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A New Audio Coding Scheme Using a Forward
Masking Model and Perceptually Weighted
Vector Quantization
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Abstract—This paper presents a new audio coder that includes and transmission of audio information through internet and
two techniques to improve the sound quality of the audio coding wireless systems, efficient (i.e., low-bit-rate) audio coding
system. First, a forward masking model is proposed. This model algorithms need be devised.

;enx%ﬂtzﬁgﬁgﬁstgsgr:jev\?t:eigﬁhgrzlﬂseennsdcggrggg r;iu:ﬁ:eegﬂsgtif Two major classes of te(_:hnlques can be used in audio source
forward masking. In the proposed audio coder, the forward coding to reduce coded bit rate. The first class employs some
masking is first modeled by a nonlinear analog circuit and then signal processing so that essential information and perceptually
difference equations for finding the solution of this circuit are irrelevant signal components can be separated and the latter
formulated. The parameters of the circuit are derived from several - removed. This class include techniques such as subband coding
factors, including time difference between masker_ and mas|_<ee, [3], transform coding [9], critical band analysis [7], and masking
masker level, masker frequency, and masker duration. Inclusion S
of this model in the coding process will remove more redundancy €f€Cts [7]. The second class takes advantage of the statistical
inaudible to humans and thus improves coding efficiency. Sec- redundancy in audio signal and applies some form of digital
ondly, we propose a new vector quantization technique, whose encoding. Examples of this class include entropy coding in
codebooks are generated by a perceptually weighted binary-tree |ossless compression [8] and scalar/vector quantization in lossy
self-organizing feature maps (PW-BTSOFM) algorithm. This compression [5], [6].

vector quantization technique adopts a perceptually weighted Since the terminal receiver of audio coding are humans, audio
error criterion to train and select codewords so that the quan- . . - L
tization error is kept below the just-noticed distortion (JND) coding algorithms that take into account psychoacoustic charac-
while using the smallest possible codebook, again reducing theteristics of the human auditory system seem better positioned for
required coded bit rate. Experimental objective and subjective coding with better efficiency. In order to incorporate these char-
sound q“a"ty.measureme”f)s show that the proposed audio coding acteristics in audio coding, the human auditory system needs be
zﬁr&?ffoéie,?;!f;nﬁgﬁj‘ft 30% less bits than the MPEG layer Ill modelgd t_o a certain de_gree of accuracy. Most_ psychoa_coustic
analysis aims to determine the maximum quantization noise not
Index Terms—Forward masking, perceptually weighted error  perceptible to even well-trained listeners. With this information,
criterion, vector quantization. audio signals can be coded more efficiently while keeping the
coding distortion below just-noticed distortion (JND). Among
|. INTRODUCTION these characteristics, masking effects are some of the most im-
r1loortant and they have been adopted in various audio and speech
coders [4]-{7], [9].
g"Masking effects [10], [11] occur in the frequency domain as

: ; . - . Yell as in the time domain. There are three types of maskin
audio for radio broadcasting (e.g., digital audio broadcastnégrects: simultaneous masking, backward masiirl)’lg, andforwar%

(DAB) §y§tem [2]); audio tran§m|53|on for H[.)TV,.auc_ho dat?nasking (see Fig. 1). Simultaneous masking is a frequency-do-
transmission/sharing through internet, etc. High-fidelity aUd'r%ain phenomenon, where a lower-level signal component

signal coding demands a relatively high bit rate of 705.6 kb . . . . ;
per channel using the compact disc format with 44.1-kHz sa haskee) is made inaudible by a simultaneously occurring

. . : ; . . ronger signal (masker). The masking threshold depends on
pling and 16-bit resolution. With the proliferation of exchang?he sgund p?reSSl(Jre Ievel)(SPL) of the rr?asker and the fF;equency

difference between the masker and the maskee. Backward
masking, as its name suggests, masks signal components that
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encoding. Simulation results show that, at all fixed bit rates,
decoded sound quality of the PW-BTSOFM VQ audio coder
; with the forward masking model outperforms that of the
- | F"';'::::_:':_w MPEG1 audio layer Ill coder.
i Minshin —_— E The rest of this paper is organized as follows. Section Il de-
H : : i ; scribes the forward masking effect in psychoacoustics. In this
=06 B0 100 380 0 30 0 50 =0 section, we also introduce a circuit model for forward masking
N N S iy ey threshold estimation. The binary-tree structured self-organizing
feature mapping for VQ codebook training is introduced in Sec-
tion 1ll. Section IV describes the algorithm of the perceptually
weighted BTSOFM VQ and the complete architecture of the
Despite its potential, the forward masking effect receives littisroposed audio coding scheme. Simulation and experimental re-
attention from audio coding researchers due to the difficultiggits on the sound quality are then given in Section V. Finally,

in modeling its nonlinearity. In the first part of the paper, w&ection VI summarizes and concludes this paper.
will introduce a nonlinear circuit, which models the behavior of

the forward masking effect. A discrete-time formulation of this Il. FORWARD MASKING MODEL
circuit is integrated with the frequency-domain psychoacoustic . -
model in the MPEG layer Il standard. The resultant psycho- Forward masking effect, as ShOW_” in Fig. 1, oceurs whe_n a
acoustic analysis eliminates more signal components than ﬁ%nal (maskee) follows a masker signal. lts effective duration,

original MPEG layer Il coding, making the proposed forwar n the order of hundreds of milliseconds, is longer than that of
masking analysis even more efficient in eliminating impercegaCkward masking. The basic principle of forward masking is

tible signal components and reducing coded bit rate still unclear. It is conjectured to be caused by ripple response in

Presently, most audio coding standards apply some Sortb@_fsilar membrane filter?ng, red_uction in sens_itivity of recently
signal processing to obtain a frequency-domain representat%'r'inmamd cells, or persistence in neural actn_nty patterns evoked
of an audio frame. Then the coefficients are scalar quantizZB{the masker[11]. Onthe other hand, experimental phenomena
because scalar quantization with psychoacoustic modeling @iforward masking are well known. Forward masking lasts for
achieve very good coding performance. On the other hand, offyout 200 ms after the end of a long masker [21]. The decay rate
a few studies addressed vector quantization of the coefficierfts (N masking level depends nonlinearly on the masker level
Chan and Gersho [12] investigated using multi-stage tree-str@\d masker duration [21]-[23]. The decay rate is high for short
tured vector quantization (MSTVQ) technique in encodin@askerand masker with high energylgvel,whllethe decay rate
discrete cosine transform (DCT) coefficients. In another &% low for long masker and masker with low energy level. In
their study, with the constraint-storage VQ (CSVQ) [13], thefddition, the decay rate also depends on the masker frequency
proposed audio coding system can strike a balance betwéeH-
rate-distortion performance and codebook searching co
plexity. Recently, Iwakami [14] developed transform-domai
weighted interleave vector quantization (TWIN-VQ), which is Research has been carried out in building psychological
adopted in the MPEG4 standard. In this method, the modifi€ds]-[28] and psychoacoustic models [21], [24], [29], [30] of
DCT coefficients are first flattened by the signal spectrdbrward masking using electronic circuits. Since the movement
envelope. Then, a subvector, formed by sample interleavingpiselectrons in a circuit is similar to the adaptation of the
quantized using a criterion weighted by the corresponding LR@ural charges in the neural system, forward masking can be
envelope components. Subjective evaluation showed that thedeled fairly well by a nonlinear circuit. In psychoacoustics,
sound quality of the decoded audio of TWIN-VQ exceeds th&drward masking has long been regarded as an indication of the
of the MPEGL1 Layer Il coder at the same bit rate [14]. Severdécay of the hearing system’s internal loudness [31]. So, it is
other reports also showed the advantages of vector quantizatiften modeled using psychoacoustic specific loudness versus
in audio coding [15]-[19]. However, none of these methodsitical-band rate and time. For théh critical band, we can
take psychoacoustic effects into account during codebofist compute, as specified in [1], the excitation leve(:) by
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Fig. 1. Frequency and temporal masking effects.

(rg— Psychoacoustic Forward Masking Model

design and vector encoding. convolving the signal with a spreading function
In the second part of this paper, we will propose a neural-net- . . .
work-based vector quantization scheme that encodes the E(i) = s(i) = P(i) 1)

MDCT-polyphase-filter coefficients using a psychoacoustic N . N "
feature related criterion. In this scheme, VQ codebooks a\;ig;;;} ?Sﬁ\(é)slsrzgzliid ?&?}rézginaerzgy in thith critical band and
derived from perceptually weighted binary-tree structure P g

self-organizing feature map (PW-BTSOFM), a modified 4(;) = 15.8147.5-(i+0.474)— 17.5\/1 + (i + 0.474)2. (2)
version of binary-tree structured self-organizing feature map

(BTSOFM) [20]. The distribution of the codewords in theThe convolution actually spreads the signal among neighboring
proposed tree-structured codebook not only reflects underlyifigquency components and is used to model the simultaneous
data statistics but also the signal-to-masking ratio (SMRequency-domain masking.

values. Furthermore, a perceptually weighted SMR-basedA nonlinear circuit, as shown in Fig. 2, was proposed in [29]
error criterion is used to determine the best codeword duribtg estimate the output specific loudness, one circuit for each
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Fig. 2. RC circuit for loudness estimation.

critical band. In each circuit, inpuY, (¢) is the:th critical-band
specific loudness of the current frame, which is given by

Output
Specific Loudness

N, (i) = 0.08(Ep(i)/ Ey)*?
[(0.540.5- E(i)/Ep(i)>** —1] (3)

where Er(¢) is excitation at absolute threshold, af is
the excitation that corresponds to the reference intedsity
1072 W/m?. The above equation transforms the extern:
physical energy valuegE(i)) to the internal loudness values
(Ns(¢)) [10]. Then, the low-pass circuit in Fig. 2 is usec
to emulate the nonlinear loudness processing in the neural
system and generates the output specific IoudrﬁéS;{i)). Fig.3. Loudness profiles of the maskers with different durations (adapted from
Two resistors and capacitors are used to model the two i
constants in the specific loudness decay profiles [21], [24].
One constant is smaller (for short maskers), and the othemiiered (¢, i) andM (¢, ¢)* are the total masking levels of the
larger (for the maskers with duration longer than 100 msgurrent frame and the previous frame, respectivélf(t, )
Some simulation results of the aforementioned nonlinegrthe masking level computed from the simultaneous masking
circuit are shown in Fig. 3. The output specific loudneds ( model [1]; At is the time difference between two frames;)
of the corresponding critical band) of input 2-kHz signali the maximum decay time constant in each critical band [24];
with different duration [shown in Fig. 3(a)] are depicted irand.V is the total loudness level. Note thiitis now normalized
Fig. 3(b). The total loudnessV), defined as the sum of theby the total loudness of a 60 dB uniform masking noise (UMN).
output specific loudness in all critical bands, is known to bi¢ IV is larger than oney is set to one. Say lies between zero
directly related to the forward masking level [10]. As showand one. WhemV is one, the energy in the basilar membrane
in Fig. 3(c), the total loudnessV) saturates and the forwardsaturates and total masking level decays with a maximum time
masking level reaches its maximum if the masker durati@onstant. WherV is zero, there is no signal energy spilt over
is longer than 100 ms. After saturation, the total loudnes®m previous frames and thus no forward masking.
decreases with a large time constant. On the other hand, if th&he nonlinear RC circuit in Fig. 2 is used to find the output
masker duration is less than 100 ms, the total loudness stagiecific loudnessV, in each critical band. For numerical com-
to decrease, without even reaching saturation level, with a tirpgtation, we convert the differential equations into the following
constant that increases with increasing masker duration. Tdifference equations:
above simulated total loudness behavior in cases with different

Total Loudness

masker duration agree quite well with the observed forward N, - N;

masking level [10]. Therefore, in the proposed audio coding I = " Rpi (®)
system we use the simulated total loudness as an estimate of

the forward masking level. where Rp; is on resistance of diod®1, and N, and N are

the specific loudness of the current frame and output specific
B. Application of the Forward Masking Effect to Audio Codindgoudness of the previous frame, respectivelyLIf < 0, it is

We now propose a model that integrates the frequency-ci§! t0 zero since diode D1 is off. Lat7 andV™ be the voltages
main simultaneous masking effect and the time-domain forwa?#§0Ss capacitors1 andC’2 in the previous frame, respectively.
masking effect. The proposed model depends not only on téVe > V™ (meaning diode D2 is off), then
current frame but also on previous frames. To determine the

total masking level of theth critical band at time, one com- _ L+ C2- V' /(At+C2- R2)+ C1- N;j /At ©6)
putes the maximum of the current simultaneous masking level °  1/R1+ C2/(At+ C2- R2) + C1/At

and the total masking level of the previous frame decayed by

some constant and

M(t, i) = max {Ms(t, i), M(t, i)* - exp 2/ W'N)} @)V = N*At/(At+R2-C2)+V*-C2-R2/(At+C2-R2). (7)
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=404 C. Simulation of the Forward Masking Model
Three kinds of masker signals, uniform masking noise
30 = (UMN), critical band noise (CBN), and an orchestra signal are
used in the following simulations about the forward masking
model.
20 T | T | T ] UMN [10] is filtered from white noise so as to produce con-
0.00 40.00 80.00 120.00 stant masking level at all critical bands. Using a signal that has
Time Delay (ms) absolute masking level of 0 dB as the reference signal, we gen-
(b) erate a 60-dB UMN as masker to find the threshold of a 5-ms

Fig. 4. (a) Forward masking patterns for a 5-ms tonal probe at 2 kHz. Ti@Nal probe (maskee) at 2 kHz. In Fig. 4(a), both the masking
masking at are drawn both for the estimated and measured cases with 5, 10l@@el predicted by the simulation, denoted by solid line, and
d 200 ms UMN maskers at 60 dB. ; ;
and 200 ms bt by & 85 e Cé‘?\} an";;Vlgrd masking levels of 6.5, 8.5, afKb measured data in [21], denoted by dashed line, are depicted
for different masker duratiofl;,,. The figure shows that the
predicted total masking level always lies within 5 dB of the
On the other hand, if diode D2 is on, then measured results. Fig. 4(b) shows both the simulated and the
measured forward masking levels of a CBN masker centered at
8.5 kHz. The probes are 6.5, 8.5, and 11 kHz tonal signals, re-
spectively. Again in most cases, the predicted masking levels
agree quite well with the measured data.
Finally, we use a piece of orchestra music to examine the
Inthe RC circuit, the increase in masker duration corresponi@gward masking effect in a more realistic setting. Referring to
to storing more charges into the capacitors. Therefore, if t4), the total masking level is determined either by simultaneous
capacitors are charged with a longer puldg, will be larger. masking or forward masking depending onwhich effect produces
On the contrary, if the impulse is short, the output of the circuitronger masking level. An interesting issue is to examine
will be smaller. The values of the resistors and capacitors atich of the two masking effects is more dominant. The
determined with a view to matching the phenomena measu@dhestra music segment as shown in Fig. 5(a) is encoded
using maskers longer than 200 ms [21], [22]. using the proposed masking model. In Fig. 5(b), the white

I, +(C14+C2)-V*/At
1/R1+ (C1+C2)/At

V=N,= (8)



HUANG AND CHIUEH: NEW AUDIO CODING SCHEME USING A FORWARD MASKING MODEL 329

4 (x) B (0) radius =0
Nearest X Bly(X)
Input X f s ohborhood | 10dex | Teble Output
Rule Lookup
v Y yY
Codebook Codebook

Fig. 6. Architecture of a vector quantization system.

regions denote time-frequency slots where the forward masking
effect is dominant and the black regions mean otherwise.
All white regions imply higher masking level than if only
simultaneous masking is considered, as in the traditional audio
coders [1]. Therefore, more quantization noise can be tolerated
and fewer bits are needed for coding. Since the forward masking
effect is dominant in quite a significant portion of the whole
time-frequency space, we expect the proposed masking model
will improve audio coding efficiency significantly.

(b)
I1l. V ECTOR QUANTIZATION AND SELF-ORGANIZING Fig. 7. (a) One-dimensional neuron structure in SOFM and (b) binary tree

FEATURE MAP neuron structure in BTSOFM.

In this section, we introduce the basic formulation of vector

quantization (VQ) and the algorithm of self-organizing feature SOFM Algorithm

map (SOFM). Furthermore, a binary-tree-structured SOFM
(BTSOFM) is introduced as a flexible VQ coding scheme for
perceptual audio coding.

A. Vector Quantization

In a vector quantization system shown in Fig. 6, there are two
mappings: one in the encoder and the other in the decoder. For
each input patteriX’, an encoder assigns a symhdIX ) from
the symbol set according to the nearest neighbor rule. The de-
coder then looks up the codeword corresponding to the symbol,

(1) Randomly initialize all L-demensional weight vectors
of an M-neuron SOFM network

(2) Input a training pattern

(3) Exhaustively search all neurons to find the one with
closest weight vectors

(4) Update weight vectors of all neurons within "current
neighborhood”.

(5) If not in equilibrium, go to step (1). If in equilibrium,
then shrink neighborhood, decrease learning rate, and
2o to step (2). If in equilibrium and the neighborhood
has only one neuron, then stop.

B(v(X)). So, a vector quantizer can be defined as a map@ing
from the L-dimensional Euclidean spad®- into a finite seft”
consisting ofM points inR". Thus, the vector quantize®, is
defined as

Fig. 8. Self-organizing feature map learning algorithm.

neurons. Each of thé/ neurons in the network has a weight
vectorW with dimensionL. The weight vector of each neuron
represents one codeword in the codebook. In the beginning,
whereY = {W0™; m = 1,2,..., M} is the set of code- a|| weight vectors are initialized. During the training of the
words (codebook) andtf is the size o". Usually, a VQ system network, the neuron whose weight vector is closest to the
chooses the codeword whose Euclidean distance to the ingyirent input training pattern is identified. Then, the weight
pattern.X is minimum. Thus, the reconstructed signal suffergectors of the winning neuron and all neurons in its “current
minimal sum-of-squared-error distortion. neighborhood” are updated in the direction toward the input
pattern. In other words

Q: R SY

B. Self-Organizing Feature Map

A famous neural network model, self-organizing feature
map (SOFM) [32], is often used for training vector quantiza-
tion codebooks in various lossy signal compression systembere W (™) and W(* are the updated and original weight
because of its capability of clustering without supervision angkctor of thenth neuron, respectivelyf; is the training iteration
the flexibility of the codebook structure it generates. SOFM hasunt;d is the distance between the neurarand the winning
been shown to yield VQ codebooks that are better than thasuron; andx(7’, d) is the learning rate that controls the speed
generated by the conventional generalized Lloyd algorithaf the training process.

[33]. After the neurons are trained by all input patternsgpoch

Typically, SOFM network is composed of a discretés completed and the network is retrained by all input patterns
one-dimensional (1-D) or two-dimensional (2-D) lattice ofor another epoch. For each epoch in the training process, the

W(m) _ W(m)* + a(T, d) (X _ W(m)*) (9)
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Fig. 9. Neuron distributions during the training process for (a) the 1-D SOFM network and (b) the BTSOFM network.

“current neighborhood” for updating weight vectors must bgo the neurons are quickly pulled apart. Later in training, the
redefined. For a better clustering performance, the learning ragurons move slowly because the learning rate is low and the
and the size of the current neighborhood should be graduatigighborhood is small. The learning rate and the neighborhood
decreased. Fig. 7(a) depicts the generic 1-D SOFM netwodecrease gradually during the training process. Therefore, the
The three neighborhoods contain all neurons inside the regi@®®FM algorithm is less likely to be stuck at local minima
centered at the winning neura¥; with radius two, one, and and it usually yields better codebooks than those designed by
zero, respectively. Similarly, the current neighborhood of oth&maditional descent-based methods with fixed learning rate.
neuron structures (e.g., 2-D lattice) can be defined as a seThe SOFM algorithm generates vector quantization code-
of neurons centered at the winning neuron. At the end of theoks with better quality. However, 1-D and 2-D SOFM
training process, the weight vectors of the neurons are disetworks are not suitable for designing high-dimensional
tributed to reflect the statistical nature of the training patterm®debooks. To remedy this, a binary-tree structure SOFM
and they are used as codewords in the codebook. Moreo(BTSOFM) is proposed [20]. With binary-tree structure among
neighboring neurons will represent codewords that are alitee codewords, BTSOFM is suitable for progressive coding
since neighboring neurons are updated almost simultaneoualyd variable bit-rate coding. In addition, the tree-structured

The SOFM learning algorithm is summarized in Fig. 8. codebook makes tree search of the codebook possible, thus
An example of the training process of a 1-D SOFM networteducing the encoding complexity.
is shown in Fig. 9(a). The learning rate is defined as The BTSOFM learning algorithm is similar to SOFM except
0.3 ) ) for the neuron structure and the current neighborhood definition.
T, d) = T/ cem /D) (10) In BTSOFM, tree search is used to locate the nearest neuron to

a training pattern. Fig. 7(b) illustrates a three-level, eight-ter-
where r is the radius of the current neighborhood ahds minal-node BTSOFM structure. The numbers shown under the
the distance between the winning neuron and the neur@mminal nodes are the distance between the fourth ndde (
being updated. Input patterns are randomly and uniforménd all respective nodes. The distance is defined by the number
distributed in the rectangular region. Early in the trainingf hops between two nodes along the binary tree. Initially, all the
process, the learning rate is high and the neighborhood is largedes, including the terminal nodes and inter-level nodes, form
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a full binary-tree. As the training goes on, this high-dimension'ziggii'
tree is gradually stretched so that the terminal nodes reflisignal [ Fiterbank 5 woet 5 VQPeéCZP‘:a'k ngef _BI
training-pattern distribution. At the same time, the inter-lev > 32 Subbands |i f Lookap | LFomat] "
nodes are also updated in such a way that a binary tree str 2
. . . . . ece. .. """ —-—"—-—""—"—-—— !
ture is always retained, so progressive coding using differe | |
bit rates (codebook sizes) can be adopted. Another example : FFT »| Psychoacoustic I
; g ; ; P ; » 1024 “]  Modet with |
using a six level BTSOFM ne_twork is depicted in Fig. 9(b). Ini | points » Frequency Masking |
tially, neurons are all located in the center and input patterns : | |
again randomly and uniformly distributed in the rectangular r | - |
: . L . | Psychoacoustic I
gion. The neurons are finally stretched to reflect the distributic | Model with L |
' |

of the input patterns. Forward Masking
The BTSOFM possesses one characteristic thatis crucial ... L - __— —__—_—_—____ a

codebooks for perceptual audio coding. Note that in addition ) . .
Fig. 10. Architecture of the proposed perceptual VQ-based audio coding

to the codebook made up of all the terminal nodes, progr@;%tem.

sively smaller codebooks, each consisting of all nodes on a
higher-level, are generated during BTSOFM training. These

smaller codebooks can also be used for vector quantization, 575
albeit with higher quantization noise. With these progressively _ _ _ _
smaller codebooks at hand, one can choose the smallest on A A2 A A2_]158x2
that yields quantization noise just below the masking threshold
S0 as to make the noise imperceptible. With smaller codebooks
and fewer bits for codeword index, the coding efficiency can b .
be enhanced while the sound quality is not compromised ! !
perceptually. To this end, a modified BTSOFM algorithm will 32
be proposed to design better codebooks for perceptual audic 5 5 5 5 8x2
coding in the next section. ! A2 A A2
44
IV. AupiO CODING WITH PERCEPTUALLY WEIGHTED ~ . o .
BTSOFM VQ [A7 A7 (A7} (A7 8x2
In this section, we propose a VQ-based perceptual audioz 30 . . . .
coding scheme whose codebooks are designed by a percepg Aot 72 Aot A2 6x2
tually weighted BTSOFM algorithm. This algorithm is based = 4
on a perceptually weighted error criterion. We will introduce 9 Cu - Cu 5 6x2
the new criterion first and explain why it is better than the % — — — —
traditional error criterion. o 24 - o . "
g 7T gL y A A2 4x2
A. Audio Coding Scheme @ » v v v v 4x2
In the proposed audio coding scheme shown in Fig. 10, we 16 n n n -
use the same hybrid analysis asin the MPEG1 Layer Il scheme, | F—1 12 21 A2—] 4x2
which has 576 MDCT coefficients in the frequency domain. The o r ey o .y 4x2
vector quantization block uses a gain-shape vector quantization g
codebook whose codewords have n componentsy MDCT A 2 A A—] 4x2
coefficients from each of the two consecutive frames. The exact 4 . — . —
grouping of the MDCT coefficients is shown in Fig. 11. On 0 £ — £ = 4x2 >
the total, 22 bands cover 576 MDCT coefficients and 15 code- 1 2 3 4

books with different vector dimensiof2«) are used to encode
these MDCT coefficients. The bandwidthincreases approxi-
mately exponentially with frequency, somewhat consistent withy. 11.  Definition of critical band vectors used in the proposed audio coding
the critical band scale or Mel scale [1]. scheme.

To exploit perceptual characteristics in vector quantization,
MDCT coefficient vectors are supposed to be surrounded by aFor each2n-dimensional MDCT coefficient vector, two
masking region in the vector space as shown in Fig. 12(a).sifjnal-to-masking ratio (SMR) value3;( and A,), as shown
the selected codeword is inside the masking region, the quamti-Fig. 11, are calculated. The masking level is computed
zation distortion is imperceptible. Otherwise, perceptible noisecording to (4), thus includes both the frequency masking and
will occur. The concept is similar to shaping scalar quantizatidhe forward masking effects. The SMR values determine the
error below the masking level except that the 1-D masking curagasking region in the vector space, with which the codeword
in the frequency domain is now extended to the general maskithgt causes least perceptible noise can be selected. In addition,
region in theL-dimensional space. the SMR values are also supervisory information used during

Frame (Time)
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Pe"éff;irb'e whereE = X — W™ = (E, E,). To facilitate codebook
Imperceptible ® training and searching, we propose a new perceptually weighted
Error error criterionE,,.,., where
0 S I - wpe
Eper = A - —— (14)
r E X112
Masking : Perception- If £, is less than one, then the SNR is higher than the SMR
tolerant Error is both subvectors, ensuring imperceptible quantization noise.
(@ Geometrically, the imperceptible-noise region (masking region)
Iy becomes an ellipsoid, thus the name perceptually weighted error
Q MSE Criterion criterion. In the example shown in Fig. 12(b), codewords of a

tree-structured codebook and an input pattern are shown in the
coordinates of the two subvectors. The SMR in the first subspace
is smaller than that in the second subspace. Therefore, instead
of the nearest codeword in Euclidean distarié&*’, the per-
ceptually nearest codewol **+1) should be chosen.

% —~_ Perceptually Weighted
- Error Criterion

11 10193AqQNS

C. Perceptually Weighted BTSOFM
The strategy of the perceptually weighted BTSOFM algo-

OLeaf Node . o . . .
X rithm, a modified version of the BTSOFM algorithm, consists
of the perceptually weighted error criterion and an updating
subvecotor I > process according to the SMR values. We use perceptually
(b) weighted BTSOFM to train 15 tree-structured codebooks

Fig. 12. (a) Concept of masking region in vector quantization and (Eie_eo_'ed in the proposed a?’d'o F:Odlng SChe_me' The BTSOFM

perceptually weighted error criterion used in searching for the neardg@ining procedure is described in the following.

codeword. 1) Each codebook is a binary tree of depth 12, containing

4094 inter-level neurons and 4096 terminal neurons. In

codebook training so as to generate a perceptually optimal code- tpe beginning, the weight vectors of all neurons are ini-

book. tialized and the training starts with a neighborhood of dis-
tance 24, covering all nodes in the network.

2) For each training pattern, a binary tree search is used to
In traditional vector quantization, minimum sum-of-squared- identify the perceptually nearest neuron to the input pat-

difference is used to determine the nearest codeword. Geometri- tern according to the perceptually weighted error criterion

cally, the winning neuron (codeword) has the smallest Euclidean  formulated in (14).

distance to the input pattern among all codewords. In our case3) All neurons inside the current neighborhood of the win-

however, the two SMR values can be quite different, implying ning are updated according to the SOFM update rule in

different levels of noise can be tolerated. One reasonable ap- (9) except that now the distance is the BTSOFM tree dis-

proach to accommodate this fact is to use a weighted error (dis-  tance and the learning rate depends on not @handd,

B. Perceptually Weighted Error Criterion

tance) criterion. but also),;.
Let a2n-dimensional normalized (shape) input vector be de- 4) After ten runs of all patterns in the training set, “equilib-
noted as rium” is assumed and the radiusis decreased by one.

When the radius reaches zero and the neighborhood con-
tains only the winning node itself, then the training stops
wherez; andz,; are computed from the MDCT coefficients after reaching equilibrium.

from the first frame and the second frame, respectively. Let theThe learning ratex is given by

mth codeword in a codebook be denoted as

W(rn) = (W(m) W(m)) = (wll ey W1 wat, ..., W ) Oé(T d A) = L . Cidz/(r-'—l)z . L (15)
1 ) 2 ’ ’ 7 ’ ’ (nz) y Wy ddg 1 +T/500 GA* +6_A7'
1

XI(Xl,XQ)I(.Tll, ceey Tin, X21, ...,.’L’Qn) (11)

whereA; = 10log;, A; is the SMR value expressed in log scale
Ihd it is used to compute the learning rate for all components in
Reith subvector. The term that depends/oris in the form of
e:;igmoidal function, which saturates to 1Af is large and to
zero isA; is small. This has the effect of limiting the adjustment
strength of high-SMR input patterns as well as completely ig-
nores the input patterns overwhelmed by masking.

According to the perceptual masking criterion, the quantizati
error should be smaller than the masking level. In other wor
the signal-to-quantization-noise ratio should be larger than t
signal-to-masking ratio (SMR) in each of the subvectors

X1 X2
and As <
| E2|I*

A <

AL 13)
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TWENTY SOUND ITEMS USED IN AUDIO CODING QUALITY
MEASUREMENT EXPERIMENTS
( Normalize vector with )
quantized norm Sound Items
Saxophone Tenor ( Jose Carreras )
A . Male voice Female song
( Identify and initialize ) Female voice, drum and cello Synthetic music
for the encoded band Electrical guitar and violin Electrical guitar
* Violin and piano Rock drum
. . Orchestra Folk guitar
4>CTree-search Quantlzatlon) TETPe Horomien
* Chorus song Folk song (Male)
Flute Folk song (Female)
Update the Eper ) Bass Chinese violin and flute
of the new codeword

nodes, or all available bits have been allocated. Other-
wise, the procedure goes back to the previous step.
When the procedure stops and if the bit rate is high enough,

then quite possibly alk,..,- are less than one, which means that
no quantization noise will be perceptible in any of the 22 bands.
However, if the bit rate is not high enough, then the bits will be
assigned so as to makg,..,., and thus the perceptually weighted
distortion, in 22 bands as small as possible.

Max Eper
Increase
depth (bit)

Fig. 13. Flow chart for bit allocation and tree-structured codebook searching. V. EXPERIMENTAL RESULTS

) . . Twenty mono sound items with 44.1 kHz sampling rate,

D. Bit Allocation Using Tree-Structured VQ 16-bit resolution, and 30-s duration are selected for experiments

In the proposed audio coding scheme, 576 MDCT coeffisee Table I). To evaluate sound quality at different bit rates,
cients in each frame are divided into 22 vectors (critical bands}ven different bit rates of 80, 64, 56, 48, 40, 32, and 24 kbps
and each quantized by one of the 15 codebooks of corresponding used. The decoded sound items by MPEG layer Ill coding
size. These 15 tree-structured codebooks are trained by the peheme are used as the baseline for comparison.
ceptually weighted BTSOFM. As mentioned in the previous
section, a)-level binary-tree-structured codebook actually corf- Objective Sound Quality Measurements

tains in it smaller tree codebooks of siZefor all ¢ smallerthan  Tg evaluate the sound quality, we use the perceptual audio
D. Therefore, bit allocation for each critical band needs to quath measure (PAQM) [34] for objective assessment of the
termine the size of the codebook used to encode the critical bajalind quality. It is one way of measuring noise disturbance,
vector. The available bits must be precisely assigned to contjgich ranges from-1.7 to —0.3 corresponding to 5 to 1 in
the bit rate and the distortion caused by the gain—shape veagis mean Opinion score (MOS) This method measures the
quantizer. Thus, we employed an iteration loop in Fig. 13 for bifuality of an audio coding scheme by mapping the input and
allocation and tree-search of the gain-shape tree-structured \§@tput of the coding scheme from physical signal representation
The algorithm is basically a greedy method with the perceptgnto a psychoacoustic representation. This mapping enables
ally weighted error criterion and is described in the following.quantification of perceptual degradation introduced by the audio
1) The magnitude (gain) of an input vector is quantized wittoding scheme. With this mapping, subjective quality of the
four bits for the first 11 bands and three bits for the next Irfeconstructed audio signal can be estimated. Besides, this
bands. The input vector is then normalized by the quamethod can measure the sound quality at different time in
tized gain to get the normalized input vector (shape). N0 sound segment. Thus, we can see the variation of sound
bits will be assigned to encode the bands with hath quality in a sound segment.
lower than—3 dB due to strong masking. Fig. 14(a) shows the sound quality of a sound segment
2) In the tree-search quantization stage, the perceptuallging five different audio coding schemes. By comparing the
weighted errotE,... is used as the criterion for selectingPEG Layer Il scheme and the MPEG Layer Il scheme
codewords for shape vectors in 22 bands. All 22 shapéth the forward masking model at 48 kbps (both use scalar
vectors search in their corresponding codebook trggantization), we can see that the sound quality is markedly
in parallel. Bit allocation and tree searching proceeidhproved since the forward masking model is adopted. In
simultaneously, i.e., traversing down one level in the tresddition, the performance of PW-BTSOFM VQ is better than
leads to one more bit assigned to encode the shape vediwait of BTSOFM VQ and TWIN-VQ in [14] because of the
3) For each iteration, if at least one band has,a. higher additional sigmoidal function and perceptually weighted error
than one, one more bit is assigned to the band that has thigerion in PW-BTSOFM VQ. Of course the three vector
highestE,,... value. Then, the codebook tree is traverseguantization audio schemes are better than the two scalar
one level down and,.... of this band is updated. quantization schemes, with or without forward masking.
4) The iteration stops wheh,,, for all bands are less than The PAQM noise disturbance versus bit rate for all five audio
one, or all the codebook trees are searched to termimalding schemes are shown in Fig. 14(b). The figure shows that
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schemes.

Fig. 16. Percentages of bit rate reduction using BTSOFM, PW-BTSOFM, and
) ] ) MPEG layer Il scheme with forward masking.
PAQM noise disturbance of the MPEG layer 11l coding scheme

with forward masking model increases with decreasing bit rate

at a much slower pace than the original MPEG layer Ill sche Bore (MOS.)' Th'.s SCore goes from 1.0 (vgry annoying distor-
This implies that the forward masking model is very cruci |on) to 5.0 (inaudible distortion). Fourteen listeners evaluate the

to sound quality performance, especially in low bit-rate aud ound quality of the 20 sound items at 24- to 80-kbps bit rates.

coding. Moreover, the PW-BTSOFM VQ coding further im- heir results are shown in Fig. 15. The average MOS curves also

; : emonstrate the superiority of the forward masking model and
proves sound quality and it outperforms the MPEG layer @e perceptually weighted BTSOFM VO.

zgﬂgmg vg/isth etgznfoirxvia(t)r\?v g:ta ;s;iggergi?]dil and the TWIN-V By simple interpolation, we can derive the percentages of bit

» €SP y gs- reduction, shown in Fig. 16, for different audio coding schemes

L . given that the same sound quality as the MPEG layer Ill scheme

B. Subjective Sound Quality Measurements is required. The rate reduction computed from the PAQM experi-
Subjective listening tests are carried out to evaluate the suhents and that from the MOS experiments are similar and they
jective quality of the proposed coding scheme by mean opiniboth illustrate enhanced performance of the proposed scheme.
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With the forward masking model, the bit-rate reduction of the[15] H. Najafzadeh-Azghandi and P. Kabal, “Perceptual coding of narrow-
three schemesis less than 10% above 56 kbps. On the other hand,
the two VQ-based schemes require much less bits than MPE
layer Il below 48 kbps. Atthe bitrate of 32 kbps, the MPEG layer

[l with the forward masking model require 25% less bits than them]
original MPEG layer Ill scheme. Moreover, BTSOFM VQ and
PW-BTSOFM VQ schemes achieve 33% and 38% bit-rate re-
duction in the PAQM measurements, and 28% and 32% bit-rate®]
reduction in the MOS listening tests, respectively.

[19]

VI. CONCLUSION [20]

In this paper, the forward masking model using a RC analog
circuitis exploited to estimate the forward masking effect. Sincez1;
the proposed RC analog circuit is time-varying and nonlinear,

it is more accurate in estimating the forward masking level

22]

Due to the long-term (200 ms) forward masking effect on the
ensuing signals, more imperceptible signal components can &3]
eliminated and the coding efficiency improved with the forward[24]
masking effect taken into account.

Moreover, we proposed the perceptually weighted BTSOFM
algorithm that considers a perceptually weighted error criterion?™)
in vector quantization codebook design. The codebook has a bi-
nary-tree structure and inherently contains several progressivelgf]
smaller codebooks with similar codeword distribution. This fea-
ture makes feasible a new bit assignment algorithm proposed p7]
this paper to minimize the perceptible quantization noise. With
all the above properties, the proposed audio coding scheme cgg,
achieve up to about 40% bit rate reduction when compared to
the standard MPEG Layer Ill audio coding scheme. [29]

(1

(2]

(3]

(4]

(5]
(6]
(71

(8]
[9]

[10]
(11]
[12]
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(14]
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