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Multimedia applications are a substantial workload for modern computing 

platforms.  However, most processors lack architectural refinements that would 

enable ideal levels of computational efficiency.  This report provides an 

understanding of the execution characteristics of audio compression applications in 

order to understand the bottlenecks that bound performance.  These results could be 

used to design optimal multimedia processor architectures. 

Characteristics of scientific and multimedia applications are typically 

represented by a set of kernels contained in a benchmark suite.  Entire applications 

are seldom profiled to obtain a complete appraisal of the actual workload imposed 

on the system.  This report contains a more complete analysis of an MP3 encoder 

application and presents the significant aspects of its behavior.  Contributions 

include instruction profiling of the application and its major routines, memory 

access characterization, and a measurement of computational demand. 
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1 INTRODUCTION 

Multimedia applications have become a significant workload for General-

Purpose Processor (GPP) and Digital Signal Processor (DSP) platforms [2][17].  

The term “multimedia” generally applies to programs that process image, video, 

and/or music media.  A multimedia application performs one or more of the 

following tasks: compression, decompression, editing, and/or encryption.  

Although GPPs are commonly used to process multimedia data, it is well accepted 

that most of today’s processors are not ideal for these applications [7][4][35][13].  

It has been determined that increasing complexity in multimedia algorithms drives 

the need for high-performance media-capable processors that are sensitive to power 

and cost constraints [16][17][30][10][24].  The widespread use of multimedia 

applications has motivated workload analysis projects that strive to provide 

information which will assist in the design of more efficient architectures.   

A typical personal computer user invokes a variety of media encoders and 

decoders in everyday activities; however, audio processing remains the dominant 

activity.  One aspect of this is demonstrated by recent statistics that attribute an 

average of more than 3 billion downloads per month to music files in 2001 [6].  

Fortune magazine predicts that music commerce will be drastically affected by the 

capabilities of the Internet and personal computers.  Clearly, this level of demand 

validates attention to processors that more effectively handle audio compression 

and decompression applications.   
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In order to design a better processor, the workload must be fully 

understood.  Several studies have evaluated the key aspects of multimedia 

programs by analyzing benchmarks with signal processing kernels and multimedia 

application segments, but few have completely explored an entire application.  

Although the small segments of a program represented by a benchmark typically 

represent a large percentage of its behavior, many properties of an application 

remain overlooked. 

1.1 Objective 

This report will analyze the execution of an MP3 encoder program on an 

UltraSPARC superscalar general-purpose architecture.  The MP3 encoding 

algorithm was chosen because it exhibits several properties common to media 

processing applications, and it is frequently used both privately and commercially.  

General purpose instruction set architectures provide a good framework for 

application characterization research.  The wide variety of instructions enables the 

compiler to choose instructions that more closely represent the high- level 

algorithm.  The results obtained from characterization on a limited instruction set 

machine or custom architecture restricts the relevancy of the conclusions to that 

specific implementation. 

Rather than study benchmarks or code segments, this report evaluates the 

complete behavior of a real media application.  Utilizing benchmarks narrows the 
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focus to the code that would ideally dominate the dynamic instruction stream for a 

desired algorithm.  Unfortunately, this disregards many overhead operations and 

interactive second-order effects caused by routines that are required for program 

flow and high- level formatting rather than true data processing.  Benchmark 

analysis also limits the understanding of how each kernel contributes to the overall 

execution statistics of the complete application.   

The analysis will describe the key attributes of the MP3 application, and 

then identify and characterize the functions that dominate the dynamic instruction 

stream.  The Shade simulator for SPARC micro-architecture is used to capture and 

review the dynamic instruction stream of the MP3 encoder application.  These 

results are used to determine the significant functions and factors that affect 

execution performance.  An emphasis will be placed on understanding the 

load/store bandwidth requirements and instruction mix of the function calls which 

require the majority of instruction cycles. 

1.2 Contributions 

The central focus of this report is to provide an understand ing of the 

execution characteristics of audio compression applications.  This information 

could be used to optimize custom processor architectures for multimedia 

applications.  In addition to providing an overview of the MP3 encoder algorithm, 

this report makes the following contributions: a routine- level profiling of the 
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encoder execution, instruction mix analysis for the application as a whole and for 

each of the seven encoding stages, memory access characterization, and 

computational workload analysis.  Properties that pose bottlenecks to the 

application execution are identified throughout the analysis. 

1.3 Organization 

An introduction in Chapter 1 will preclude related work on the topic of 

workload characterization and media processing analysis found in Chapter 2.  A 

description of MP3 audio encoding and a specific implementation of this algorithm 

are described in Chapter 3. The fourth chapter describes the methodology and 

analysis tools used to profile the MP3 encoding application.  In Chapter 5, results 

of the simulations are presented along with an explanation of the more significant 

qualities.  A conclusion in Chapter 6 will summarize the results and recommend 

aspects to consider when designing more efficient media processing hardware. 
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2 RELATED WORK 

Without a sufficient understanding of typical processor workloads, it is 

difficult to make architectural enhancements that improve processor performance.  

Often benchmarks are used to analyze the characteristics of an application or 

performance of a processor [26][11][20].  Based on these results and educated 

guesses, several studies have proposed architectural enhancements to general 

purpose processors (GPPs) that reduce execution time of multimedia workloads.  

Although the operation of a complete multimedia application is typically not 

considered, significant speedup for many algorithms has been achieved with the 

addition of SIMD extension technologies to GPPs, such as Motorola’s Alti-Vec, 

Intel’s MMX, Sun VIS, and HP’s MAX2, that enable parallel processing of data 

[7][33][35].  Additional performance gains are possible with the aid of 

comprehensive application analysis. 

2.1 Memory Access Analysis 

John et al. conducted a comprehensive study of the memory aspects of 

scientific workloads [15].  Several floating point benchmarks were analyzed for 

their memory access characteristics.  A metric called program balance is introduced 

that describes the inordinate contribution of overhead loads and stores to the overall 

instruction stream of a program on a RISC GPP.  John et al. found that more than 

66% of the dynamic instruction stream is devoted to memory access instructions or 
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operations related to memory address calculations.  It was concluded that the 

superscalar hardware features are underutilized as a result of this memory activity.   

Thus the load/store demands coupled with a standard external memory 

hierarchy becomes the primary bottleneck and inhibitor to potential speedup that 

could be obtained from adding additional arithmetic units or increasing processor 

core frequency [15][10][16][13][7].  In addition to overall memory bandwidth 

analysis, studies often include the effects of cache performance of media kernels 

[28].  Comparisons between the cache utilization characteristics of SPECint95 

benchmarks and multimedia applications attempt to understand the multimedia 

processing potential of traditional GPP architectures [29].  Sohoni et al. compare 

amount of data references per instruction of multimedia benchmarks with 

Specint95 in order to obtain a relative measure of memory system demand [29].  It 

was determined that in many cases multimedia applications place a lower demand 

on memory than typical integer applications.  The memory access characteristics 

for the SPEC2000 benchmarks executing on the Itanium architecture is presented 

by Serrano et al. [26].  This analysis includes information on memory access 

patterns induced by looping structures and a detailed description of how execution 

performance is affected by pipeline stall cycles. 
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2.2 Multimedia Application Execution Analysis 

The study of memory bandwidth is extended by Lee and John to include 

multimedia algorithms and other characteristics of the program code [19].  This 

study revealed that 90% of the memory accesses could be considered overhead 

transactions that do not contribute to the true computation of the algorithm.  

Execution time is noted to be directly proportional to percentage of overhead 

memory accesses.  Another contribution from Lee and John is an instruction mix 

analysis for a variety of multimedia application kernels which demonstrates the fact 

that a significant percentage of instructions are ALU operations.  A final analysis 

presented the data-level parallelism present in typical multimedia kernels. 

Benchmarks were the basis of a performance analysis of Pentium-II and 

DSP processors found in [31] and [32].  In these papers, the effectiveness of the 

processor architectures is measured by cycles per instruction, cache performance, 

utilization of hardware acceleration units, and overall speedup obtained by taking 

advantage of advanced architectural features.  A profile of the multimedia 

applications determined that these programs have large amounts of data 

parallelism, but the branch characteristics inhibits the significant speedup 

anticipated by the VLIW and SIMD architectures. 



8 

2.3 Multimedia Acceleration Hardware 

Proposals have also explored ways to improve GPPs with dedicated 

hardware enhancements beyond standard SIMD extensions have also been 

explored.  The addition of a specialized Huffman coding unit can dramatically 

enhance many multimedia applications [35].  Moravie et al. recommend a memory 

address co-processor which would eliminate several problems common to GPPs 

[22].  The MediaBreeze enhancement proposed by Talla et al. addresses 

shortcomings, including limitations in available GPP memory bandwidth and 

addressing capabilities, that restrict the supply of sufficient amounts of data to 

computational elements [30].  Additional ALUs will not be efficiently utilized if a 

system exhibits inherent data flow bottlenecks.  Significant speedup is observed 

with this new architecture tailored to the memory addressing characteristics and 

computational requirements of these programs. 
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3 MP3 AUDIO COMPRESSION 

The Motion Picture Experts Group (MPEG) working group  was formed in 

1988 to define standards for video and audio compression.  Published in 1993 by 

the International Standards Organization/International Electrotechnical 

Commission (ISO/IEC), the MPEG-1, ISO/IEC 11172 standard includes 

specifications for 1-2 Mbps video compression and three layers of audio 

compression of media [1][14].  The term “MP3” is commonly used in reference to 

the MPEG-1, Layer 3 specification for audio coding [3].  The MP3 standard defines 

the decoding process, bitstream format, and encoding strategy to establish a 

framework for an optimal balance between the final bitrate of the compressed 

material and perceived audio quality of the reconstructed signal.  The core 

algorithms and theory were primarily developed by the Fraunhofer Institute, which 

holds several patents on this encoding method, and later adopted by the MPEG and 

ISO/IEC committees [8].   

3.1 Features of MP3 Compression 

The MPEG standard for audio compression can accept audio sources 

recorded at 32 kHz, 44.1 kHz, and 48 kHz sampling rates.   A standard digital 

Compact Disk (CD) contains two channels of uncompressed 16-bit linear Pulse-

Code Modulation (PCM) data sampled at 44.1 kHz.  In this format, each sample 

represents an analog voltage at one point in time.  The resulting bit stream requires a 
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data throughput of 1.411 Mbps to convey this audio information.  A well-encoded 

MP3 file can achieve near CD-quality audio reproduction at datarates as low as 128 

Kbps – a compression ratio exceeding 10:1. 

An MP3 bitstream is a compressed format that contains only the critical 

information required to represent the aspects of the source material that humans can 

readily perceive.  The bulk of MP3 processing entails the classification and 

removal of the imperceptible information in the original source.  As recommended 

in the MPEG standard, most MP3 encoders contain algorithms designed around the 

models of the human auditory system to determine “irrelevant” details of a source 

that can be removed without adding excessive levels of audible distortion [25].  

This type of lossy algorithm is classified as a perceptual encoder [21]. 

3.1.1 Lossy Compression 

Compression algorithms are typically classified as either lossless or lossy 

[34].  The former preserves the original exactly upon decompression, whereas the 

latter removes information to achieve a higher compression ratio.  Typical 

examples of lossless audio compression formats include AudioPaK, LTAC, 

MUSICompress, OggSquish, Philips, Shorten, Wonarc, and WA [12].  These 

algorithms are instrumental to the distribution of high-fidelity media, but lack 

widespread acceptance due to their relatively low compression of no more than 

three-to-one.  The popular alternative is lossy compression algorithms, such as 

MP3, WMA, RA, and AAC. 
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The goal of media compression algorithms is to encode the input audio data 

such that the resulting file is drastically smaller than the original without undue loss 

of fidelity.  The compressed data thus requires fewer resources to store audio files 

and less network bandwidth to transfer this data.  Data compression can also reduce 

the cost of network infrastructure required to satisfy the huge consumer demand for 

media [9].  Successful lossy algorithms accomplish this goal without a significant 

or noticeable sacrifice in image or audio quality.  This type of audio encoder 

attempts to intelligently remove information from the source that is not necessary 

to reproduce the acoustic experience.  To achieve this result, compression 

applications typically contain a complex multi-step process of input data 

transformations and analysis that funnel into one or more compression techniques.  

Many advanced applications utilize signal processing routines including 

filterbanks, Fourier transforms, and/or discrete cosine transforms. 

Due to its effectiveness as lossy algorithm for audio compression, MP3 is 

one of the most pervasive multimedia formats used in by today’s personal 

computers.  The overwhelming acceptance is due to several factors including 

convenience, high quality results, and a significant reduction in file size as 

compared to the original PCM format [3]. 

3.1.2 Critical Bands 

Perceptual encoders can typically achieve a higher quality result for a given 

bitrate compared to PCM coding techniques by removing unnecessary information 
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that is undetectable in the time domain.  An understanding of the human perception 

of audio signals is crucial to the success of a perceptual codec.  The MP3 encoding 

process converts PCM domain samples to the frequency domain to identify spectral 

redundancy in the source and take advantage of the psychoacoustic properties of 

human hearing [34].  Once in the frequency domain, the encoder evaluates several 

aspects of the signal. 

The range of frequencies detected by humans is internally divided into 

several mutually exclusive frequency regions.  The width of these regions, 

determined by experimentation, is a function of frequency.  It was discovered that 

the frequency bandwidth of the regions centered at lower frequencies bands is 

smaller than those at high frequencies [1].  It is important to note that theperception 

of acoustic energy at a frequency within one of these “critical bands” can be 

impacted by other signals that fall within this same frequency region.  This 

property, also revealed through human experimentation, illustrates the importance 

of identifying these critical bands [23][25].  In order to properly understand the 

interaction of a full-spectrum signal, the perceptual algorithm must contain 

knowledge of the critical band boundaries and the attributes that allow various 

frequencies to interfere with each other. 

3.1.3 Masking 

Several properties of a signal inhibit a human’s perception of the entire 

audio experience. These factors relate to the signal amplitude as a function of time 
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and/or frequency.  The first deals with the ability to hear in a quiet environment.  

Although hearing is often considered to detect signals from 15 Hz to 20 kHz, it has 

been determined that the human ear is less sensitive to energies at the lower and 

higher ends of this spectrum.  An initial perceptual analysis compares a signal’s 

spectral content against thresholds of hearing determined by human auditory 

perception models.  If the energy in any frequency is below that which can be 

detected, it is deemed less important for original source reproduction [21].  Derived 

from descriptions of the psychoacoustic modeling described by Noll in [23] and 

Ambikairajah in [1], Figure 3.1 depicts the absolute threshold of hearing as a 

function of frequency. 

 

 

Figure 3.1: Psychoacoustic Masking Effects 
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Beyond the static limitations of hearing, a typical signal contains 

information that dynamically impedes the ability to perceive all of the information 

inherent to that signal.  This phenomenon is known as masking.   The 16-bit, 22 

kHz signal contained on a CD includes vast amounts of information that a human 

cannot detect due to signal masking effects.  As determined by human auditory 

modeling, significant energy in a frequency band diminishes the ability to perceive 

energy in nearby frequencies [23].  Figure 3.1 shows how several signals are 

masked by a dominant “masker” signal, and the threshold of hearing. 

A predictable, or otherwise tonal, signal induces different masking behavior 

than a non-tonal signal (something perceived as noise) [1].  In addition to 

measuring the intensity of potential masking signals, the psychoacoustic modeling 

must also determine the amount of tonality present in each critical band to 

accurately resolve the masking function.  This tonality classification requires a 

linear prediction based on data from the last two frames.  The masking threshold 

algorithm relies on this information when deciding how energy at one frequency 

spreads a masking shadow across its critical band [25]. 

Shapes of the instantaneous masking effects are calculated at run-time to 

adjust the absolute threshold of hearing to a new dynamic threshold based on 

current  stimulus.  The spectral masking effect also exhibits a temporal component 

that inhibits the ability to perceive signals in a critical band after the presence of a 
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strong masker signal for some time into the future [34][23].  The frequency domain 

representation of the original signal is analyzed for spectral and temporal masking 

effects to identify additional irrelevant information.  

3.1.4 Window Size  

The transform from time to frequency domain translates approximately 26 

ms of audio into the corresponding frequency representation.  This sample size was 

determined by the MPEG organization to allow for tradeoffs of reasonable 

frequency and time resolution.  However, transient affects such as an instantaneous 

change from a relatively small signal to large signal at one or more frequencies 

causes a processing effect known as “pre-echo”.  This is a situation where audible 

quantization errors occur in the reproduced signal before the instantaneous event 

[23].  To address this issue, MP3 encoders can temporarily switch to a smaller 

window size with a higher time resolution, at the sacrifice of frequency resolution 

[1].  In this case, the quantization error is focused in a smaller region of time and 

thus is less perceptible. 

3.1.5 Bit Allocation 

The final product of a psychoacoustic modeling process is a 

recommendation for bit allocation to the quantization stage.  The most significant 

reduction in bitrate is accomplished by reducing the number of bits used to 

represent energy amplitude in as many frequency bands as possible.  However, 
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representing a signal with fewer bits introduces a deterministic amount of 

quantization noise into the reconstructed signal.  Therefore, this process must be 

carefully implemented so as not to destroy the original signal or add annoying 

artifacts.  A signal-to-mask ratio (SMR) is determined for each of the subbands to 

quantitatively convey psychoacoustic information to the quantization stage.  

Frequency bands with a high SMR are allocated more bits than the more heavily 

masked (low SMR) regions.  Higher quantization noise, induced by utilizing fewer 

bits of resolution, is less perceptible in regions with a low SMR [34]. 

3.2 MP3 Encoder Operation 

Specified at the time of invocation, the encoder is restricted by a limit on 

the final number of bits available to represent the amplitude of each frequency 

component of an audio recording.  When compressing a PCM source, the user 

selects the maximum bitrate of the compressed file, from 96 Kbps to 320 Kbps.  

The encoder application reads a set of samples that constitute a frame (typically 

1152, assuming that the original is sampled at 44.1 kHz) and converts this time-

domain signal to a frequency-domain representation divided across subbands of 

frequency. 

The compression occurs in the next stage where a quantization algorithm 

distributes the available output bits, determined from the user-specified bitrate and 

frame size, across the frequency bands.  Based on SMR input from the 
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psychoacoustic analysis of this set of data, samples in the frequency domain are 

allocated bits and quantized – represented as a digital value with a minimum 

number of binary bits – according to their relevancy to the original audio signal.  

Subbands determined to be more significant during this sample period are allocated 

more bits to represent energy at that subband and will therefore more accurately 

represent the true amplitude of that spectral content.  Less significant frequencies 

will receive fewer bits and which results in higher quantization noise.  This noise is 

the difference between the true value, and the value represented by an insufficient 

number of digital bits [34]. 

After quantization, the algorithm iterates to ensure an optimal level of 

quantization noise in the significant subbands while not creating excessive noise in 

other regions of the spectrum.  The control flow of the iteration loop routines rely 

on input from the psychoacoustic modeling and calculations that assess the 

quantization- induced noise in each band.  The final encoded data is a frequency-

domain representation of the original analog signal that maintains satisfactory 

levels of perceived audio quality while adhering to the bitrate restriction of the 

output data stream.  This data is stored in a “.mp3” file along with sideband 

information and appropriate headers. 
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3.3 LAME Implementation of MP3 Encoding 

For this study, the LAME (“LAME Ain’t an MP3 Encoder”) source code 

version 3.93, released in December 2002, was selected [18].  The LAME project is 

an open-source MP3 encoding application that evolved around reference code 

published by the ISO as a starting place for MP3 encoder algorithms.  As described 

by its name, LAME is solely distributed in source code form as a research project 

for the study and enhancement of MPEG audio algorithms.  LAME is continually 

updated through contributions from the open-source community continually in 

order to increase performance, both in runtime and audio quality.  The distribution 

files for this project contain all of the necessary code and Makefiles to target a 

variety of architectures, including many UNIX environments.   

Although the ISO MP3 sample code is a functional implementation of an 

MP3 encoder, it is not optimized for execution on a general-purpose processor with 

cache memory and other performance-enhancement features in mind.  By contrast, 

aspects of the LAME encoder include cache and algorithm optimizations [18].  An 

analysis of the LAME encoder thus provides information that can be used to 

understand realistic multimedia workloads executed on standard PC environments.  

In addition to enhancements on the basic encoding framework provided by the ISO 

source, the LAME encoder incorporates the GPSYCHO GPL psychoacoustic 

model for noise shaping.  GPSYCHO is another open-source initiative whose goal 

is to provide the best modeling that will drive the highest quality MP3 encoding. 
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Figure 3.2 shows a graphical representation of the encoding process.  The 

implementation of the MP3 encoding stages is described in the following sections.  

MP3 encoders typically adhere to these stages when compressing a PCM audio 

source:  

I. Windowing and Polyphase Filtering  

II. Modified Discrete Cosine Transform (MDCT) 

III. Fast Fourier Transform (FFT) 

IV.  Psychoacoustic Modeling 

V. Quantization 

VI. Huffman Entropy Encoding 

VII. Bitstream Formatting 

 

 
Figure 3.2: MP3 encoding stages 
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3.3.1 Windowing and Polyphase Filtering 

The first two stages use an overlapping window function and a polyphase 

filterbank to integrate a set of 1152 PCM samples into the analysis window and 

divide this  time-domain signal into 32 equally-spaced frequency subbands.  These 

subbands are not the most accurate representation of the human’s critical bands, but 

it is an acceptable compromise based on resulting quality and algorithm complexity 

tradeoffs [25].   Figure 3.3 contains the equation for the polyphase and windowing 

filtering.  These operations add an acceptable level of nonlinear artifacts to the 

input signal.  The minimal degradation attributed to the polyphase filtering is easily 

overshadowed by its fast runtime performance when compared to alternate 

filterbank implementations.   
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3.3.2 Modified Discrete Cosine Transform 

Immediately following the windowing and polyphase operations, an MDCT 

converts the windowed samples into an easily quantized set of 576 frequency 

domain samples.  Depending on window size, each MDCT will evaluate 6 or 18 

points for each of the 32 subbands.  The MDCT equation is shown in Figure 3.4.  

This digital signal processing algorithm exhibits predictable memory access 

patterns to access the input data and coefficient tables.  Computationally, this 

algorithm requires extensive multiply/accumulate (MAC) operations.   

The software implementation of these algorithms is optimized to take 

advantage of cache organization, but cannot avoid the substantial memory accesses 

required to read tables, transfer the intermediate data, and store the final results.  A 

proposed replacement for the MDCT is a Fast Harley Transform that has been 

proven to reduce memory transactions for the inverse MDCT operation which is 

the most significant part of the decoding process [27]. 
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3.3.3 Fast Fourier Transform 

The third and forth stages, depicted as FFT and Psychoacoustic Modeling in 

Figure 3.2, can occur simultaneously with the transform blocks described above.  

The 1024-point FFT is similar to the MDCT in function and implementation.  

However, this transform was selected because it is less computationally intensive 

than a variety of alternatives and the result is a high-resolution representation of the 

entire frequency spectrum for the current frame. 

3.3.4 Psychoacoustic Modeling 

The psychoacoustic modeling stage is fairly irregular in contrast to the 

previous three signal processing algorithms.  This function utilizes the data 

generated by the FFT and compares the energy components at each frequency with 

pre-determined tables to rank the spectral energy against thresholds of human 

hearing.  Following tonality calculations, this stage computes the local 

instantaneous masking effects and temporal masking effects from analysis of 

previous frames.  The computation results in a set of Signal to Mask Ratio (SMR) 

values for each band [25].  This function is also responsible for the decision to 

switch to small window sizes to compensate for potential pre-echo artifacts.  A 

short FFT is used in for this analysis to match the smaller MDCT.  These results are 

used to determine how many bits to allocate to each frequency line for acceptable 

audio quality.   
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Psychoacoustic analysis requires in two significant behaviors: predictable 

MAC computations to evaluate masking intensity and irregular control flow as the 

function determines and records the dynamic signal masking effects.  Thus, this 

function is dependent on both the current sample set as well as a history of previous 

samples.  The dynamic operation of this routine can be significantly impacted by 

the characteristics of the PCM source. 

3.3.5 Quantization 

The final substantial stages of the MP3 encoder include the quantization and 

Huffman coding.  These are organized as two nested loops, typically referred to as 

an inner loop for bitrate control and outer loop for noise control [8].  The inner loop 

contains the core quantization algorithm and Huffman coding.  On the first pass 

through this loop, the samples are quantized and the resulting data is condensed 

with Huffman coding.   To achieve the desired bitrate, a global scaling of the 

subbands is altered and this process is repeated until the final output contains no 

more than the maximum allowed number of bits, thus controlling the bitrate.  

Quantization methods exhibit a predictable control flow as each sample is 

multiplied against a table.   

After the inner loop compresses the frequency domain data, functions in the 

outer loop evaluate the induced quantization noise.  If the resulting distortion from 

the original signal is greater than the acceptable level determined at the perceptual 

modeling stage, individual factors are adjusted to scale the offending subbands in 
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an effort to reduce quantization noise.  These operations are divided into three 

phases: a straight- forward noise analysis which compares the results with the 

original, a noise balancing phase which adjusts the scalefactors for the bands which 

require more bits, and a decision process to evalua te the results and restrict the 

number of attempts to optimize the overall distortion. 

3.3.6 Huffman Entropy Encoding 

Huffman entropy encoding is a lossless algorithm typically implemented 

with a large amount of tables.  The Huffman algorithm attempts to reduce the final 

output size by replacing commonly-occurring sequences with a smaller binary 

representation.  As it processes the data, a Huffman coder searches for patterns and 

selects one of 32 entropy tables.   After table selection, the raw bitstream is 

replaced with its optimal entropy encoded representation.  This procedure involves 

numerous comparisons, table lookups, and data-dependent control flow breaks as 

the datastream is analyzed and replaced by Huffman codes. 

3.3.7 Bitstream Formatting 

The final set of functions transfer the data generated in the compression 

stages into an MP3-compliant bitstream.  Several copy operations collect data 

scattered throughout the encoding stages into a single repository.  Although this 

process is not computationally intensive, this task requires significant processor 

bandwidth to locate and move data.  The final stages of MP3 file creation also 
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include the formalization the appropriate headers, cyclic redundancy check 

calculation, and other formatting operations. 
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4 TOOLS AND METHODOLOGY 

In order to better understand the limitations of general purpose processors 

and how to enhance their performance when executing MP3 compression, a 

detailed analysis of this workload must be performed.  This section explains the 

software tools, methodology, and files used in the analysis. 

4.1 Application Analysis Tools 

The Shade simulation engine was selected to more efficiently study the 

execution characteristics of the MP3 encoder algorithm.  Shade generates custom 

traces and provides a framework to simulate and analyze aspects of application 

execution on a processor [5].  The primary targets for Shade analysis are the 

SPARC v8 and v9 microprocessors.  Functions provided in the Shade suite in 

addition to the simulation kernel expand its value beyond tha t of a simple trace 

mechanism.  These analysis tools allow the user to customize Shade’s behavior in 

order to design an elaborate analysis tool which examines a specific quality of a 

program’s execution.  Optional libraries include opcode selection, address range 

specification, and several built- in functions that generate a variety of execution 

statistics.   

A typical analyzer built on Shade will trace a subset of the machine opcodes 

and memory regions.  The Shade infrastructure captures the dynamic instruction 

traces and this data is used to correlate the static program code to the actual 
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execution trace.  A Shade analysis can also record the interactions between the 

significant routines of a program.  This data enables the study of routine profiling 

and the percentage of instructions that each contributes to the dynamic instruction 

stream.  Further analysis can evaluate the effects of non-retired instructions, the 

dynamic efficiency of an algorithm implementation, and the memory architecture 

utilization. 

4.1.1 Shade Spixstats and Spixcounts 

Designed on the Shade trace platform, two tools included with the analyzer 

distribution are spixcounts and spixstats.  Spixcounts is a tool that executes the 

Shade simulation engine and gathers trace information in order to understand 

register utilization, branch behavior, immediate data values, and the interactions 

between the most frequently called functions.  The spixstats tool reads symbol 

information from the binary file and formats the raw trace data generated by 

spixcounts into a usable report.  The functions that individually account for at least 

0.5% of the program’s instruction streams are reported by spixstats as the major 

functions.  The report contains the following information:  

• number of invocations of each SPARC opcode including percentage 

contribution to the overall program 

• detailed branch analysis including taken/not taken and direction 

percentages 
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• delay slot utilization 

• register accesses 

• addressing modes used 

• immediate field usage (including displacement where applicable) 

• percent of opcodes executed in the significant functions 

• function caller/callee relationships.   

A limitation to the spixstats results is the tracing of program flow through 

subroutines.  Although this analyzer captures the total instructions sorted by 

functions and caller/callee information, it can not selectively trace through a 

sequence of sub-routine calls; thus, it is difficult to accurately capture results for 

routines that rely on shared sub-routines.  Unfortunately, each call to a routine can 

result in different behavior, due to the arguments decided at the time of invocation.  

Therefore, there is no way to use the spixstats and spixcounts tools to completely 

isolate the behavior of each MP3 encoding stage. 

4.1.2 Custom Shade Analyzer 

For the purposes of this research, the author created a new analysis function 

to capture the load/store characteristics of the entire program and then for that of 

specific functions.  This load/store frequency application (lsfreq) operates similar to 

the spixcounts/Shade flow, but in a more selective manner.  The custom analysis 

engine utilizes the flexibility of the Shade infrastructure to select a subset of the 
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opcodes in the dynamic trace, specifically the load and store instructions, and then 

limits the address range so that specific functions can be isolated.  By limiting the 

number of instructions captured in the trace, analysis can focus on specific regions 

and the simulation time is greatly reduced.  The lsfreq utility generates a memory 

bandwidth report by counting the number of load and store operations and 

accumulating a byte count according to the width of the data transferred by the 

opcode.  Although this result is perhaps more dependent on the quality of the 

compiler rather than the true bit-requirement of the algorithm, it serves the purpose 

of analyzing a typical workload with standard levels of optimization. 

4.2 Analysis of MP3 Compression 

To study the LAME application, the C-language source files were first 

compiled into a single binary executable program with the gcc compiler.  An 

UltraSparc general purpose processor served as the host machine for the media 

processing analysis contained in this report.  Shade trace and analysis engines 

simulated the execution of the MP3 encoder application and collected pertinent 

information related to the dynamic opcode and function utilization.  For a more 

complete evaluation of how the encoder responds to input file characteristics and 

compression level, five different audio source files were each encoded to final MP3 

data rates of 128 Kbps and 320 Kbps.  
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Discrete analysis of the major MP3 encoding stages was achieved by 

capturing the characteristics of several C-functions that compose each stage.  For 

this study, the compiled LAME MP3 encoder application was first analyzed with 

the spixcounts and spixstats functions and then program was simulated with the 

lsfreq utility.  Due to the excessive quantity of instructions and function calls 

required to process this non-trivial algorithm, the profiles are reported as a 

percentage rather than absolute number of function calls and dynamic instructions 

executed.  In the interest of reducing instruction-tracing complexity, only the top 

several functions  of each encoding stage  are captured by the tracing tools.  The 

actual quantity of functions that are reported for each stage varies according to the 

final dynamic trace results.   

The major functions reported by Shade were then sorted into one of the 

seven stages of encoding as described in section 3.3.  An eighth category, 

“Miscellaneous”, contains several functions that require noticeable processing 

resources, but are either shared across multiple stages or serve as auxiliary 

functions in addition to the major stages.  The remaining functions are omitted 

from consideration due to the ir relatively low utilization, less than 0.5%.  The total 

instruction content of the omitted functions typically contributed 3% to 5% of the 

total dynamic instruction stream.  Therefore, this analysis contains sufficient 

information for a comprehensive understanding of the key components of the MP3 

encoder application.   
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4.3 Input-Output Files 

Five audio files encoded in the “wav” format were captured from music 

CDs and used as PCM input for the MP3 encoder algorithm.  The analysis included 

a variety of selections to determine the effect of audio complexity on the encoding 

process.  Table 4.1 describes pertinent  information for these files including genre, 

original size, and MP3 file size when compressed at 128 Kbps and 320 Kbps.  The 

audio files range from a relatively short 40-second track to several minutes of 

audio.  A common classification based on genre roughly describes the content of 

the music contained in each file. 

 

Table 4.1: Input file information for test cases 

General Audio Input Information File Size (Bytes) 

Filename Artist Genre length (sec) original 320Kbps  128Kbps  

pnp.wav Dave Matthews Band Rock 40 7126604 1619591 647835 

george.wav  George Winston Piano 91 31941224 7246366 2898546 

antonio.wav  Antonio Vivaldi Orchestral 215 38096938 8642350 3456939 

chem.wav  Chemical Brothers Alternative 96 32932502 7471019 2988407 

ravi.wav  Ravi Shankar Instrumental 557 98320136 22298121 8919248 
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5 RESULTS 

The process of compressing each input file with the LAME MP3 encoder 

was traced and analyzed with the Shade simulation engine.  The results of the 

analysis are divided into four major sections:  

• routine- level profiling 

• instruction- level profiling 

• memory access characteristics 

• computational workload analysis.   

Each of these sections presents aspects of the compression application and 

describes how file size, compression ratio, and audio complexity affect the 

execution characteristics of the MP3 encoder and its major stages.   

5.1 Routine-Level Profiling 

Routine-level profiling determines the quantity of dynamic instructions a 

routine contributes to the overall instruction stream.  In this context, a routine is 

equivalent one of the LAME functions written in the C programming language.  

Table 5.1 lists static size of the major MP3 functions grouped by encoding stage.  

Most of these functions were deemed highly utilized, i.e. reported by spixstats, in 

every experiment.  From this table, it is evident that a majority of the static 

instructions are found in the psychoacoustic modeling routines.  This is no surprise 



33 

based on the complexity of this routine and variety of operations performed at this 

stage. 

 
Table 5.1: MP3 stages and associated functions 

Stage / Functions  Static Size (Bytes) Stage / Functions  Static Size (Bytes) 

        

Windowing & Polyphase 6999 Huffman Entropy Encoding 1418 

window_subband 5961 ix_max 79 

fill_buffer 391 count_bit_ESC 271 
unpack_read_sample 647 count_bit_noESC_from2 163 

MDCT 3917 count_bit_noESC_from3 263 

mdct_sub48 2095 HuffmanCode 343 

mdct_long 1387 choose_table_nonMMX 299 

mdct_short 435 Quantization 7817 

FFT 1541 quantize_xrpow  367 

fht 703 init_xrpow  207 

fft_long 415 calc_xmin 1807 
fft_short 423 count_bits 1455 

Miscellaneous 3279 outer_loop 1199 

sqrt 139 amp_scalefac_bands  1111 

fabs  19 calc_noise 1671 

exp 899 Psychoacoustic Modeling 11471 

log 999 l3psycho_anal 11471 

lame_encode_buffer_sample_t 1079 Bitstream Formatting 252 

fast_log2 144 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

putbits2 252 

 
 

A dynamic analysis of these functions shows how many instructions each 

stage contributes to the total instruction count of the complete application.  Figures 

5.1 and 5.2 compare the stages according to their dominance in the dynamic 

instruction stream.  This analysis profiled the results from two of the audio input 

files pnp.wav and ravi.wav.  These samples contain considerably different audio 

properties, and thus give insight into the effect of acoustic complexity on the 
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application execution.  As depicted by the chart, the majority of the instruction 

stream is devoted to the quantization, psychoacoustic modeling, and Huffman 

encoding.  Nested in the iterative looping structure, the Huffman and quantization 

functions often execute several times for each block of PCM samples analyzed.  

The psychoacoustic processing requires irregular control flow sequences and large 

table searches resulting in a large demand on the CPU instruction bandwidth. 
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Figure 5.1: Routine profile for pnp.wav 

 

Figure 5.2 depicts the compression of a significantly different audio source.  

However, the similarities between this and Figure 5.1 show that the dynamic mix or 

routine execution is not dramatically affected by file size and audio characteristics, 

particularly at lower bitrates.  A noticeable difference can be found in the routine 
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profiles of 128 Kbps compression and 320 Kbps compression.  As the compression 

ratio is reduced, less emphasis is placed on the quantization stage because 

acceptable noise levels are easier to achieve, however the Huffman encoding 

contributes to a higher overall percentage of the instruction trace due to the 

increased size of the final bitstream. 
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Figure 5.2: Routine profile for ravi.wav 

 

Generated from the average profile of all five input files, Figure 5.3 easily 

identifies the stages that require significant instruction processing.  Clearly, 

optimization efforts are better spent on the quantization and Huffman encoding 

stages.  The MDCT, FFT, and polyphase filtering signal processing algorithms 
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contribute to less than 25% of the total instruction stream.  It is important to note 

that these stages are probably not the performance bottleneck in this general-

purpose implementation of the MP3 encoder application.  Figure 5.4 shows how 

320 Kbps compression relies more heavily on these DSP routines, but they are still 

not a dominant factor in the encoding process. 
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Figure 5.3: Average routine profile for 128 Kbps compression 
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Figure 5.4: Average routine profile for 320 Kbps compression 

 

The chart in Figure 5.5 depicts the MP3 algorithm behavior as bitrate is 

increased from 128 Kbps to 320 Kbps.  Hyen-O Oh, et. al., expect significantly 

fewer iterations through the quantization loops at high bitrates, and thus a reduction 

in instructions in the quantization steps [24].  This assumption is confirmed by the 

quantization category change in the figure.   However, an increase in Huffman 

encoding instructions can be attributed to the larger code words and more extensive 

searches required to determine optimal entropy coding.  Reductions in algorithmic 

complexity at 320 Kbps are also noted by the reduced amount of psychoacoustic 

modeling and bitstream instructions executed.  In spite of a constant or increased 

function call rate, the instruction count demonstrates that these stages are simplified 

by the addition of available bits in the output datastream. 
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Figure 5.5: Percent change in dynamic functions calls and instruction count from 

128 Kbps to 320 Kbps compression rate for ravi.wav 
 

5.2 Instruction-Level Profiling 

Instruction- level profiling consists of capturing the dynamic instruction 

trace for the MP3 compression application and sorting the opcodes into six 

categories: load, store, integer, floating-point, branch, and other.  The “other” 

category accounts for machine-specific instructions such as save, restore, nop and 

various maintenance operations.  Application-level and stage- level results for the 

five input files are presented in this section. 
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Application-level analysis based on traces from the entire program 

execution proves that the instruction mix was very similar for each of the audio 

input files.  Figure 5.6 contains the instruction class percentages for MP3 encoding 

at 128 Kbps averaged across all input files.  According to this figure, it is evident 

that ALU operations comprise the majority of the instruction stream at 52%, while 

the combined load and store memory access instructions  contribute to 34% of the 

trace.  The arithmetic instructions (integer and floating point operations) together 

account for approximately half of the total instruction mix; of that, integer 

dominates floating point by about 2-to-1.  In the category of memory access, the 

load instructions clearly contribute more than the store instructions.  Although 

media kernels are typically considered to be memory access constrained, the 

instruction analysis of the complete MP3 encoding application shows that the 

general purpose instruction stream relies more heavily on the processor’s ability to 

execute ALU instructions. 
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Figure 5.6: Average instruction mix for 128 Kbps 

Comparing the results of 128 Kbps and 320 Kbps compression in Figure 5.7 

shows that the  instruction mix is not heavily dependent on compression ratio  or 

input file characteristics.  However, as the compressed bitstream data-rate 

increases, the branch instructions tend to take a slightly higher percentage of the 

overall stream with a corresponding decrease in memory instructions.   
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Figure 5.7: Application instruction mix 

 

MP3 encoding stages each contain a different mix of instructions as 

required by their routines.  Figure 5.8 compares the instruction makeup averaged 

across traces from the five audio input files.  Memory accesses are only a dominant 

part of the window/polyphase filtering and MDCT stages, but remain noticeably 

present in all stages aside from Huffman encoding and Miscellaneous routines.  It 

is also evident that the DSP stages (the first three in the chart) are not overwhelmed 

by large amounts of branch operations.  Performance of these three DPS stages 

could be enhanced by a focus on the ALU and memory workload. 

 



42 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

 Window /
Polyphase

MDCT FFT Psycho-
acoustic

Quantize Huffman Bitstream Misc

other

branch

int

float

store

load

 

Figure 5.8: Instruction mix for MP3 stages 

 

The Huffman encoding stage is a conspicuously different  from typical 

mixes found in the rest of the MP3 application. In this stage, the processor is 

heavily reliant on load and branch operations to compute a large amount of integer 

instructions which are mostly comparisons and address calculations.  Because of its 

high overall percentage of dynamic instructions, as described in section 5.1, 

specialized hardware designed to enhance the runtime performance of this stage 

would be beneficial to the MP3 encoding application performance. 
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5.3 Memory Access Characteristics 

As with most multimedia applications, the MP3 encoding algorithm places 

a significant demand on the memory infrastructure of a general purpose processor.  

The combination of results from the spixstats and lsfreq analyzers give a clear 

indication of this requirement.  An application-level view of the memory access is 

first presented, and then results from each stage of the encoding process are 

reviewed to understand how each contributes to the overall memory access profile 

of the MP3 encoder. 

A common measure of memory workload is the comparison of input data 

size with the amount of data transferred to and from the memory during the 

execution of the application.  MP3 compression algorithms require appreciably 

more memory transactions than that which is required to load the input data.  For 

example, the pnp.wav input is contained in a 6.8 Megabyte PCM file.  Table 5.1 

shows the LAME compression results for 128 Kbps compression rate.  In this case, 

the source reduces to a 632 Kilobyte file.  From Table 5.2, it can be determined that 

the application exchanges 13 Gigabytes of data with the memory hierarchy while 

processing this input; this is nearly 2000 times the size of the source file.  Clearly, 

the MP3 encoding memory bandwidth is dominated by transactions other than 

those that load and store the input and output data. 

The final column of Table 5.2 contains  a common memory access metric 

that measures the traffic in relation to the size of the original and post-transform 
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data [15][19].  The total memory traffic volume is divided by the sum of the input 

and output files to indicate memory access requirements independent of file size.  It 

also gives a measure of memory traffic, typically considered overhead, which can 

be compared with other application workloads.  In the case of pnp.wav, the 

algorithm averages 1,786 bytes of memory traffic for each byte of input or output 

data.  Routine- level and instruction- level profiling did not show differences 

according the type of audio input file; however, the spectral complexity of 

antonio.wav caused noticeably more memory traffic for compression than the other 

input files.  It can also be observed that relaxing the audio compression rate to 320 

Kbps reduces the memory transactions per input or output byte. 

 

Table 5.2: Memory access characteristics 

Source Information Memory Access Characteristics 

Compression Filename Source Size  
Mbytes 

Output Size  
Mbytes 

Mbytes 
Loaded 

Mbytes 
Stored 

Mbytes 
Transferred 

(L+S) Mbytes /        
(I + O) Mbytes 

pnp.wav 6.8 0.6 10,050 3,189 13,238 1786 

george.wav 30.5 2.8 39,709 12,958 52,667 1585 

antonio.wav 30.5 3.3 51,995 16,511 68,506 2029 

chem.wav 31.4 2.8 42,070 13,358 55,428 1618 

128Kbps 

ravi.wav 93.8 8.5 138,030 43,669 181,698 1777 

pnp.wav 6.8 1.5 7,340 2,122 9,462 1134 

george.wav 30.5 6.9 36,573 10,286 46,858 1254 

antonio.wav 30.5 8.2 40,620 11,661 52,281 1351 

chem.wav 31.4 7.1 36,036 10,567 46,603 1209 

320Kbps 

ravi.wav 93.8 21.3 104,783 29,857 134,641 1170 
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The next memory access analysis compares the demands of the major MP3 

encoding stages.  Figure 5.9 shows how load and store instructions in each group 

contribute to the overall memory bandwidth required by the MP3 algorithm for the 

ravi.wav input.  The other audio input files are omitted from this analysis because 

each exhibits very similar stage- level trends.  When combined with the data in 

Figure 5.2, it is evident that functions with a higher percentage of dynamic 

instructions typically have higher memory bandwidth requirements.  A key 

exception is the bitstream stage which executes more memory transactions per 

instruction than some of the other stages.  This stage is relatively insignificant on 

Figure 5.2, but among the top contributors in the memory traffic chart.   
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Figure 5.9: Percentage of memory instructions and memory traffic for ravi.wav 

encoded at 128 Kbps 
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The data in Figure 5.9 also gives an indication of the efficiency of the load 

and store instructions.  It is evident that a large quantity of instructions is required 

to transfer data to and from the central processor.  Some stages take advantage of 

load and store instructions that transfer larger amounts of data per instruction.  The 

bitstream and miscellaneous categories demonstrate higher efficiency due to the 

fact they transfer a higher percent of data than percent of instructions executed. 

When compared to the behavior of the encoder at 128 Kbps, the data in 

Figure 5.10 depicts a noticeable rearrangement of functions when sorted from 

highest to lowest memory traffic for the 320 Kbps compression rate.  Here, the 

Huffman coding accounts for a more significant portion of the overall load/store 

instructions.  The Psychoacoustic routines conversely dropped in rank.  This 

difference can be attributed to a relaxation on the complexity of calculations for 

signal-to-mask ratio which result in a reduced amount of instructions, as 

documented in Figure 5.5. 
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Figure 5.10: Percentage of memory instructions and memory traffic for ravi.wav 

encoded at 320 Kbps 
 

The percentage of store instructions contributed by the quantization routines 

emphasizes the fact that this stage accounts for a major portion of the data created 

by the compression application.  Although the quantization stage accounts for a less 

significant portion of load instructions and bytes, the absolute quantity of load 

instructions and loaded bytes exceeds that of store instructions and stored bytes.   

A more significant exception to the symmetry of load and store utilization is 

the Huffman coding routines.  This function his highly table- intensive, and 

therefore requires mostly load instructions.  At 320 Kbps, this disparity is even 

larger as the algorithm conducts more extensive searches through the tables.  

Conversely, the quantization steps are more reliant on balanced computations, and 

thus require fewer load transactions for each store instruction.   
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Figure 5.11 compares the average memory throughput for each of the major 

categories.  Several MP3 stages sustain more than 1.5 bytes of memory bandwidth 

for each dynamic instruction in that function.  However, the Huffman stage again 

provides an exception with its low data throughput of less than one byte per 

instruction for both compression ratios.  As evident in this chart, the architecture 

studied in this report has an apparent limit of two bytes of data throughput per 

instruction.  A uniquely designed memory architecture and address co-processor 

could affect a dramatic change in this mix by alleviating the overhead memory 

access instructions.   
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Figure 5.11: Bytes transferred per instruction for ravi.wav 
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5.4 Computational Workload 

The final analysis consists of a measurement of the computational workload 

of the MP3 encoding algorithm.  Figure 5.12 evaluates the ratio of ALU 

instructions to the memory and branch instructions present in the dynamic 

instruction stream.  In every stage of the application, ALU instructions exceed both 

memory and branch instructions.  It is likely that an optimizing compiler can affect 

the ratio for the branch comparison by loop unrolling and other optimizations, but 

the memory traffic is generally fixed by the demands of the algorithm. 
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Figure 5.12: Ratio of ALU instructions to memory and branch instructions 

 

ALU operations effectively dominate the machine workload for the Signal 

processing stages, thus providing a high level of computations for each branch 



50 

instruction.  Although it would seem that enhancing or adding arithmetic units 

could enhance the MP3 algorithm, the low ratio of ALU to memory instructions in 

these and other stages caution that architectural changes that do not provide a 

comparably scaled memory infrastructure could lead to lower than expected 

performance gains.  Stages aside from those related to signal processing show a 

much higher dependence on branch instructions.  In order to maximize utilization 

of the computational units during these stages, hardware must effectively handle 

the relatively frequent changes in control flow. 

 

6 CONCLUSIONS 

This report analyzed the  significant characteristics of an application that 

compresses PCM audio data into the MP3 format.  From the results of detailed 

simulation, it can be determined that the architecture of a general-purpose machine 

cannot handle the large table lookups and significant intermediate data structures 

without an excessive load on its memory architecture.  The MP3 encoder 

instruction and routine profile must be carefully considered before making 

architectural enhancements to increase performance.  It is likely that the register set 

and local memory hierarchy are not well suited to this application.  However, it is 

evident in some cases that the memory access instructions do not dominate the 

dynamic instruction stream. 
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It can also be noted that several aspects of the dynamic instruction mix vary 

for each of the major MP3 encoder stages and this instruction stream is sensitive to 

the requested compression ratio.  For example, the psychoacoustic calculations of 

this compression algorithm are dependent on both the input data and quality 

expectations of the result.  A custom-designed multimedia architecture must 

accommodate the possibility that the true performance bottleneck might be 

different for each invocation of the program. 

The properties of a general purpose processor give it the ability to handle 

multimedia workloads, but it is not the most optimal architecture for the task.  As 

an alternative to a general purpose machine, dedicated hardware could improve the 

execution performance on this multimedia application.  A key area to consider is 

the vast amounts of data transferred to and from the processor core.  A potential 

solution might address this demand by placing several direct-access “cache” 

memories near the processor to reduce demand on the external memory resources.  

These memories could contain the tables required for the key kernel operations: 

quantization, Huffman coding, psychoacoustic modeling, filtering, MDCT, FFT,  

and the intermediate data required for each stage of the compression routine.  

Processor enhancements that improve the performance of highly runtime-dominant 

stages such as Huffman coding, quantization, and psychoacoustic modeling would 

significantly impact overall application performance. 
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