a
higher-level, are generated during BTSOFM training. These
smaller codebooks can also be used for vector quantization,
albeit with higher quantization noise. With these progressively
smaller codebooks at hand, one can choose the smallest one
that yields quantization noise just below the masking threshold
so as to make the noise imperceptible. With smaller codebooks
and fewer bits for codeword index, the coding efficiency can
be enhanced while the sound quality is not compromised
perceptually. To this end, a modified BTSOFM algorithm will
be proposed to design better codebooks for perceptual audio
coding in the next section.

IV. A UDIO CODING WITH PERCEPTUALLY WEIGHTED

BTSOFM VQ

In this section, we propose a VQ-based perceptual audio
coding scheme whose codebooks are designed by a percep-
tually weighted BTSOFM algorithm. This algorithm is based
on a perceptually weighted error criterion. We will introduce
the new criterion first and explain why it is better than the
traditional error criterion.

A. Audio Coding Scheme

In the proposed audio coding scheme shown in Fig. 10, we
use the same hybrid analysis as in the MPEG1 Layer III scheme,
which has 576 MDCT coefficients in the frequency domain. The
vector quantization block uses a gain-shape vector quantization
codebook whose codewords have components, MDCT
coefficients from each of the two consecutive frames. The exact
grouping of the MDCT coefficients is shown in Fig. 11. On
the total, 22 bands cover 576 MDCT coefficients and 15 code-
books with different vector dimension () are used to encode
these MDCT coefficients. The bandwidthincreases approxi-
mately exponentially with frequency, somewhat consistent with
the critical band scale or Mel scale [1].

To exploit perceptual characteristics in vector quantization,
MDCT coefficient vectors are supposed to be surrounded by a
masking region in the vector space as shown in Fig. 12(a). If
the selected codeword is inside the masking region, the quanti-
zation distortion is imperceptible. Otherwise, perceptible noise
will occur. The concept is similar to shaping scalar quantization
error below the masking level except that the 1-D masking curve
in the frequency domain is now extended to the general masking
region in the -dimensional space.

Fig. 10. Architecture of the proposed perceptual VQ-based audio coding
system.

Fig. 11. Definition of critical band vectors used in the proposed audio coding
scheme.

For each -dimensional MDCT coefficient vector, two
signal-to-masking ratio (SMR) values ( and ), as shown
in Fig. 11, are calculated. The masking level is computed
according to (4), thus includes both the frequency masking and
the forward masking effects. The SMR values determine the
masking region in the vector space, with which the codeword
that causes least perceptible noise can be selected. In addition,
the SMR values are also supervisory information used during



332 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 5, JULY 2002

(a)

(b)

Fig. 12. (a) Concept of masking region in vector quantization and (b)
perceptually weighted error criterion used in searching for the nearest
codeword.

codebook training so as to generate a perceptually optimal code-
book.

B. Perceptually Weighted Error Criterion

In traditional vector quantization, minimum sum-of-squared-
difference is used to determine the nearest codeword. Geometri-
cally, the winning neuron (codeword) has the smallest Euclidean
distance to the input pattern among all codewords. In our case,
however, the two SMR values can be quite different, implying
different levels of noise can be tolerated. One reasonable ap-
proach to accommodate this fact is to use a weighted error (dis-
tance) criterion.

Let a -dimensional normalized (shape) input vector be de-
noted as

(11)

where and are computed from the MDCT coefficients
from the first frame and the second frame, respectively. Let the

th codeword in a codebook be denoted as

(12)

According to the perceptual masking criterion, the quantization
error should be smaller than the masking level. In other words,
the signal-to-quantization-noise ratio should be larger than the
signal-to-masking ratio (SMR) in each of the subvectors

and (13)

where . To facilitate codebook
training and searching, we propose a new perceptually weighted
error criterion , where

(14)

If is less than one, then the SNR is higher than the SMR
is both subvectors, ensuring imperceptible quantization noise.
Geometrically, the imperceptible-noise region (masking region)
becomes an ellipsoid, thus the name perceptually weighted error
criterion. In the example shown in Fig. 12(b), codewords of a
tree-structured codebook and an input pattern are shown in the
coordinates of the two subvectors. The SMR in the first subspace
is smaller than that in the second subspace. Therefore, instead
of the nearest codeword in Euclidean distance, , the per-
ceptually nearest codeword should be chosen.

C. Perceptually Weighted BTSOFM

The strategy of the perceptually weighted BTSOFM algo-
rithm, a modified version of the BTSOFM algorithm, consists
of the perceptually weighted error criterion and an updating
process according to the SMR values. We use perceptually
weighted BTSOFM to train 15 tree-structured codebooks
needed in the proposed audio coding scheme. The BTSOFM
training procedure is described in the following.

1) Each codebook is a binary tree of depth 12, containing
4094 inter-level neurons and 4096 terminal neurons. In
the beginning, the weight vectors of all neurons are ini-
tialized and the training starts with a neighborhood of dis-
tance 24, covering all nodes in the network.

2) For each training pattern, a binary tree search is used to
identify the perceptually nearest neuron to the input pat-
tern according to the perceptually weighted error criterion
formulated in (14).

3) All neurons inside the current neighborhood of the win-
ning are updated according to the SOFM update rule in
(9) except that now the distance is the BTSOFM tree dis-
tance and the learning rate depends on not onlyand ,
but also .

4) After ten runs of all patterns in the training set, “equilib-
rium” is assumed and the radiusis decreased by one.
When the radius reaches zero and the neighborhood con-
tains only the winning node itself, then the training stops
after reaching equilibrium.

The learning rate is given by

(15)

where is the SMR value expressed in log scale
and it is used to compute the learning rate for all components in
the th subvector. The term that depends onis in the form of
a sigmoidal function, which saturates to 1 if is large and to
zero is is small. This has the effect of limiting the adjustment
strength of high-SMR input patterns as well as completely ig-
nores the input patterns overwhelmed by masking.
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Fig. 13. Flow chart for bit allocation and tree-structured codebook searching.

D. Bit Allocation Using Tree-Structured VQ

In the proposed audio coding scheme, 576 MDCT coeffi-
cients in each frame are divided into 22 vectors (critical bands)
and each quantized by one of the 15 codebooks of corresponding
size. These 15 tree-structured codebooks are trained by the per-
ceptually weighted BTSOFM. As mentioned in the previous
section, a -level binary-tree-structured codebook actually con-
tains in it smaller tree codebooks of sizefor all smaller than

. Therefore, bit allocation for each critical band needs to de-
termine the size of the codebook used to encode the critical band
vector. The available bits must be precisely assigned to control
the bit rate and the distortion caused by the gain-shape vector
quantizer. Thus, we employed an iteration loop in Fig. 13 for bit
allocation and tree-search of the gain-shape tree-structured VQ.
The algorithm is basically a greedy method with the perceptu-
ally weighted error criterion and is described in the following.

1) The magnitude (gain) of an input vector is quantized with
four bits for the first 11 bands and three bits for the next 11
bands. The input vector is then normalized by the quan-
tized gain to get the normalized input vector (shape). No
bits will be assigned to encode the bands with both
lower than 3 dB due to strong masking.

2) In the tree-search quantization stage, the perceptually
weighted error is used as the criterion for selecting
codewords for shape vectors in 22 bands. All 22 shape
vectors search in their corresponding codebook tree
in parallel. Bit allocation and tree searching proceed
simultaneously, i.e., traversing down one level in the tree
leads to one more bit assigned to encode the shape vector.

3) For each iteration, if at least one band has a higher
than one, one more bit is assigned to the band that has the
highest value. Then, the codebook tree is traversed
one level down and of this band is updated.

4) The iteration stops when for all bands are less than
one, or all the codebook trees are searched to terminal

TABLE I
TWENTY SOUND ITEMS USED IN AUDIO CODING QUALITY

MEASUREMENTEXPERIMENTS

nodes, or all available bits have been allocated. Other-
wise, the procedure goes back to the previous step.

When the procedure stops and if the bit rate is high enough,
then quite possibly all are less than one, which means that
no quantization noise will be perceptible in any of the 22 bands.
However, if the bit rate is not high enough, then the bits will be
assigned so as to make , and thus the perceptually weighted
distortion, in 22 bands as small as possible.

V. EXPERIMENTAL RESULTS

Twenty mono sound items with 44.1 kHz sampling rate,
16-bit resolution, and 30-s duration are selected for experiments
(see Table I). To evaluate sound quality at different bit rates,
seven different bit rates of 80, 64, 56, 48, 40, 32, and 24 kbps
are used. The decoded sound items by MPEG layer III coding
scheme are used as the baseline for comparison.

A. Objective Sound Quality Measurements

To evaluate the sound quality, we use the perceptual audio
quality measure (PAQM) [34] for objective assessment of the
sound quality. It is one way of measuring noise disturbance,
which ranges from 1.7 to 0.3 corresponding to 5 to 1 in
the mean opinion score (MOS). This method measures the
quality of an audio coding scheme by mapping the input and
output of the coding scheme from physical signal representation
onto a psychoacoustic representation. This mapping enables
quantification of perceptual degradation introduced by the audio
coding scheme. With this mapping, subjective quality of the
reconstructed audio signal can be estimated. Besides, this
method can measure the sound quality at different time in
a sound segment. Thus, we can see the variation of sound
quality in a sound segment.

Fig. 14(a) shows the sound quality of a sound segment
using five different audio coding schemes. By comparing the
MPEG Layer III scheme and the MPEG Layer III scheme
with the forward masking model at 48 kbps (both use scalar
quantization), we can see that the sound quality is markedly
improved since the forward masking model is adopted. In
addition, the performance of PW-BTSOFM VQ is better than
that of BTSOFM VQ and TWIN-VQ in [14] because of the
additional sigmoidal function and perceptually weighted error
criterion in PW-BTSOFM VQ. Of course the three vector
quantization audio schemes are better than the two scalar
quantization schemes, with or without forward masking.

The PAQM noise disturbance versus bit rate for all five audio
coding schemes are shown in Fig. 14(b). The figure shows that
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(a)

(b)

Fig. 14. (a) PAQM noise disturbance profiles in a sound segment and (b)
PAQM noise disturbance versus different bit rated using five audio coding
schemes.

PAQM noise disturbance of the MPEG layer III coding scheme
with forward masking model increases with decreasing bit rate
at a much slower pace than the original MPEG layer III scheme.
This implies that the forward masking model is very crucial
to sound quality performance, especially in low bit-rate audio
coding. Moreover, the PW-BTSOFM VQ coding further im-
proves sound quality and it outperforms the MPEG layer III
scheme with the forward masking model and the TWIN-VQ
scheme, especially in low bit rate settings.

B. Subjective Sound Quality Measurements

Subjective listening tests are carried out to evaluate the sub-
jective quality of the proposed coding scheme by mean opinion

Fig. 15. MOS measurements for MPEG layer III standard with and without
forward masking, BTSOFM, and PW-BTSOFM VQ coding schemes at
different bit rates.

Fig. 16. Percentages of bit rate reduction using BTSOFM, PW-BTSOFM, and
MPEG layer III scheme with forward masking.

score (MOS). This score goes from 1.0 (very annoying distor-
tion) to 5.0 (inaudible distortion). Fourteen listeners evaluate the
sound quality of the 20 sound items at 24- to 80-kbps bit rates.
Their results are shown in Fig. 15. The average MOS curves also
demonstrate the superiority of the forward masking model and
the perceptually weighted BTSOFM VQ.

By simple interpolation, we can derive the percentages of bit
reduction, shown in Fig. 16, for different audio coding schemes
given that the same sound quality as the MPEG layer III scheme
is required. The rate reduction computed from the PAQM experi-
ments and that from the MOS experiments are similar and they
both illustrate enhanced performance of the proposed scheme.
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With the forward masking model, the bit-rate reduction of the
three schemes is less than 10% above 56 kbps. On the other hand,
the two VQ-based schemes require much less bits than MPEG
layer III below48kbps.At thebit rateof32kbps, theMPEGlayer
III with the forward masking model require 25% less bits than the
original MPEG layer III scheme. Moreover, BTSOFM VQ and
PW-BTSOFM VQ schemes achieve 33% and 38% bit-rate re-
duction in the PAQM measurements, and 28% and 32% bit-rate
reduction in the MOS listening tests, respectively.

VI. CONCLUSION

In this paper, the forward masking model using a RC analog
circuit is exploited to estimate the forward masking effect. Since
the proposed RC analog circuit is time-varying and nonlinear,
it is more accurate in estimating the forward masking level.
Due to the long-term (200 ms) forward masking effect on the
ensuing signals, more imperceptible signal components can be
eliminated and the coding efficiency improved with the forward
masking effect taken into account.

Moreover, we proposed the perceptually weighted BTSOFM
algorithm that considers a perceptually weighted error criterion
in vector quantization codebook design. The codebook has a bi-
nary-tree structure and inherently contains several progressively
smaller codebooks with similar codeword distribution. This fea-
ture makes feasible a new bit assignment algorithm proposed in
this paper to minimize the perceptible quantization noise. With
all the above properties, the proposed audio coding scheme can
achieve up to about 40% bit rate reduction when compared to
the standard MPEG Layer III audio coding scheme.
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