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On Time-Frequency Masking in Voiced Speech
Jan Skoglund, Member, IEEE,and W. Bastiaan Kleijn, Fellow, IEEE

Abstract—This paper addresses the issue of masking of noise in
voiced speech. First, we examine the audibility of cyclostationary
narrow-band noise bursts added to voiced speech generated by syn-
thetic excitation. Varying the temporal location of noise within a
pitch cycle corresponds to varying its phase spectrum. Using this
fact, we found that a change of phase of the noise in the high fre-
quency region is more perceptible for a low-pitched sound than
for a high-pitched sound. We then propose a pitch-dependent tem-
poral weighting function which can be employed in quantization of
pitch cycle waveforms. In a second experiment, we found that the
audibility of high-frequency noise added to natural speech can be
significantly reduced using this weighting function.

Index Terms—Auditory masking, phase spectrum, speech
coding, temporal weighting.

I. INTRODUCTION

T HE perceived quality of coded speech results from the
process of tracking and preserving important dynamic fea-

tures such as spectral envelope, pitch frequency, and waveform
shape. By exploiting the masking properties of the human audi-
tory system, we can reduce the audibility of quantization noise.
In linear predictive speech coders, error weighting based on the
magnitude spectrum is often employed to adapt the spectral en-
velope of the quantization noise [1]. More detailed information
about masking, in both the phase and the magnitude spectral
domain, will likely lead to improved performance of speech
coders.

In traditional psycho-physical masking experiments, stimuli
with a simple temporal or spectral structure such as noise, clicks
or pure tones are often used. The experiments have also focused
on phenomena belonging to one of three temporal masking
classes: simultaneous masking, pre-masking or post-masking.
It may be difficult to extend results from such studies into
more complex physical signals like speech and music. For
example, the masking properties of voiced speech are due to a
combination of all the three classes.

Let us consider the vowel segment displayed in Fig. 1. Spec-
trally, this segment has a harmonic structure while temporally
it has a structure with a periodic envelope. (The envelope in
the figure is the analytical envelope of the signal.) In the pro-
cessing of a sound in the auditory system, the function of the
inner ear can be viewed as a bank of parallel bandpass filters.
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Fig. 1. Vowel (thin line) and its envelope (bold line).

Fig. 2. Transfer characteristics of auditory filters.

Fig. 3. Critical bandpass filtered vowel (thin line) and its envelope (bold line).
The center frequency of the filter is 3200 Hz.

The bandwidths, so-called critical bandwidths, of these auditory
filters increase with frequency. In Fig. 2, the transfer character-
istics of an auditory filter bank described in [2] (which is an
implementation of filter types from [3]) is depicted. A common
notion is to assume that the envelopes of the auditory filter out-
puts contain the relevant features and cues for detection and dis-
crimination of sounds [4]–[9]. The envelope detector is often
modeled as a nonlinear device, e.g., a half-wave rectifier [4] or
a square-law [10], followed by a low-pass filter or an integrator.

Fig. 3 depicts the output of a single high-frequency auditory
channel (with a center frequency of 3200 Hz) in response to the
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vowel segment of Fig. 1. We see that the signal consists of short
bursts with a distinct temporal structure. The figure illustrates
the need for considering the time-frequency aspects of voiced
speech in studying the masking properties. When decomposing
the signal and considering single auditory channels, the infor-
mation gained from the use of simple stimuli as described above
may be sufficient to explain some of the masking effects ob-
served in voiced speech.

In source-filter based coding schemes, the excitation signal
for voiced speech usually consists of pulses having almost flat
power spectra. It has long been known that the phase spectrum
of the excitation pulses affects speech quality, but how impor-
tant this phase is for speech coding is not very well understood,
although it is known that zero-phase impulses result in unnatural
speech, and that a more accurate phase representation increases
speech quality [11]–[13]. For low-rate coding, it is important
to understand the significance of the phase spectrum. Low-rate
speech coders based on harmonic models often employ very
crude descriptions of the phase spectrum and yet yield good
quality [14] although they sometimes sound buzzy. Thus, it is
natural to study how much phase information of the pitch-cycle
waveform is required for attaining high quality reconstructed
speech.

The phase spectrum is closely related to the temporal dis-
tribution of energy in the cycle. Hence, one way of investi-
gating the perceptually important regions in the magnitude and
phase spectrum is to add noise distributed in different time-
frequency regions. A thorough study of the audibility of sta-
tionary wide-band and narrow-band noise is presented in [15]
and [16]. Stationary noise was added to periodic impulse trains
and the audibility thresholds were measured as a function of
the fundamental frequency of the impulse trains. The results of
these experiments indicated that in the low frequency region, the
threshold for noise targets is mainly determined by the sharp-
ness of spectral resolution. In the high frequency region, the
critical bands are wide enough to contain several harmonics,
thereby causing a temporally modulated waveform, so that the
threshold for noise targets is detected by temporal analysis. The
balance between these two effects is strongly dependent on the
fundamental frequency of the impulse train.

To study the second effect further, we examined the audi-
bility of stationary narrow-band noise in natural speech, and
the audibility of the temporal distribution of cyclostationary1

noise within the pitch cycle for synthetic vowels and natural
speech. There are other factors that also contribute to the overall
masking, e.g., the previously mentioned simultaneous masking.
We have in this work concentrated on temporal masking phe-
nomena. The results are relevant for the coding of voiced speech
signals.

II. EXPERIMENTAL SETUP

The signals in the experiments were produced on a Macin-
tosh computer at an 8 kHz sampling frequency, upsampled to
32 kHz and low-pass filtered at 4 kHz prior to 16-bit analog

1Here we use the term “cyclostationary” of a random process if its statistical
properties are invariant to a shift of the origin by integral multiplies of the pitch
period [17].

reconstruction. The signals were amplified using a Sony FH-3
low-pass filter with a 4 kHz cut-off frequency and a NAD 3020B
power amplifier. The experiments were performed using a pair
of Beyerdynamic DT 990 headphones. The background noise
was measured to have an SPL of less than 50 dB and the signal
levels were around 80 dB. Three to six listeners with normal
hearing were used for the experiments.

III. T IME-FREQUENCYNOISE EXPERIMENTS

In this section, we will investigate the audibility of critical
band limited noise of different time-frequency regions when
masked by natural and synthetic speech.

In the following, the speech signal will be denoted as the
masking or masker signal and the added noise will be denoted
as the target signal. Let the target-to-masker-ratio, TMRfc , de-
note the ratio between the power of the target and the masker in
a critical band, CBfc , having a center frequencyfc. Hence

TMRfc = 10 log10

Z
CBfc

SN (f ) df

Z
CBfc

SS(f) df
(1)

whereSN (f) andSS(f) are the power spectral densities of the
noise target and the speech masker, respectively. The lower limit
of TMRfc that can be detected in listening will be referred to as
the audibility thresholdTD at frequencyfc. The critical band-
widths, expressed as equivalent rectangular bandwidths (ERB),
were calculated following [18] as

ERB= 24:7(4:37fc + 1) (2)

wherefc is in kHz and ERB is in Hz. In the experiments, the
TMRfc was computed as the energy ratio of critical band-pass
filtered signal segments.

A. Preliminary Experiment

A pilot experiment was performed to investigate whether the
isolated vowel results of [15] could be translated to an entire
utterance with changing pitch and formant structure. The sen-
tence “Joe brought a young girl” was spoken by one male and
one female speaker. Narrow-band noise of critical bandwidth
with varying center frequency was added to a tenth order linear
prediction residual, having a sampling frequency of 8 kHz, and
the speech was re-synthesized. The prediction order of ten was
chosen as typical for predictive speech coders. To track the dy-
namic intensity of the speech, the noise was added at a constant
segmental signal-to-noise ratio in the designated critical band.
This means that the TMRfc was constant in each segment. The
segment lengths were 20 ms. Noisy speech with a decreasing
noise level was presented to four subjects who then indicated at
what level the noise became inaudible. The noise level was de-
creased in 5-dB steps. The results are depicted in Fig. 4.

Although the results are affected by the time-varying formant
structure of the utterance, some general effects of the time-fre-
quency resolution can be observed. The sensitivity for the fe-
male speaker decreases as a function of frequency. After an ini-
tial decrease, the sensitivity for the male speaker increases. The
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Fig. 4. Average audibility thresholds and standard deviations (vertical bars)
for critical band limited noise of different center frequencies. ATD of 0 means
equal target and masker energy in the critical band. Low values correspond to
high sensitivity.

decreasing sensitivity of the female speaker with increasing fre-
quency, and the initial decrease for the male speaker is consis-
tent with the decreasing frequency resolution of the auditory
filter bank with increasing frequency. The increasing sensitivity
for the male speaker is consistent with increasing time-resolu-
tion with increasing frequency of the auditory filterbank.

As mentioned, the perceived quality of the female speech is
more sensitive to additive noise at low frequencies. In these fre-
quency regions, the spectral resolution of the auditory filterbank
is sufficient to observe the noise between the harmonics. Natu-
rally, this sensitivity will be apparent from our measurements
only if our target-to-masker ratio measurement includes at least
one harmonic. This is not always the case for females at low fre-
quencies, explaining the anomalous point with 0 dB TMRfc in
Fig. 4.

B. Experiments

The results in Fig. 4 indicate that the audibility of quantiza-
tion noise is pitch dependent. The higher audibility of stationary
noise at high frequencies for male than for female speakers
can be explained by the limited time resolution of the enve-
lope detectors (temporal masking), the longer pitch cycle, and
the nonuniform energy distribution within a pitch cycle. This, in
turn, would mean that the temporal distribution of quantization
noise within the pitch cycle has a higher perceptual importance
for male than female speech. In the following experiment we
will confirm this argument by examining the masking of cyclo-
stationary noise by a synthetic vowel.

We use noise bursts of critical bandwidth, having a center fre-
quencyfc = 3200Hz (ERB= 370 Hz) andfc = 1600Hz (ERB
= 200 Hz), as a basic building block. We noted in the previous
experiment a higher temporal masking effect at higher frequen-
cies and we limit the experiment to two bands in the region of
interest. The masker is a synthetic vowel and the target con-
sists of cyclostationary noise bursts generated by multiplying
a stationary noise signal of critical bandwidth with a periodic
window. The noise was added pitch-synchronously to an im-
pulse train. Hence, in each pitch cycle of the impulse train,

Fig. 5. Composite of cyclostationary noise and impulse train. The phase
position of the noise is' = 3�=2.

Fig. 6. Vowel spectrum used in the experiments. The power density spectrum
of the target noise (fc = 3200Hz andfc = 1600Hz) is shown at a TMRfc =
0 dB.

one noise burst is located. The windows consisted of concate-
nated Kaiser windows with a fixed support of 5 ms for each
pitch cycle. For our work, we selected the procedure with fixed
window support over the alternative where the window sup-
port is proportional to the pitch period. The latter method has
a target bandwidth which varies with pitch. The power spec-
trum of the cyclostationary noise is slightly wider than the un-
windowed stationary noise (an expression for the spectrum is
given in the Appendix), but measurements show that the cy-
clostationary noise has approximately critical bandwidth. Four
phase positions,', of the burst relative to the impulse were ex-
amined for two pitch values,F0 = 100Hz andF0 = 200 Hz, of
the impulse trains. Using the results given in the Appendix, the
four different masker-plus-target signals have identical power
spectra. Fig. 5 illustrates the impulse excitation added with cy-
clostationary noise in a specified phase position.

When the noise signal alone was presented to three subjects,
they reported that the modulation effect is clearly audible at
low pitch frequencies. However, at pitch frequencies higher than
170–180 Hz, the pitch-modulated noise is perceived as an al-
most stationary signal. This result is consistent with previous
temporal masking experiments where the audibility of the mod-
ulation effect in amplitude-modulated wide band [4] and narrow
band [19] noise was found to decrease with increasing modula-
tion frequencies. This is another indication that for higher pitch
frequencies the time location of the noise burst within a pitch
cycle in a speech signal is of less importance for perception.

A synthetic vowel (c.f. Fig. 1) was then generated by exciting
an all-pole filter, with a transfer function depicted in Fig. 6, with
the distorted impulse train. The masking signal, i.e. the clean
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synthetic vowel, had an SPL of 84 dB. In the figure, the power
density spectra of the two noise signals at a TMRfc = 0 dB are
also presented. The filter coefficients are(a0 = 1)

a1 =�1:5672 a2 = 0:1299 a3 = 0:7840

a4 =0:5414 a5 = �0:7231 a6 = �0:3695

a7 =0:2431 a8 = 0:4628 a9 = �0:2915

a10 =0:0253:

A vowel generated by a zero-phase impulse train sounds un-
natural, as previously mentioned. This is not a problem for the
current masking experiment, since the subjects only indicated if
noise was present or not and no judgements were made about
the naturalness of the vowel. In a study by Hermes [20], similar
types of noise bursts were added to synthetic vowels and it was
found that adding noise increases naturalness.

The signals were generated using Matlab and the duration of
both the masker and the target was 500 ms, including 20-ms
half-period sinusoidal rise and fall windows. The TMRfc was
calculated using the 500 ms signals. Audibility thresholds were
measured using an adaptive two-interval, forced-choice proce-
dure using a three-down, one-up decision rule that estimates the
79.4% correct decision point of a psychometric function [21]. If
three correct answers were given, the noise level was decreased.
For an incorrect answer, the noise level was increased. Each run
consisted of 60 pairs. The noise level was initially well above the
threshold. An initial step size was set to 4 dB and the downward
step size was reduced to 2 dB after the first two reversals. The
threshold estimate was based on the average of reversal points.
If the total number of reversals was even, the first two rever-
sals were discarded. Otherwise, the first three reversals were dis-
carded. If the standard deviation of reversal points for a run was
greater than 5 dB, that run was discarded. The final estimate of
the threshold was based on an average of at least three runs. In
this experiment, six listeners participated. The subjects received
practice runs before the experiments and the listening sessions
were segmented into 20-min sessions with intermediate pauses.

C. Results

If the results are presented as a function of the different time
location within the period of the masker we get what is referred
to in the literature as a masking period pattern [22]. Note that
traditionally the target has been tone bursts [7], [22], [23] and
not noise bursts as in this study. Fig. 7 depicts masking period
patterns for noise bursts centered atfc = 3200 Hz. The av-
erage thresholds are connected with straight lines and the ver-
tical bars show the standard deviations. Phase postion' = 0,
corresponding to the pitch pulse being in the center of the noise
burst, was perceived as the least sensitive phase position for all
subjects and both pitch frequencies. Since the subjects vary in
their absolute threshold levels (in TMRfc ), an interesting di-
agram can be obtained by normalizing the threshold for each
subject at' = 0 and plot the threshold difference for the other
phase settings. This normalized diagram is depicted in Fig. 8.

For the 100-Hz vowel, there is a difference of around 20 dB
between the most and least detectable phase positions. For the
200-Hz vowel, the difference is around 3 dB. Hence, the dif-
ference in phase sensitivity between the high-pitched and the

Fig. 7. Average audibility thresholds and the standard deviations (vertical
bars) for different noise burst positions within a pitch cycle. Noise center
frequencyf

c
= 3200 Hz.

Fig. 8. Average audibility thresholds and the standard deviations (vertical
bars) for different noise burst positions within a pitch cycle, normalized for
' = 0. Noise center frequencyfc = 3200 Hz.

low-pitched vowel is 17–18 dB, confirming increasing phase
sensitivity with decreasing pitch. Note that for the 100-Hz vowel
the cyclostationary noise is most audible between the impulses.
In a speech signal this means that the noise is masked most
strongly around the pitch pulse excitation. A natural excitation
pulse is often less peaky than an impulse, therefore we might
expect a slightly lower difference for a natural vowel.

Thresholds for two additional pitch values,F0 = 133Hz and
F0 = 160Hz, were measured for one of the subjects. The results
are presented together with the thresholds forF0 = 100 Hz
andF0 = 200 Hz for that subject in Fig. 9. The figure clearly
illustrates the pitch dependency of the temporal sensitivity.

In Figs. 10 and 11, masking period patterns for noise bursts
centered atfc = 1600 Hz are presented. We see that there
still is a difference between the 100-Hz and 200-Hz masker, al-
though the difference is smaller. This is in agreement with the
expected increasing pitch dependency of temporal masking with
increasing center frequency.

D. Discussion

Masking period patterns of broad-band maskers have
previously been presented for noise maskers and tone bursts
targets. Using a 3 ms long tone target at 3 kHz Zwicker [22]
measured a decrease of masking by 15 dB in the center of
the silent half-period of square-wave modulated broad band
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Fig. 9. Audibility thresholds of one listener for different noise burst positions
within a pitch cycle, normalized for' = 0. Noise center frequencyfc =

3200 Hz.

Fig. 10. Average audibility thresholds and the standard deviations (vertical
bars) for different noise burst positions within a pitch cycle. Noise center
frequencyfc = 1600 Hz.

Fig. 11. Average audibility thresholds and the standard deviations (vertical
bars) for different noise burst positions within a pitch cycle, normalized for' =

0. Noise center frequencyfc = 1600 Hz.

noise with modulation frequency of 100 Hz. At 100 Hz, the
masking-period pattern was quite symmetric and at lower
modulation frequencies the pattern was more asymmetric due
to the asymmetry between pre-masking and post-masking. In
a similar experiment, Fastl [23] obtained a 15 dB deep valley
with a 5 ms 2 kHz tone target and a modulation frequency of

67 Hz. This is consistent with our results, since the masking
noise bursts in Fastl’s experiment had longer duration than the
vowel pulses in our experiment, which means that the associ-
ated integration process yields a higher amount of masking.
An investigation closely related to ours was performed by
Duifhuis [24]. He measured masking period patterns of a
complex masker, consisting of a fundamental and a number of
harmonics, and the target was bursts of a harmonic not present
in the masker. For the corresponding frequencies he obtained
masking period patterns similar to ours, with valleys 10–20 dB
deep. The results in this work shows that Duifhuis’ figures for
coherent distortion, i.e., a harmonic tone, also are valid for an
incoherent, i.e. uncorrelated noise, target signal. This is notable
and quite unexpected, because the masking behavior of noise
has in many other studies differed from the masking behavior
of tones, e.g. [25].

One important feature often employed to explain masking ef-
fects is the temporal envelope of the waveform at the output of
the auditory filters. There are a number of aspects of the enve-
lope that have been proposed as cues for detection and discrim-
ination, e.g., power [4], max-min ratio [6] and power spectrum
[5], [9]. Although the phase characteristics have some impact
[7], the time resolution of the auditory system is determined by
two factors in the previously described model, the bandwidths of
the auditory filters and the bandwidth (time-constant) of the in-
tegrator in the subsequent envelope detector. Mooreet al.have
suggested an envelope detector consisting of an integration of
the instantaneous squared amplitude multiplied with a sliding
window [10]. We have plotted the output of such an envelope de-
tector (in dB scale) for the signals in the experiments in Figs. 12
and 13. It is clearly seen in these figures that the temporal res-
olution of the envelope detectors for the 200-Hz signal is not
sufficient to distinguish between the different noise settings.

IV. QUANTIZATION NOISE EXPERIMENTS

The results of the previous experiments and the results of [15]
and [16] suggest that, in quantization of a pitch cycle waveform,
low accuracy of the waveform matching of high frequencies can
be tolerated around the peak of the pulse and high accuracy
is needed in the valleys between the peaks. In the next exper-
iment we will investigate this further by simulating high-fre-
quency quantization noise and examining its audibility in nat-
ural speech.

A. Experiments

In these experiments we simulate a simple subband
coding scheme by extracting each pitch cycle vector
s = [s(0); s(1); � � � ; s(N � 1)]T , in a natural speech ut-
terance, whereN is the pitch period, and decomposing it into a
low frequency partsL and a high frequency partsH using the
discrete Fourier transform so thats = sL + sH . The pulses
were aligned so that the peak of the pulse was centered in the
vector. A noise vectoryH was then added

~sH = sH + yH (3)
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Fig. 12. Envelopes of outputs of auditory filter atfc = 3200 Hz. 100-Hz vowel (thin line) and 100-Hz vowel+ noise (bold line), TMRfc = �12 dB. Top:
' = �. Bottom:' = 0.

Fig. 13. Envelopes of outputs of auditory filter atfc = 3200 Hz. 200-Hz vowel (thin line) and 200-Hz vowel+ noise (bold line), TMRfc = �12 dB. Top:
' = �. Bottom:' = 0.

and the speech was reconstructed. The noise vector was selected
from a random codebook of sizeM vectors so as to minimize a
weighted squared distortion criterion

D =
N�1X
n=0

((~sH(n) � sH (n))w(n))2 (4)

where we selected the temporal weighting functionw(n) to be
a attenuated and shifted von Hann window

w(n) = 1� �(N ) +
�(N )

2

0
B@1� cos

0
B@2�

n �
N � 1

2
N � 1

1
CA

1
CA

(5)

with a pitch-dependent attenuation factor�(N ) =
10(aN

2
�bN=20), wherea = 3 � 10�3 and b = 5 � 10�2.

This corresponds to a maximum attenuation of 15 dB and 3 dB
for a pitch frequency of 100 Hz and 200 Hz, respectively. The
high-frequency pulse,sH , contained frequencies in the 3000
Hz to 4000 Hz band. An example of a pulse extracted from
an utterance spoken by a male speaker and the corresponding
weighting function is depicted in Fig. 14.

Fig. 14. A pitch pulse ofN = 86 samples and the corresponding weighting
function. The pulse is bandlimited from 3000 Hz to 4000 Hz.

To eliminate the effects of possible statistical peculiarities of
a given codebook, a new codebook ofM entries was generated
for each pulse. The vectors in the codebook were normalized
so that the final signal-to-noise ratio for the distorted pulse
was constant and equal to 0 dB. We examined two ways of
generating the noise. The first and most straightforward method
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TABLE I
RESULTS OFPREFERENCETEST FORSUBJECTSS1–S4. NOISE HAVING

DIFFERENT DEGREE OFSPEECHCORRELATION WAS SELECTED FROM
CODEBOOKS OFSIZEM . THE NUMBERS CORRESPOND TOHOW MANY TIMES
THE WEIGHTED CRITERION WASPREFERRED TO THEUNWEIGHTED CRITERION.

THE AVERAGE PREFERENCE ISGIVEN IN PERCENT

was to generate a vectorx = [x(0); x(1); � � � ; x(N � 1)]T

consisting of independent and identically distributed (i.i.d.)
Gaussian componentsx(n) and then decomposing it in the
same manner as was done with the speech vector, thereby
obtaining a noise vectoryH = xH = x � xL. Thus, the
noise vectors are uncorrelated with the speech. For high-rate
quantizers this is often a feasible first-order approximation
[26]. However, the quantization noise in speech coders is typi-
cally correlated with the speech. A coder accounting for such
correlation was presented in [27]. In an optimal quantizer, the
reconstruction vectors are the centroids of the coding regions
[26]. For such a quantizer, the quantization error is correlated
with the unquantized vector and its autocorrelation matrix is

Cy =E[(~sH � sH )(~sH � sH)
T ] = E[yHy

T

H ]

=�E[sHy
T

H
] (6)

where the last equality is obtained from the fact that the recon-
struction vectors are centroids. To generate noise vectors having
the correlation according to (6) we let the vectors be of the form

yH = Ax+ 
sH (7)

wherex, as before, consists of i.i.d. Gaussian components. In-
sertion of (7) in (6) yields the following relation:

�
(
 + 1)E[sHs
T

H
] = �
(
 + 1)Cs = AAT : (8)

We see thatA is a real-valued matrix when�1 < 
 < 0.
In the experiments, the matrixA was chosen as one solution
to (8) for different values of
. The pulse correlation matrix
Cs was estimated using pulses from several speech files. Since
pulses have different dimensionsN , zero-padding was applied
to obtain a normalized dimensionN0 > N .

For each experiment, we created a quasicoded version of eight
utterances (three female andfive male). In one version, the code-
books were searched with an unweighted squared-error crite-
rion and in the other version they were searched with our new,
weighted squared-error criterion. The utterances were presented
in random order to the listeners who had to indicate which utter-
ance they preferred in a forced-choice pairwise comparison. We
used three types of noise: uncorrelated noise and speech corre-
lated noise with
 = �0:3 and�0.8. The results are presented
in Table I.

We see a clear preference for the weighted criterion for the
utterances spoken by male speakers while the preference is
less strong for the female speakers. These results are consistent

with our previous experiments. The preferences do not depend
strongly on the amount of speech correlation of the simulated
quantization noise.

B. Discussion

Although this is a simple simulation of a speech coding
scheme, the results of Table I confirm that a temporal weighting
can improve the speech quality for higher frequency bands
for low-pitched speech. The proposed weighting criterion can
be made more sophisticated by using different attenuation
functions in different frequency bands.

V. CONCLUSIONS

The masking of noise in nearly periodic sounds such as voiced
speech depends on the fundamental frequency of the sound [15]
as well as many other factors. For high-pitched sounds, the au-
ditory system sensitivity to low-frequency noise is strongest in
the valleys between the harmonics in the spectral domain. For
low-pitched sounds, the sensitivity to high-frequency noise is
strongest in the valleys between the pulse peaks in the time do-
main. Varying the temporal distribution of noise during a pitch
cycle corresponds to a change in its phase spectrum. Although
phase changes could be detected in a high-pitched vowel, the
effect of a phase change is significantly more audible in a low-
pitched vowel. Our results, and those of [15], strongly suggest
that phase changes are more audible for male than for female
speakers.

In speech coding, this suggests that for female speakers it is
important to maintain the harmonic structure of the (short-term)
magnitude spectrum at low frequencies but that low accuracy
suffices for the phase spectrum of the pitch cycle. For male
speakers, more bits should be allocated to the phase spectrum of
the pitch cycle, but a degradation in the harmonic structure is not
audible. The results are consistent with the relative performance
commonly found for CELP and sinusoidal coders. In CELP,
many bits are essentially spent on the description of the phase
of the pitch-cycle waveform, which means that male speakers
sound relatively good. However, the reconstruction accuracy of
the harmonic structure of the short-term magnitude spectrum is
relatively low in CELP (the local peak-to-valley ratio is reduced
significantly). This is a result of inadequate performance by the
long-term predictor. In sinusoidal coders, on the other hand, the
reconstruction of the harmonic character of the speech is gener-
ally very good, but the pitch-cycle phase is usually modeled with
low accuracy. Thus, female voices sound better than male voices
in sinusoidal coders. Our results indicate that exploitation of the
pitch-dependent temporal behavior of masking should lead to
significant improvement in speech coder performance.

APPENDIX

In this Appendix we study the statistical relations between
the pitch-synchronously modulated noise and the impulse exci-
tation components of the synthetic vowels described in the ar-
ticle.

LetW (t) denote a stationary zero-mean noise process having
an autocorrelation functionRW (� ) and the corresponding
power density spectrumSW (f). Let v(t) denote a window
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with limited time support,v(t) = 0, t 2 R� [�T=2; T=2], and
let u(t) denote a periodic repetition ofv(t)

u(t) =
1X

k=�1

v(t � kT ) (9)

with periodT . By introducing a random phase position,�, we
form a stationary process

C(t) = u(t� �) =
1X

k=�1

v(t� kT � �) (10)

where � is a uniform random variable on the in-
terval [�T=2; T=2]. If we assume thatW (t) and C(t)
are independent we have that the windowed noise
processX(t) = C(t)W (t) is stationary with a mean
E[X(t)] = E[C(t)]E[W (t)] = 0, and an autocorrelation
functionRX(� ) = E[X(t)X(t + � )] = RC(� )RW (� ). It is
straight-forward to derive an expression for the power density
spectrum of the windowed noise as

SX (f) =

Z
1

�1

SC(�)SW (f � �) d�

=
1

T

1X
k=�1

S0C

�
k

T

�
SW

�
f �

k

T

�
(11)

whereSW (f) is the power density spectrum of the stationary
noiseW (t) andS0

C
(f) is the Fourier transform of one period of

the autocorrelation functionRC(� )

R0C(� ) =

�
RC(� ) � 2 [�T=2; T=2]
0 � =2 [�T=2; T=2]:

(12)

As long asS0
C
(f) has a small bandwidth compared withSW (f),

the spectral splatter caused by the windowing may be neglected.
Now consider the addition ofX(t) and a stationary train of

impulsesD(t) =
P
1

k=�1
�(t � kT � '), where the signals

have a specified phase relation, 

Y (t) = D(t) +X(t +  ): (13)

SinceW (t) is independent of the other signals the correlation
betweenD(t) andX(t +  ) is

E[D(t)X(t+ )] = E[D(t)C(t+ )]E[W (t+ )] = 0: (14)

The phase relation betweenD(t) andX(t +  ) will thereby
only affectE[D(t)C(t +  )]. Hence, the autocorrelation func-
tion becomesRY (� ) = RD(� )+RX(� ), where the cross terms
cancel according to (14). The power spectrum ofY (t) is conse-
quentlySY (f) = SD(f) + SX (f).
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