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ABSTRACT

This paper discusses the design and implementation of a scalable
audio compression scheme that scales up from lossy to lossless
compression. Scalable audio compression has been of interest in
the audio compression community for some time, with the most
obvious attempt at obtaining a solution coming in the form of the
MPEG-4 standard [1]. At the same time the increase in bit rates
in both mobile communications [2] and the internet’s broadband
technology means that audio compression algorithms with higher
bit rates than currently used, such as MPEG’s mp3 [1], can be
employed to obtain higher quality. However, the new increased
data rates are not necessarily constant, this is especially the case
when considering the internet. As such, scalable schemes that can
scale to lossless compression have become rather interesting from
an application point of view. The scheme presented in this paper
achieves lossless compression that is comparable with the state of
the art whilst maintaining a scalable embedded bitstream.

1. INTRODUCTION

Lossless compression of audio aims to reduce the bandwidth or
memory required to transmit or store the original audio signal.
That is, the error between the original Pulse Code Modulated
(PCM) signal and the compressed version is zero. The majority
of digital audio material in use today is quantized using 16 bits
per sample and obtained at a sampling frequency of 44.1 kHz or
48 kHz. The former is the CD standard for digital audio, while
48 kHz are used in audio studios. However, other sampling rates
may be used in certain cases and a different quantization scheme
utilized.

Currently, lossless audio coding has been approached from a
signal model perspective [3],[4],[5]. The signal is typically mod-
eled using a linear predictor, which may either be FIR or IIR [4] .
The aim of using a linear predictor is to decorrelate the audio sam-
ples in the time domain and to reduce the signal energy that must
be coded [3]. The coefficients of the linear predictor are coded as
well as the excitation of the predictor, which is typically coded us-
ing an entropy code. The combination of the linear predictor with
a variable length entropy code leads to a perfect reconstruction of
the audio signal. The compression ratio of such coders typically
depends on the nature of the audio signal being coded. Values
reported range between 1.4 and 5.3 [3].

Another approach to lossless compression of audio signals in-
volves the use of transform coding as presented in [6]. This ap-
proach is very similar in nature to the linear prediction approach as
it utilizes a transform coder to produce a lossy compressed version

of the original signal and an entropy code to compress the gen-
erated error signal between the lossy compressed signal and the
original one. The transform coder decorrelates the audio samples
and hence the transform coder operates on the same basic princi-
ples of decorrelation and entropy coding as the linear prediction
based lossless coders [3]. The compression ratios reported in [6]
again varied with the nature of the input audio signal and ranged
between 2.2 and 3.2.

Similarly, scalable audio compression has been approached
from a signal model point of view. Recent scalable coding
schemes, such as the one described in [7], use a composite signal
model. The model is built through the combination of Sinusoids,
Transients and Noise (STN). The STN model of an audio signal
is described in detail in [7] and [8]. The scalability obtained in
[7] is mainly large step scalability, with more granular scalability
made possible through the use of an adequately designed entropy
code. The system in [7] is scalable between 6 kbps and 80 kbps,
however, as different frame lengths are used to model the different
signal components more adequately the scheme is seen mainly as
an ‘off-line’ tool in [7].

Considering the advances in the bandwidth availability for cel-
lular telephone and internet users, it is clear that a compression
scheme that combines both scalability and lossless compression
is of interest and potential use. For example, MPEG have started
a process of standardization for such a scheme [9]. In this pa-
per, we present a scalable audio coder that allows very fine gran-
ular scalability as well as competitive compression at the lossless
stage. The compression scheme is built around transform coding
of audio. Particularly, the Set Partitioning In Hierarchical Trees
(SPIHT) algorithm [10] is used to allow scalability as well as per-
fect reconstruction. Transform coding takes advantage of the more
harmonic structure of an audio signal. It also allows fine grain scal-
ability, which is more difficult to obtain in parametric coders, such
as those that rely on linear prediction. Similarly, the use of SPIHT
allows the coder to quantize the transform coefficients in such a
manner that only the input audio segment’s statistics are required,
avoiding the necessity to design dedicated entropy code books.

This paper is organized as follows. Section 2 describes the
different components of the proposed scalable-to-lossless scheme.
Section 2.1 gives a brief outline of the SPIHT algorithm and Sec-
tion 2.2 presents a study that was conducted to illustrate how
SPIHT may be applied to achieve lossless audio compression.
In Section 2.3 the actual scalable-to-lossless scheme is presented
along with some general results. Section 2.4 looks at determin-
ing the optimal rate for the lossy component, and Section 2.5 de-
scribes sensory pleasantness, its contributing factors and how these
factors may be used to objectively analyze an audio compression
scheme. In that same section results are presented to show how the
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Figure 1: The scalable-to-lossless scheme based on SPIHT.

presented scalable-to-lossless scheme affects the sensory pleasant-
ness factors of the test material. Section 3 presents the lossless and
scalable-to-lossless results obtained, and Section 4 provides a brief
conclusion.

2. SPIHT AND LOSSLESS AUDIO COMPRESSION

The structure of the coder proposed in this paper is depicted in
Figure 1. It consists of the combination of the lossy coder of [11],
which is based on the Modulated Lapped Transform (MLT) and
SPIHT, and a lossless coder for transmitting the error made by the
lossy part. The lossy part is given by the right half of the structure
in Figure 1, and the error coding (if present) takes place in the left
half. Note that both parts of the coder are based on the SPIHT
algorithm. In this section we mainly focus on the lossy part of the
structure, referred to as MLT-SPIHT.

The input signal is transformed using the MLT where floating
point calculations are used. The transform coefficients are encoded
using SPIHT, and the bitstream is transmitted to the decoder. We
will refer to this bitstream as bit stream one. Bitstream one is de-
coded at the encoder and the synthesized audio is subtracted from

the original audio to obtain the output error. Here integer opera-
tions are used, so that the error output is integer and, as has been
discussed, usually has a dynamic range that is less than that of
the original integer signal. The time-domain error signal is then
encoded into bitstream two, using a second SPIHT encoder. At
the decoder, both bitstreams are received as one global bitstream,
with bitstream one making up the first part of the total bitstream.
The decoder may decode up to any rate desired. If bitstream one
containing the transform coefficients is used up, then the decoder
recognizes that the remaining bitstream is for the time-domain er-
ror signal, which it reconstructs and adds to the synthesized signal.
The complete scalable-to-lossless system in Figure 1 will be ana-
lyzed further in Section 2.3.

2.1. A brief discussion of SPIHT

SPIHT [10] is a coding algorithm that allows the transmission of
coefficients in a pseudo-sorted fashion where the most significant
bits of the largest coefficients are sent first. The sorting is carried
out according to the magnitudes of the coefficients. The gener-
ated bitstream is fully embedded, allowing best reduction of cod-
ing noise with every additional bit sent [10]. It can be truncated at
any point to achieve the best reconstruction for the actual number
of bits sent. The original design of SPIHT was aimed at image
compression, and the intent was to use the algorithm in the fre-
quency domain [10]. However, the algorithm may also be used in
the time domain.

The encoder output consists of sorting information that is re-
quired to identify the significant coefficients with respect to an ac-
tual bitplane and of refinement information for enhancing the accu-
racy of significant coefficients. The algorithm employs a number
of linked lists which are manipulated according to a significance
test that is at first applied to sets and then eventually to individual
coefficients. The sets are generated by defining offspring for each
coefficient. The offspring of the linked coefficients are connected
together to form sets. If a set becomes significant with regard to
the tested bitplane, it gets partitioned into smaller sets which will
be tested for significance again, until all significant coefficients are
localized. In this paper, as in [11], the offspring of coefficient i are
defined by

O(i) = iN + f0; N � 1g: (1)

where N is the number of offspring used. In our case, N = 4 is
chosen. The decoder imitates the encoder action when it is given
the test results and hence the decoder develops the same set of
sorted coefficients as seen by the encoder.

Two factors that are important to the performance of SPIHT
are the dynamic range of the input coefficients and the energy dis-
tribution across the coefficients. Small coefficients will be coded
using less bits than large ones, and if the energy of the signal is
concentrated in a few coefficients then SPIHT will quickly locate
those coefficients and transmit their significant bits.

2.2. Achieving lossless compression with MLT-SPIHT

As a starting point in our discussion about lossless compression it
is important to clarify what is meant exactly by achieving lossless
compression. Assuming that the original audio signal x(n) is PCM
coded and consists of a sequence of integers, it is sufficient for
perfect reconstruction that a synthesized audio signal x̂(n) can be
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generated that satisfies

jx(n)� x̂(n)j < 0:5 (2)

for all n, because then a rounding operation allows us to recover
x(n) from x̂(n) without error. In other words, the linear synthesis
part of an audio coder does not necessarily need to produce an
error free reconstruction. It only needs to bring x̂(n) close enough
to x(n) that the nonlinear rounding operation finally yields perfect
reconstruction.

SPIHT allows one to specify the accuracy to which the given
coefficients or samples be coded. It is also possible to precisely
define the total bit rate that can be used for coding. When consid-
ering these facts with the knowledge that the condition for lossless
representation is given by (2), then it can be deduced that with a
high enough coding resolution of the MLT transform coefficients
one can already achieve lossless compression. To show that this
is indeed possible, we conducted a number of experiments where
the coding resolution for the lossy part (the right side of Figure 1)
was varied between 10 and 25 bits at various limiting maximum
bit rates.

The frame length used is 1024 samples, with 512 samples of
overlap. That corresponds to 23.2 ms a frame at a sampling rate
of 44.1 kHz. The maximum bit rates were set at 192 kbps, 353
kbps and 512 kbps, respectively. The nearness of the synthesized
audio to the original was estimated through the calculation of the
first-order entropy of the error signal "(n) = ~x(n)� x(n), where
~x(n) = round(x̂(n)) denotes the rounded output signal of the
MLT synthesis bank, using the well known equation:

H(") = �
X
"

p(") log
2
p(") (3)

The test material that has been used in this work was obtained
from [12] and is part of the Sound Quality Assessment Material
(SQAM) used by MPEG. Table 1 lists the test material and the as-
sociated file names. In the following we present results that were
obtained using file x1 as they are sufficient to demonstrate the con-
ditions under which SPIHT combined with the MLT will reach
lossless compression. Figure 2 shows the results of the experi-
ment. There are a number of points to note from the figure, first
given a high enough rate and coding resolution the MLT-SPIHT
system does produce an exact copy of the original as indicated by
the entropy reaching zero. Secondly the maximum rates defined
do not affect the entropy result until at least 15 bits are being used
for the quantization. This illustrates how the two factors of lim-
iting rate and quantization resolution interact to affect the quality
of the synthesized signal. One can say that above a certain coding
resolution the limiting rate is the important factor for the quality
of the synthesized signal. The presented results also allow for a
comment about the expected lossless rate when coding the error
with an entropy code. For example, at a coding resolution of 20
bits and a lossy rate of 192 kbps the final lossless rate should be
approximately 345 kbps (assuming an entropy code that codes at
first-order entropy and reading from the figure that at 20 bits and
192 kbps maximum rate the entropy is approximately 3.5 bits per
sample). Note that this rate is well below the 512 kbps rate which
achieves approximately zero error entropy at 23 bits coding res-
olution using the straightforward MLT-SPIHT coder. This obser-
vation is very important regarding the scheme proposed here as it
shows that a lossy scheme based on SPIHT combined with a loss-
less scheme will produce a better lossless compression ratio than
the MLT-SPIHT scheme alone.
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Figure 2: The entropy of the error signal using different SPIHT
resolutions at three maximum rates.

2.3. The scalable-to-lossless scheme

It has been mentioned in the previous section that if an entropy
code for the residual error was to be combined with the lossy
MLT-SPIHT scheme, then a good overall lossless compression ra-
tio may be expected. It has also been outlined that one of the
factors that generally influence the performance of SPIHT is the
dynamic range of the input data. Hence, it is possible to reason
that if the dynamic range of the synthesis error was sufficiently
small then SPIHT could still be used to code the error signal at an
acceptable rate, whilst maintaining the scalability of the coder in
terms of waveform matching, until the lossless condition is met.

An example of the difference in dynamic range between the
original audio signal x(n) and the error signal "(n) is shown in
Figure 3 where x(n) is coded at 64 kbps. It can be seen from the
figure that the reduction in dynamic range is significant. It is also
important to determine the statistical properties of the error sig-
nal, particularly the similarity between the error signal and white
noise. This is important as it determines if there would be any gain
in the use of a transform to further decorrelate the error signal. As
expected, an analysis shows that the more bits that are spent on the
compression of the original signal the more white-noise like is the
error signal, and the less benefit one can expect from transforming
the error signal. To illustrate this, Figure 4 shows the Power Spec-
tral Densities (PSDs) of two versions of the error signal for a coded
frame of audio at rates of 64 kbps and 128 kbps, respectively.

As mentioned earlier, the scalable-to-lossless scheme is based
on the combination of a lossy scalable component with a scalable
error coding component. To obtain good lossless performance one
must adjust the bit rates used by the lossy component, as has been
illustrated in the discussion about Figure 2. Here we present fur-
ther analysis of what the lossy rate should be set at to obtain good
lossless results. We will also discuss the effect of this lossy rate
on the subjective quality of the reconstructed signal as described
objectively by pleasantness parameters.

2.4. Determining the maximum lossy rate

A number of experiments have been conducted to determine what
rate the lossy scalable component of the coder should be set at.
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Table 1: The Signal Content.
Signal Name Signal Content Signal Name Signal Content

x1 Bass x9 English Female Speech
x2 Electronic Tune x10 French Female Speech
x3 Glockenspiel x11 German Female Speech
x4 Glockenspiel x12 English Male Speech
x5 Harpsicord x13 French Male Speech
x6 Horn x14 German Male Speech
x7 Quartet x15 Trumpet
x8 Soprano x16 Violoncello
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Figure 3: The difference in the dynamic range between the error
signal and the original signal when the lossy coder is operating at
64 kbps (the smaller signal is the error).

Figure 5 shows the results of one such experiment where the lossy
maximum rate was set to values between 16 kbps and 256 kbps
(inclusive) in 16 kbps intervals. Here 18 bits for SPIHT coding res-
olution was used. At each maximum lossy rate the entropy of the
error has been calculated and used to determine the lower bound
for the rate required to achieve lossless compression if an entropy
code was to be used to code the error. Two of the three curves
on the graph describe the expected rate in different situations, and
one gives the collected rate with the proposed coder. The top curve
(i.e. the one with the worst performance) describes the expected
lossless rate if lossy rate reservation was used, that is if bitstream
one was allocated the maximum lossy rate all the time. SPIHT
does not require such reservation of bitstream space. The second
curve from the top takes this into account and does not assume that
bitstream one is allocated the maximum rate all the time, instead
it utilizes the actual rate required by SPIHT for a complete recon-
struction of the coefficients up to the coding resolution that is hard
coded at both encoder and decoder. This curve continues to de-
crease with the decreasing entropy of the error signal and finally at
192 kbps crosses the lowest curve in the figure. The lowest curve
in the figure is the actual rate collected for the proposed coder. It
is noticeable that the SPIHT scheme outperforms the lossy-plus-
entropy code scheme until the 192 kbps mark for the maximum
lossy rate. The reason behind this is that SPIHT transmits only the
significant bits of the coefficients, and importantly, for zero coeffi-
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Figure 4: PSD of the error signal at 64 kbps and 128 kbps as
compared to the original.

cients or samples the algorithm does not transmit a single bit. An
entropy code must transmit at least one bit (and in most cases two)
per coefficient, even if that coefficient was zero. SPIHT avoids
these extra bits by recognizing large sets of zero coefficients or
samples and treating them collectively in the sorting process.

2.5. Psychoacoustic analysis of the lossy component

Having analyzed the results in terms of lossless compression, the
performance of the coder has to be analyzed for its subjective ef-
fects on the synthesized audio at different lossy rates. A psychoa-
coustic analysis of the lossy scalable component of the coder was
performed to add a perceptual dimension to the choice of the max-
imum lossy scalable rate. The analysis determined the mean varia-
tion between the pleasantness parameters of the original signal and
the synthesized signal at different maximum lossy rates.

Sensory pleasantness describes the acceptability of a given
sound to the human ear [13]. The contributing factors to sen-
sory pleasantness are sharpness, roughness, loudness and tonality.
Sharpness may be viewed as a measure of the density of loudness
across the spectrum in different critical bands. Sharpness is most
heavily influenced by the center frequency of the sound as well
as the spectral content [13]. Loudness is a relative measure indi-
cating Sound Pressure Level (SPL) of a 1 kHz signal that would
sound as loud as the given sound. Roughness describes the inabil-
ity of the ear to distinguish tonal components. That is, a sound that
is noise-like sounds rough. Finally, tonality describes in relative
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Figure 5: Mean lossless rates collected, compared with the lossless
rates expected.

terms how tone-like the signal is. Mathematical models describ-
ing the sharpness, roughness and loudness have been proposed in
[13] and these models are used in the analysis here. Tonality can
be approximated subjectively as suggested in [13], however, here
we focus on the calculation of the contributing factors and hence
tonality has been ignored. It should be pointed out that these fac-
tors may not necessarily be unique to a given sound. Whilst this is
true, if a high SNR is also obtained, then one can confidently state
that the sound has been reproduced with high fidelity.

Figure 6 shows the results obtained at different maximum
lossy rates for signal x1. The curves show the mean percentage
variation in the psychoacoustic parameters, denoted as Ev and cal-
culated by the use of the equation:

Ev = E
� jp� p0j

p0

�
� 100% (4)

where p0 is the value of a pleasantness factor calculated for the
original signal x(n), p is the pleasantness factor calculated for
the reconstructed signal, and E(�) denotes the expectation oper-
ation. It can be seen that the mean variation decreases with the
increasing rate, however it can also be seen that the variation is
not massive at any rate, starting at near the 10% mark for sharp-
ness and roughness and near the 3% mark for loudness. The low
variation of loudness is expected as at 32 kbps, the lowest rate
used, SPIHT would have transmitted good approximations of the
most significant spectral components, leading to a loudness level
that is similar to the original one. Sharpness is influenced by the
center frequency of the signal and the distribution of spectral com-
ponents, which should also be well approximated at 32 kbps. A
similar line of reasoning follows for the roughness result. Thus
the variation is expected to be small, the important property is how
the variation is reduced. That is, at what rate does the reduction in
variation saturate. The presented figure shows that the percentage
variation reaches a knee point at around the 96 to 128 kbps marks.
Similar results were obtained for other signals tested. The knee
point position has been found to depend on the spectral content of
the signal being used, which is expected, with highly tonal signals
reaching the knee point at lower rates than more noise-like sig-
nals. Using the psychoacoustic results and the lossless rate versus
lossy rate results presented in Section 2.4, it is safe to conclude
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Figure 6: Sharpness, roughness and loudness variations at differ-
ent lossy rates for x1.

that any lossy rate between 128 kbps and 192 kbps will produce
good scalable-to-lossless performance.

3. RESULTS

Two sets of results are presented here: the lossless compression
results and the objective scalable lossy results of the MLT-SPIHT
coder. First we consider the lossless compression results.

3.1. The lossless compression results

Using the experiments described in Sections 2.4 and 2.5, it was de-
termined that a lossy maximum rate of 192 kbps should be used in
combination with a coding resolution of 18 bits per spectral coef-
ficient and 16 bits (PCM) per time domain error coefficient. Table
2 shows the results for the lossless compression of the SQAM files
of Table 1. Most of the files show a compression ratio that is above
2, which is competitive with the current state of the art in lossless
compression [3]. The lowest compression ratio was 1.74 for fe-
male French speech, whilst the greatest ratio obtained was 5.27
for an electronic tune. The average compression ratio obtained
was 2.46. As with other current schemes, the compression ratio
depends strongly on the content of the signal [3]. In most current
schemes, the compression ratio is higher for highly predictable sig-
nals that can be very well modeled by the use of a linear predictor.
In this case, and because of the scalability capability, the more con-
centrated the energy of the signal is in the frequency domain the
higher the compression ratio. The reason being that a signal with
concentrated energy in the frequency domain is coded very well in
the first part of the coder and so a very small, highly uncorrelated,
error signal is produced leading to a high lossless compression ra-
tio overall.

3.2. Objective Results for the scalable-to-lossless and lossy
coders

Figure 7 shows the Segmental Signal-to-Noise Ratio (SegSNR) re-
sults for a lossy coded version of signal x1 (up to 240 kbps) as well
as the performance of the scalable-to-lossless scheme described
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Table 2: Results for the Lossless SPIHT Coder.
Signal Mean Rate Compression Ratio Bits/Sample

(kbps)

x1 318 2.22 7.20
x2 134 5.27 3.03
x3 206 3.43 4.65
x4 266 2.65 6.01
x5 346 2.04 7.84
x6 232 3.04 5.23
x7 354 1.99 8.01
x8 317 2.23 7.18
x9 366 1.93 8.28
x10 405 1.74 9.17
x11 362 1.95 8.19
x12 368 1.92 8.33
x13 360 1.96 8.15
x14 360 1.96 8.15
x15 255 2.77 5.75
x16 306 2.31 6.93
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Figure 7: Objective results for the lossy MLT-SPIHT coder and the
scalable-to-lossless coder.

earlier up to and including 320 kbps. The SegSNR values are cal-
culated using frames that are 17.5 ms long and not overlapping
(note that this does not match the frame selection in the coding
scheme). It can be seen from Figure 7 that there is a knee point for
the coder at around the 64 kbps mark. It can also be seen that the
SegSNR is above the 40 dB mark at 64 kbps indicating that a high
quality signal has been synthesized. As expected, the lossy coder
saturates at the high bit rates. In contrast the scalable-to-lossless
scheme continues to improve the SegSNR of the synthesized sig-
nal. It is important to note that the values presented in the figure
are calculated across frames that have not been perfectly recon-
structed. At 320 kbps there were 530 frames (from a total of 1426)
that were coded losslessly. The remaining error in the other frames
is clearly very small. Note also that the rates listed in Table 2 are
average rates, while the rates shown in Figure 7 are the maximum
rates that the coder is permitted to use.

4. CONCLUSION

This paper has presented a scalable-to-lossless scheme that allows
scalability from lossy compression to lossless compression with
the use of a single bitstream. The bitstream can be truncated at
any point to meet a desired bit budget and obtain the best signal
approximation for the chosen rate. A complete analysis has been
presented which included rate considerations as well as objective
perceptual considerations. Currently the coding scheme does not
include a perceptual model to allow the transmission of perceptu-
ally significant coefficients first. This will be implemented in the
continuing development of this coder.
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