

Memory Access and Computational Behavior

of MP3 Encoding

by

Michael Lance Karm, B.S.E.

Report

Presented to the Faculty of the Graduate School

of The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Masters of Science in Engineering

The University of Texas at Austin

December 2003

Memory Access and Computational Behavior

of MP3 Encoding

 APPROVED BY

 SUPERVISING COMMITTEE:

iii

Memory Access and Computational Behavior

of MP3 Encoding

by

Michael Lance Karm, M.S.E

The University of Texas at Austin, 2003

SUPERVISOR: Lizy Kurian John

Multimedia applications are a substantial workload for modern computing

platforms. However, most processors lack architectural refinements that would

enable ideal levels of computational efficiency. This report provides an

understanding of the execution characteristics of audio compression applications in

order to understand the bottlenecks that bound performance. These results could be

used to design optimal multimedia processor architectures.

Characteristics of scientific and multimedia applications are typically

represented by a set of kernels contained in a benchmark suite. Entire applications

are seldom profiled to obtain a complete appraisal of the actual workload imposed

on the system. This report contains a more complete analysis of an MP3 encoder

application and presents the significant aspects of its behavior. Contributions

include instruction profiling of the application and its major routines, memory

access characterization, and a measurement of computational demand.

iv

Table of Contents

List of Tables ..v
List of Figures..vi
1 INTRODUCTION... 1

1.1 Objective .. 2
1.2 Contributions ... 3
1.3 Organization.. 4

2 RELATED WORK.. 5
2.1 Memory Access Analysis .. 5
2.2 Multimedia Application Execution Analysis .. 7
2.3 Multimedia Acceleration Hardware .. 8

3 MP3 AUDIO COMPRESSION .. 9
3.1 Features of MP3 Compression .. 9

3.1.1 Lossy Compression ... 10
3.1.2 Critical Bands .. 11
3.1.3 Masking ... 12
3.1.4 Window Size ... 15
3.1.5 Bit Allocation .. 15

3.2 MP3 Encoder Operation.. 16
3.3 LAME Implementation of MP3 Encoding .. 18

3.3.1 Windowing and Polyphase Filtering ... 20
3.3.2 Modified Discrete Cosine Transform.. 21
3.3.3 Fast Fourier Transform.. 22
3.3.4 Psychoacoustic Modeling .. 22
3.3.5 Quantization .. 23
3.3.6 Huffman Entropy Encoding .. 24
3.3.7 Bitstream Formatting... 24

4 TOOLS AND METHODOLOGY .. 26
4.1 Application Analysis Tools ... 26

4.1.1 Shade Spixstats and Spixcounts .. 27
4.1.2 Custom Shade Analyzer .. 28

4.2 Analysis of MP3 Compression.. 29
4.3 Input-Output Files ... 31

5 RESULTS .. 32
5.1 Routine-Level Profiling ... 32
5.2 Instruction-Level Profiling .. 38
5.3 Memory Access Characteristics .. 43
5.4 Computational Workload .. 49

6 CONCLUSIONS... 50
References ... 52
Vita .. 56

v

List of Tables

Table 4.1: Input file information for test cases.. 31
Table 5.1: MP3 stages and associated functions ... 33
Table 5.2: Memory access characteristics ... 44

vi

List of Figures

Figure 3.1: Psychoacoustic Masking Effects... 13
Figure 3.2: MP3 encoding stages .. 19
Figure 3.3: Windowing and polyphase filterbank equations 20
Figure 3.4: MDCT equation.. 21
Figure 5.1: Routine profile for pnp.wav.. 34
Figure 5.2: Routine profile for ravi.wav.. 35
Figure 5.3: Average routine profile for 128 Kbps compression.............................. 36
Figure 5.4: Average routine profile for 320 Kbps compression.............................. 37
Figure 5.5: Percent change in dynamic functions calls and instruction count from

128 Kbps to 320 Kbps compression rate for ravi.wav 38
Figure 5.6: Average instruction mix for 128 Kbps.. 40
Figure 5.7: Application instruction mix .. 41
Figure 5.8: Instruction mix for MP3 stages ... 42
Figure 5.9: Percentage of memory instructions and memory traffic for ravi.wav

encoded at 128 Kbps ... 45
Figure 5.10: Percentage of memory instructions and memory traffic for ravi.wav

encoded at 320 Kbps ... 47
Figure 5.11: Bytes transferred per instruction for ravi.wav 48
Figure 5.12: Ratio of ALU instructions to memory and branch instructions 49

1

1 INTRODUCTION

Multimedia applications have become a significant workload for General-

Purpose Processor (GPP) and Digital Signal Processor (DSP) platforms [2][17].

The term “multimedia” generally applies to programs that process image, video,

and/or music media. A multimedia application performs one or more of the

following tasks: compression, decompression, editing, and/or encryption.

Although GPPs are commonly used to process multimedia data, it is well accepted

that most of today’s processors are not ideal for these applications [7][4][35][13].

It has been determined that increasing complexity in multimedia algorithms drives

the need for high-performance media-capable processors that are sensitive to power

and cost constraints [16][17][30][10][24]. The widespread use of multimedia

applications has motivated workload analysis projects that strive to provide

information which will assist in the design of more efficient architectures.

A typical personal computer user invokes a variety of media encoders and

decoders in everyday activities; however, audio processing remains the dominant

activity. One aspect of this is demonstrated by recent statistics that attribute an

average of more than 3 billion downloads per month to music files in 2001 [6].

Fortune magazine predicts that music commerce will be drastically affected by the

capabilities of the Internet and personal computers. Clearly, this level of demand

validates attention to processors that more effectively handle audio compression

and decompression applications.

2

In order to design a better processor, the workload must be fully

understood. Several studies have evaluated the key aspects of multimedia

programs by analyzing benchmarks with signal processing kernels and multimedia

application segments, but few have completely explored an entire application.

Although the small segments of a program represented by a benchmark typically

represent a large percentage of its behavior, many properties of an application

remain overlooked.

1.1 Objective

This report will analyze the execution of an MP3 encoder program on an

UltraSPARC superscalar general-purpose architecture. The MP3 encoding

algorithm was chosen because it exhibits several properties common to media

processing applications, and it is frequently used both privately and commercially.

General purpose instruction set architectures provide a good framework for

application characterization research. The wide variety of instructions enables the

compiler to choose instructions that more closely represent the high- level

algorithm. The results obtained from characterization on a limited instruction set

machine or custom architecture restricts the relevancy of the conclusions to that

specific implementation.

Rather than study benchmarks or code segments, this report evaluates the

complete behavior of a real media application. Utilizing benchmarks narrows the

3

focus to the code that would ideally dominate the dynamic instruction stream for a

desired algorithm. Unfortunately, this disregards many overhead operations and

interactive second-order effects caused by routines that are required for program

flow and high- level formatting rather than true data processing. Benchmark

analysis also limits the understanding of how each kernel contributes to the overall

execution statistics of the complete application.

The analysis will describe the key attributes of the MP3 application, and

then identify and characterize the functions that dominate the dynamic instruction

stream. The Shade simulator for SPARC micro-architecture is used to capture and

review the dynamic instruction stream of the MP3 encoder application. These

results are used to determine the significant functions and factors that affect

execution performance. An emphasis will be placed on understanding the

load/store bandwidth requirements and instruction mix of the function calls which

require the majority of instruction cycles.

1.2 Contributions

The central focus of this report is to provide an understand ing of the

execution characteristics of audio compression applications. This information

could be used to optimize custom processor architectures for multimedia

applications. In addition to providing an overview of the MP3 encoder algorithm,

this report makes the following contributions: a routine- level profiling of the

4

encoder execution, instruction mix analysis for the application as a whole and for

each of the seven encoding stages, memory access characterization, and

computational workload analysis. Properties that pose bottlenecks to the

application execution are identified throughout the analysis.

1.3 Organization

An introduction in Chapter 1 will preclude related work on the topic of

workload characterization and media processing analysis found in Chapter 2. A

description of MP3 audio encoding and a specific implementation of this algorithm

are described in Chapter 3. The fourth chapter describes the methodology and

analysis tools used to profile the MP3 encoding application. In Chapter 5, results

of the simulations are presented along with an explanation of the more significant

qualities. A conclusion in Chapter 6 will summarize the results and recommend

aspects to consider when designing more efficient media processing hardware.

5

2 RELATED WORK

Without a sufficient understanding of typical processor workloads, it is

difficult to make architectural enhancements that improve processor performance.

Often benchmarks are used to analyze the characteristics of an application or

performance of a processor [26][11][20]. Based on these results and educated

guesses, several studies have proposed architectural enhancements to general

purpose processors (GPPs) that reduce execution time of multimedia workloads.

Although the operation of a complete multimedia application is typically not

considered, significant speedup for many algorithms has been achieved with the

addition of SIMD extension technologies to GPPs, such as Motorola’s Alti-Vec,

Intel’s MMX, Sun VIS, and HP’s MAX2, that enable parallel processing of data

[7][33][35]. Additional performance gains are possible with the aid of

comprehensive application analysis.

2.1 Memory Access Analysis

John et al. conducted a comprehensive study of the memory aspects of

scientific workloads [15]. Several floating point benchmarks were analyzed for

their memory access characteristics. A metric called program balance is introduced

that describes the inordinate contribution of overhead loads and stores to the overall

instruction stream of a program on a RISC GPP. John et al. found that more than

66% of the dynamic instruction stream is devoted to memory access instructions or

6

operations related to memory address calculations. It was concluded that the

superscalar hardware features are underutilized as a result of this memory activity.

Thus the load/store demands coupled with a standard external memory

hierarchy becomes the primary bottleneck and inhibitor to potential speedup that

could be obtained from adding additional arithmetic units or increasing processor

core frequency [15][10][16][13][7]. In addition to overall memory bandwidth

analysis, studies often include the effects of cache performance of media kernels

[28]. Comparisons between the cache utilization characteristics of SPECint95

benchmarks and multimedia applications attempt to understand the multimedia

processing potential of traditional GPP architectures [29]. Sohoni et al. compare

amount of data references per instruction of multimedia benchmarks with

Specint95 in order to obtain a relative measure of memory system demand [29]. It

was determined that in many cases multimedia applications place a lower demand

on memory than typical integer applications. The memory access characteristics

for the SPEC2000 benchmarks executing on the Itanium architecture is presented

by Serrano et al. [26]. This analysis includes information on memory access

patterns induced by looping structures and a detailed description of how execution

performance is affected by pipeline stall cycles.

7

2.2 Multimedia Application Execution Analysis

The study of memory bandwidth is extended by Lee and John to include

multimedia algorithms and other characteristics of the program code [19]. This

study revealed that 90% of the memory accesses could be considered overhead

transactions that do not contribute to the true computation of the algorithm.

Execution time is noted to be directly proportional to percentage of overhead

memory accesses. Another contribution from Lee and John is an instruction mix

analysis for a variety of multimedia application kernels which demonstrates the fact

that a significant percentage of instructions are ALU operations. A final analysis

presented the data-level parallelism present in typical multimedia kernels.

Benchmarks were the basis of a performance analysis of Pentium-II and

DSP processors found in [31] and [32]. In these papers, the effectiveness of the

processor architectures is measured by cycles per instruction, cache performance,

utilization of hardware acceleration units, and overall speedup obtained by taking

advantage of advanced architectural features. A profile of the multimedia

applications determined that these programs have large amounts of data

parallelism, but the branch characteristics inhibits the significant speedup

anticipated by the VLIW and SIMD architectures.

8

2.3 Multimedia Acceleration Hardware

Proposals have also explored ways to improve GPPs with dedicated

hardware enhancements beyond standard SIMD extensions have also been

explored. The addition of a specialized Huffman coding unit can dramatically

enhance many multimedia applications [35]. Moravie et al. recommend a memory

address co-processor which would eliminate several problems common to GPPs

[22]. The MediaBreeze enhancement proposed by Talla et al. addresses

shortcomings, including limitations in available GPP memory bandwidth and

addressing capabilities, that restrict the supply of sufficient amounts of data to

computational elements [30]. Additional ALUs will not be efficiently utilized if a

system exhibits inherent data flow bottlenecks. Significant speedup is observed

with this new architecture tailored to the memory addressing characteristics and

computational requirements of these programs.

9

3 MP3 AUDIO COMPRESSION

The Motion Picture Experts Group (MPEG) working group was formed in

1988 to define standards for video and audio compression. Published in 1993 by

the International Standards Organization/International Electrotechnical

Commission (ISO/IEC), the MPEG-1, ISO/IEC 11172 standard includes

specifications for 1-2 Mbps video compression and three layers of audio

compression of media [1][14]. The term “MP3” is commonly used in reference to

the MPEG-1, Layer 3 specification for audio coding [3]. The MP3 standard defines

the decoding process, bitstream format, and encoding strategy to establish a

framework for an optimal balance between the final bitrate of the compressed

material and perceived audio quality of the reconstructed signal. The core

algorithms and theory were primarily developed by the Fraunhofer Institute, which

holds several patents on this encoding method, and later adopted by the MPEG and

ISO/IEC committees [8].

3.1 Features of MP3 Compression

The MPEG standard for audio compression can accept audio sources

recorded at 32 kHz, 44.1 kHz, and 48 kHz sampling rates. A standard digital

Compact Disk (CD) contains two channels of uncompressed 16-bit linear Pulse-

Code Modulation (PCM) data sampled at 44.1 kHz. In this format, each sample

represents an analog voltage at one point in time. The resulting bit stream requires a

10

data throughput of 1.411 Mbps to convey this audio information. A well-encoded

MP3 file can achieve near CD-quality audio reproduction at datarates as low as 128

Kbps – a compression ratio exceeding 10:1.

An MP3 bitstream is a compressed format that contains only the critical

information required to represent the aspects of the source material that humans can

readily perceive. The bulk of MP3 processing entails the classification and

removal of the imperceptible information in the original source. As recommended

in the MPEG standard, most MP3 encoders contain algorithms designed around the

models of the human auditory system to determine “irrelevant” details of a source

that can be removed without adding excessive levels of audible distortion [25].

This type of lossy algorithm is classified as a perceptual encoder [21].

3.1.1 Lossy Compression

Compression algorithms are typically classified as either lossless or lossy

[34]. The former preserves the original exactly upon decompression, whereas the

latter removes information to achieve a higher compression ratio. Typical

examples of lossless audio compression formats include AudioPaK, LTAC,

MUSICompress, OggSquish, Philips, Shorten, Wonarc, and WA [12]. These

algorithms are instrumental to the distribution of high-fidelity media, but lack

widespread acceptance due to their relatively low compression of no more than

three-to-one. The popular alternative is lossy compression algorithms, such as

MP3, WMA, RA, and AAC.

11

The goal of media compression algorithms is to encode the input audio data

such that the resulting file is drastically smaller than the original without undue loss

of fidelity. The compressed data thus requires fewer resources to store audio files

and less network bandwidth to transfer this data. Data compression can also reduce

the cost of network infrastructure required to satisfy the huge consumer demand for

media [9]. Successful lossy algorithms accomplish this goal without a significant

or noticeable sacrifice in image or audio quality. This type of audio encoder

attempts to intelligently remove information from the source that is not necessary

to reproduce the acoustic experience. To achieve this result, compression

applications typically contain a complex multi-step process of input data

transformations and analysis that funnel into one or more compression techniques.

Many advanced applications utilize signal processing routines including

filterbanks, Fourier transforms, and/or discrete cosine transforms.

Due to its effectiveness as lossy algorithm for audio compression, MP3 is

one of the most pervasive multimedia formats used in by today’s personal

computers. The overwhelming acceptance is due to several factors including

convenience, high quality results, and a significant reduction in file size as

compared to the original PCM format [3].

3.1.2 Critical Bands

Perceptual encoders can typically achieve a higher quality result for a given

bitrate compared to PCM coding techniques by removing unnecessary information

12

that is undetectable in the time domain. An understanding of the human perception

of audio signals is crucial to the success of a perceptual codec. The MP3 encoding

process converts PCM domain samples to the frequency domain to identify spectral

redundancy in the source and take advantage of the psychoacoustic properties of

human hearing [34]. Once in the frequency domain, the encoder evaluates several

aspects of the signal.

The range of frequencies detected by humans is internally divided into

several mutually exclusive frequency regions. The width of these regions,

determined by experimentation, is a function of frequency. It was discovered that

the frequency bandwidth of the regions centered at lower frequencies bands is

smaller than those at high frequencies [1]. It is important to note that theperception

of acoustic energy at a frequency within one of these “critical bands” can be

impacted by other signals that fall within this same frequency region. This

property, also revealed through human experimentation, illustrates the importance

of identifying these critical bands [23][25]. In order to properly understand the

interaction of a full-spectrum signal, the perceptual algorithm must contain

knowledge of the critical band boundaries and the attributes that allow various

frequencies to interfere with each other.

3.1.3 Masking

Several properties of a signal inhibit a human’s perception of the entire

audio experience. These factors relate to the signal amplitude as a function of time

13

and/or frequency. The first deals with the ability to hear in a quiet environment.

Although hearing is often considered to detect signals from 15 Hz to 20 kHz, it has

been determined that the human ear is less sensitive to energies at the lower and

higher ends of this spectrum. An initial perceptual analysis compares a signal’s

spectral content against thresholds of hearing determined by human auditory

perception models. If the energy in any frequency is below that which can be

detected, it is deemed less important for original source reproduction [21]. Derived

from descriptions of the psychoacoustic modeling described by Noll in [23] and

Ambikairajah in [1], Figure 3.1 depicts the absolute threshold of hearing as a

function of frequency.

Figure 3.1: Psychoacoustic Masking Effects

Threshold of hearing

Masker signal

Masking effect

Masked signals

Legend:

A
m

pl
itu

de
 (d

B
)

Log Frequency (Hz)

14

Beyond the static limitations of hearing, a typical signal contains

information that dynamically impedes the ability to perceive all of the information

inherent to that signal. This phenomenon is known as masking. The 16-bit, 22

kHz signal contained on a CD includes vast amounts of information that a human

cannot detect due to signal masking effects. As determined by human auditory

modeling, significant energy in a frequency band diminishes the ability to perceive

energy in nearby frequencies [23]. Figure 3.1 shows how several signals are

masked by a dominant “masker” signal, and the threshold of hearing.

A predictable, or otherwise tonal, signal induces different masking behavior

than a non-tonal signal (something perceived as noise) [1]. In addition to

measuring the intensity of potential masking signals, the psychoacoustic modeling

must also determine the amount of tonality present in each critical band to

accurately resolve the masking function. This tonality classification requires a

linear prediction based on data from the last two frames. The masking threshold

algorithm relies on this information when deciding how energy at one frequency

spreads a masking shadow across its critical band [25].

Shapes of the instantaneous masking effects are calculated at run-time to

adjust the absolute threshold of hearing to a new dynamic threshold based on

current stimulus. The spectral masking effect also exhibits a temporal component

that inhibits the ability to perceive signals in a critical band after the presence of a

15

strong masker signal for some time into the future [34][23]. The frequency domain

representation of the original signal is analyzed for spectral and temporal masking

effects to identify additional irrelevant information.

3.1.4 Window Size

The transform from time to frequency domain translates approximately 26

ms of audio into the corresponding frequency representation. This sample size was

determined by the MPEG organization to allow for tradeoffs of reasonable

frequency and time resolution. However, transient affects such as an instantaneous

change from a relatively small signal to large signal at one or more frequencies

causes a processing effect known as “pre-echo”. This is a situation where audible

quantization errors occur in the reproduced signal before the instantaneous event

[23]. To address this issue, MP3 encoders can temporarily switch to a smaller

window size with a higher time resolution, at the sacrifice of frequency resolution

[1]. In this case, the quantization error is focused in a smaller region of time and

thus is less perceptible.

3.1.5 Bit Allocation

The final product of a psychoacoustic modeling process is a

recommendation for bit allocation to the quantization stage. The most significant

reduction in bitrate is accomplished by reducing the number of bits used to

represent energy amplitude in as many frequency bands as possible. However,

16

representing a signal with fewer bits introduces a deterministic amount of

quantization noise into the reconstructed signal. Therefore, this process must be

carefully implemented so as not to destroy the original signal or add annoying

artifacts. A signal-to-mask ratio (SMR) is determined for each of the subbands to

quantitatively convey psychoacoustic information to the quantization stage.

Frequency bands with a high SMR are allocated more bits than the more heavily

masked (low SMR) regions. Higher quantization noise, induced by utilizing fewer

bits of resolution, is less perceptible in regions with a low SMR [34].

3.2 MP3 Encoder Operation

Specified at the time of invocation, the encoder is restricted by a limit on

the final number of bits available to represent the amplitude of each frequency

component of an audio recording. When compressing a PCM source, the user

selects the maximum bitrate of the compressed file, from 96 Kbps to 320 Kbps.

The encoder application reads a set of samples that constitute a frame (typically

1152, assuming that the original is sampled at 44.1 kHz) and converts this time-

domain signal to a frequency-domain representation divided across subbands of

frequency.

The compression occurs in the next stage where a quantization algorithm

distributes the available output bits, determined from the user-specified bitrate and

frame size, across the frequency bands. Based on SMR input from the

17

psychoacoustic analysis of this set of data, samples in the frequency domain are

allocated bits and quantized – represented as a digital value with a minimum

number of binary bits – according to their relevancy to the original audio signal.

Subbands determined to be more significant during this sample period are allocated

more bits to represent energy at that subband and will therefore more accurately

represent the true amplitude of that spectral content. Less significant frequencies

will receive fewer bits and which results in higher quantization noise. This noise is

the difference between the true value, and the value represented by an insufficient

number of digital bits [34].

After quantization, the algorithm iterates to ensure an optimal level of

quantization noise in the significant subbands while not creating excessive noise in

other regions of the spectrum. The control flow of the iteration loop routines rely

on input from the psychoacoustic modeling and calculations that assess the

quantization- induced noise in each band. The final encoded data is a frequency-

domain representation of the original analog signal that maintains satisfactory

levels of perceived audio quality while adhering to the bitrate restriction of the

output data stream. This data is stored in a “.mp3” file along with sideband

information and appropriate headers.

18

3.3 LAME Implementation of MP3 Encoding

For this study, the LAME (“LAME Ain’t an MP3 Encoder”) source code

version 3.93, released in December 2002, was selected [18]. The LAME project is

an open-source MP3 encoding application that evolved around reference code

published by the ISO as a starting place for MP3 encoder algorithms. As described

by its name, LAME is solely distributed in source code form as a research project

for the study and enhancement of MPEG audio algorithms. LAME is continually

updated through contributions from the open-source community continually in

order to increase performance, both in runtime and audio quality. The distribution

files for this project contain all of the necessary code and Makefiles to target a

variety of architectures, including many UNIX environments.

Although the ISO MP3 sample code is a functional implementation of an

MP3 encoder, it is not optimized for execution on a general-purpose processor with

cache memory and other performance-enhancement features in mind. By contrast,

aspects of the LAME encoder include cache and algorithm optimizations [18]. An

analysis of the LAME encoder thus provides information that can be used to

understand realistic multimedia workloads executed on standard PC environments.

In addition to enhancements on the basic encoding framework provided by the ISO

source, the LAME encoder incorporates the GPSYCHO GPL psychoacoustic

model for noise shaping. GPSYCHO is another open-source initiative whose goal

is to provide the best modeling that will drive the highest quality MP3 encoding.

19

Figure 3.2 shows a graphical representation of the encoding process. The

implementation of the MP3 encoding stages is described in the following sections.

MP3 encoders typically adhere to these stages when compressing a PCM audio

source:

I. Windowing and Polyphase Filtering

II. Modified Discrete Cosine Transform (MDCT)

III. Fast Fourier Transform (FFT)

IV. Psychoacoustic Modeling

V. Quantization

VI. Huffman Entropy Encoding

VII. Bitstream Formatting

Figure 3.2: MP3 encoding stages

Iterative Loop

MP3 Window /
Polyphase

Filter

Quantize

Bitstream

Psycho-
acoustic

Modeling

Huffman
Entropy
Coding

FFT

MDCT

PCM

20

3.3.1 Windowing and Polyphase Filtering

The first two stages use an overlapping window function and a polyphase

filterbank to integrate a set of 1152 PCM samples into the analysis window and

divide this time-domain signal into 32 equally-spaced frequency subbands. These

subbands are not the most accurate representation of the human’s critical bands, but

it is an acceptable compromise based on resulting quality and algorithm complexity

tradeoffs [25]. Figure 3.3 contains the equation for the polyphase and windowing

filtering. These operations add an acceptable level of nonlinear artifacts to the

input signal. The minimal degradation attributed to the polyphase filtering is easily

overshadowed by its fast runtime performance when compared to alternate

filterbank implementations.

()∑∑
= =

+×+×=
63

0

7

0

]64[]64[]][[][
k j

t jkxjkCkiMis





 ×−×+×

=
64

)16()12(
cos]][[

πki
kiM

Figure 3.3: Windowing and polyphase filterbank equations

21

3.3.2 Modified Discrete Cosine Transform

Immediately following the windowing and polyphase operations, an MDCT

converts the windowed samples into an easily quantized set of 576 frequency

domain samples. Depending on window size, each MDCT will evaluate 6 or 18

points for each of the 32 subbands. The MDCT equation is shown in Figure 3.4.

This digital signal processing algorithm exhibits predictable memory access

patterns to access the input data and coefficient tables. Computationally, this

algorithm requires extensive multiply/accumulate (MAC) operations.

The software implementation of these algorithms is optimized to take

advantage of cache organization, but cannot avoid the substantial memory accesses

required to read tables, transfer the intermediate data, and store the final results. A

proposed replacement for the MDCT is a Fast Harley Transform that has been

proven to reduce memory transactions for the inverse MDCT operation which is

the most significant part of the decoding process [27].

∑
−

=






















 +






 +

+=
1

0 2
1

2
1

cos][][
N

n M
k

M
nnxkX

π

Figure 3.4: MDCT equation

22

3.3.3 Fast Fourier Transform

The third and forth stages, depicted as FFT and Psychoacoustic Modeling in

Figure 3.2, can occur simultaneously with the transform blocks described above.

The 1024-point FFT is similar to the MDCT in function and implementation.

However, this transform was selected because it is less computationally intensive

than a variety of alternatives and the result is a high-resolution representation of the

entire frequency spectrum for the current frame.

3.3.4 Psychoacoustic Modeling

The psychoacoustic modeling stage is fairly irregular in contrast to the

previous three signal processing algorithms. This function utilizes the data

generated by the FFT and compares the energy components at each frequency with

pre-determined tables to rank the spectral energy against thresholds of human

hearing. Following tonality calculations, this stage computes the local

instantaneous masking effects and temporal masking effects from analysis of

previous frames. The computation results in a set of Signal to Mask Ratio (SMR)

values for each band [25]. This function is also responsible for the decision to

switch to small window sizes to compensate for potential pre-echo artifacts. A

short FFT is used in for this analysis to match the smaller MDCT. These results are

used to determine how many bits to allocate to each frequency line for acceptable

audio quality.

23

Psychoacoustic analysis requires in two significant behaviors: predictable

MAC computations to evaluate masking intensity and irregular control flow as the

function determines and records the dynamic signal masking effects. Thus, this

function is dependent on both the current sample set as well as a history of previous

samples. The dynamic operation of this routine can be significantly impacted by

the characteristics of the PCM source.

3.3.5 Quantization

The final substantial stages of the MP3 encoder include the quantization and

Huffman coding. These are organized as two nested loops, typically referred to as

an inner loop for bitrate control and outer loop for noise control [8]. The inner loop

contains the core quantization algorithm and Huffman coding. On the first pass

through this loop, the samples are quantized and the resulting data is condensed

with Huffman coding. To achieve the desired bitrate, a global scaling of the

subbands is altered and this process is repeated until the final output contains no

more than the maximum allowed number of bits, thus controlling the bitrate.

Quantization methods exhibit a predictable control flow as each sample is

multiplied against a table.

After the inner loop compresses the frequency domain data, functions in the

outer loop evaluate the induced quantization noise. If the resulting distortion from

the original signal is greater than the acceptable level determined at the perceptual

modeling stage, individual factors are adjusted to scale the offending subbands in

24

an effort to reduce quantization noise. These operations are divided into three

phases: a straight- forward noise analysis which compares the results with the

original, a noise balancing phase which adjusts the scalefactors for the bands which

require more bits, and a decision process to evalua te the results and restrict the

number of attempts to optimize the overall distortion.

3.3.6 Huffman Entropy Encoding

Huffman entropy encoding is a lossless algorithm typically implemented

with a large amount of tables. The Huffman algorithm attempts to reduce the final

output size by replacing commonly-occurring sequences with a smaller binary

representation. As it processes the data, a Huffman coder searches for patterns and

selects one of 32 entropy tables. After table selection, the raw bitstream is

replaced with its optimal entropy encoded representation. This procedure involves

numerous comparisons, table lookups, and data-dependent control flow breaks as

the datastream is analyzed and replaced by Huffman codes.

3.3.7 Bitstream Formatting

The final set of functions transfer the data generated in the compression

stages into an MP3-compliant bitstream. Several copy operations collect data

scattered throughout the encoding stages into a single repository. Although this

process is not computationally intensive, this task requires significant processor

bandwidth to locate and move data. The final stages of MP3 file creation also

25

include the formalization the appropriate headers, cyclic redundancy check

calculation, and other formatting operations.

26

4 TOOLS AND METHODOLOGY

In order to better understand the limitations of general purpose processors

and how to enhance their performance when executing MP3 compression, a

detailed analysis of this workload must be performed. This section explains the

software tools, methodology, and files used in the analysis.

4.1 Application Analysis Tools

The Shade simulation engine was selected to more efficiently study the

execution characteristics of the MP3 encoder algorithm. Shade generates custom

traces and provides a framework to simulate and analyze aspects of application

execution on a processor [5]. The primary targets for Shade analysis are the

SPARC v8 and v9 microprocessors. Functions provided in the Shade suite in

addition to the simulation kernel expand its value beyond tha t of a simple trace

mechanism. These analysis tools allow the user to customize Shade’s behavior in

order to design an elaborate analysis tool which examines a specific quality of a

program’s execution. Optional libraries include opcode selection, address range

specification, and several built- in functions that generate a variety of execution

statistics.

A typical analyzer built on Shade will trace a subset of the machine opcodes

and memory regions. The Shade infrastructure captures the dynamic instruction

traces and this data is used to correlate the static program code to the actual

27

execution trace. A Shade analysis can also record the interactions between the

significant routines of a program. This data enables the study of routine profiling

and the percentage of instructions that each contributes to the dynamic instruction

stream. Further analysis can evaluate the effects of non-retired instructions, the

dynamic efficiency of an algorithm implementation, and the memory architecture

utilization.

4.1.1 Shade Spixstats and Spixcounts

Designed on the Shade trace platform, two tools included with the analyzer

distribution are spixcounts and spixstats. Spixcounts is a tool that executes the

Shade simulation engine and gathers trace information in order to understand

register utilization, branch behavior, immediate data values, and the interactions

between the most frequently called functions. The spixstats tool reads symbol

information from the binary file and formats the raw trace data generated by

spixcounts into a usable report. The functions that individually account for at least

0.5% of the program’s instruction streams are reported by spixstats as the major

functions. The report contains the following information:

• number of invocations of each SPARC opcode including percentage

contribution to the overall program

• detailed branch analysis including taken/not taken and direction

percentages

28

• delay slot utilization

• register accesses

• addressing modes used

• immediate field usage (including displacement where applicable)

• percent of opcodes executed in the significant functions

• function caller/callee relationships.

A limitation to the spixstats results is the tracing of program flow through

subroutines. Although this analyzer captures the total instructions sorted by

functions and caller/callee information, it can not selectively trace through a

sequence of sub-routine calls; thus, it is difficult to accurately capture results for

routines that rely on shared sub-routines. Unfortunately, each call to a routine can

result in different behavior, due to the arguments decided at the time of invocation.

Therefore, there is no way to use the spixstats and spixcounts tools to completely

isolate the behavior of each MP3 encoding stage.

4.1.2 Custom Shade Analyzer

For the purposes of this research, the author created a new analysis function

to capture the load/store characteristics of the entire program and then for that of

specific functions. This load/store frequency application (lsfreq) operates similar to

the spixcounts/Shade flow, but in a more selective manner. The custom analysis

engine utilizes the flexibility of the Shade infrastructure to select a subset of the

29

opcodes in the dynamic trace, specifically the load and store instructions, and then

limits the address range so that specific functions can be isolated. By limiting the

number of instructions captured in the trace, analysis can focus on specific regions

and the simulation time is greatly reduced. The lsfreq utility generates a memory

bandwidth report by counting the number of load and store operations and

accumulating a byte count according to the width of the data transferred by the

opcode. Although this result is perhaps more dependent on the quality of the

compiler rather than the true bit-requirement of the algorithm, it serves the purpose

of analyzing a typical workload with standard levels of optimization.

4.2 Analysis of MP3 Compression

To study the LAME application, the C-language source files were first

compiled into a single binary executable program with the gcc compiler. An

UltraSparc general purpose processor served as the host machine for the media

processing analysis contained in this report. Shade trace and analysis engines

simulated the execution of the MP3 encoder application and collected pertinent

information related to the dynamic opcode and function utilization. For a more

complete evaluation of how the encoder responds to input file characteristics and

compression level, five different audio source files were each encoded to final MP3

data rates of 128 Kbps and 320 Kbps.

30

Discrete analysis of the major MP3 encoding stages was achieved by

capturing the characteristics of several C-functions that compose each stage. For

this study, the compiled LAME MP3 encoder application was first analyzed with

the spixcounts and spixstats functions and then program was simulated with the

lsfreq utility. Due to the excessive quantity of instructions and function calls

required to process this non-trivial algorithm, the profiles are reported as a

percentage rather than absolute number of function calls and dynamic instructions

executed. In the interest of reducing instruction-tracing complexity, only the top

several functions of each encoding stage are captured by the tracing tools. The

actual quantity of functions that are reported for each stage varies according to the

final dynamic trace results.

The major functions reported by Shade were then sorted into one of the

seven stages of encoding as described in section 3.3. An eighth category,

“Miscellaneous”, contains several functions that require noticeable processing

resources, but are either shared across multiple stages or serve as auxiliary

functions in addition to the major stages. The remaining functions are omitted

from consideration due to the ir relatively low utilization, less than 0.5%. The total

instruction content of the omitted functions typically contributed 3% to 5% of the

total dynamic instruction stream. Therefore, this analysis contains sufficient

information for a comprehensive understanding of the key components of the MP3

encoder application.

31

4.3 Input-Output Files

Five audio files encoded in the “wav” format were captured from music

CDs and used as PCM input for the MP3 encoder algorithm. The analysis included

a variety of selections to determine the effect of audio complexity on the encoding

process. Table 4.1 describes pertinent information for these files including genre,

original size, and MP3 file size when compressed at 128 Kbps and 320 Kbps. The

audio files range from a relatively short 40-second track to several minutes of

audio. A common classification based on genre roughly describes the content of

the music contained in each file.

Table 4.1: Input file information for test cases

General Audio Input Information File Size (Bytes)

Filename Artist Genre length (sec) original 320Kbps 128Kbps

pnp.wav Dave Matthews Band Rock 40 7126604 1619591 647835

george.wav George Winston Piano 91 31941224 7246366 2898546

antonio.wav Antonio Vivaldi Orchestral 215 38096938 8642350 3456939

chem.wav Chemical Brothers Alternative 96 32932502 7471019 2988407

ravi.wav Ravi Shankar Instrumental 557 98320136 22298121 8919248

32

5 RESULTS

The process of compressing each input file with the LAME MP3 encoder

was traced and analyzed with the Shade simulation engine. The results of the

analysis are divided into four major sections:

• routine- level profiling

• instruction- level profiling

• memory access characteristics

• computational workload analysis.

Each of these sections presents aspects of the compression application and

describes how file size, compression ratio, and audio complexity affect the

execution characteristics of the MP3 encoder and its major stages.

5.1 Routine-Level Profiling

Routine-level profiling determines the quantity of dynamic instructions a

routine contributes to the overall instruction stream. In this context, a routine is

equivalent one of the LAME functions written in the C programming language.

Table 5.1 lists static size of the major MP3 functions grouped by encoding stage.

Most of these functions were deemed highly utilized, i.e. reported by spixstats, in

every experiment. From this table, it is evident that a majority of the static

instructions are found in the psychoacoustic modeling routines. This is no surprise

33

based on the complexity of this routine and variety of operations performed at this

stage.

Table 5.1: MP3 stages and associated functions

Stage / Functions Static Size (Bytes) Stage / Functions Static Size (Bytes)

Windowing & Polyphase 6999 Huffman Entropy Encoding 1418

window_subband 5961 ix_max 79

fill_buffer 391 count_bit_ESC 271
unpack_read_sample 647 count_bit_noESC_from2 163

MDCT 3917 count_bit_noESC_from3 263

mdct_sub48 2095 HuffmanCode 343

mdct_long 1387 choose_table_nonMMX 299

mdct_short 435 Quantization 7817

FFT 1541 quantize_xrpow 367

fht 703 init_xrpow 207

fft_long 415 calc_xmin 1807
fft_short 423 count_bits 1455

Miscellaneous 3279 outer_loop 1199

sqrt 139 amp_scalefac_bands 1111

fabs 19 calc_noise 1671

exp 899 Psychoacoustic Modeling 11471

log 999 l3psycho_anal 11471

lame_encode_buffer_sample_t 1079 Bitstream Formatting 252

fast_log2 144

putbits2 252

A dynamic analysis of these functions shows how many instructions each

stage contributes to the total instruction count of the complete application. Figures

5.1 and 5.2 compare the stages according to their dominance in the dynamic

instruction stream. This analysis profiled the results from two of the audio input

files pnp.wav and ravi.wav. These samples contain considerably different audio

properties, and thus give insight into the effect of acoustic complexity on the

34

application execution. As depicted by the chart, the majority of the instruction

stream is devoted to the quantization, psychoacoustic modeling, and Huffman

encoding. Nested in the iterative looping structure, the Huffman and quantization

functions often execute several times for each block of PCM samples analyzed.

The psychoacoustic processing requires irregular control flow sequences and large

table searches resulting in a large demand on the CPU instruction bandwidth.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

In
st

ru
ct

io
ns

Qua
ntiz

atio
n

Ps
ych

oa
co

us
tic

Huff
man Misc FF

T

W
ind

ow
/Poly MDC

T

Bit
stre

am

Stage

128Kbps

320Kbps

Static Opcodes

Figure 5.1: Routine profile for pnp.wav

Figure 5.2 depicts the compression of a significantly different audio source.

However, the similarities between this and Figure 5.1 show that the dynamic mix or

routine execution is not dramatically affected by file size and audio characteristics,

particularly at lower bitrates. A noticeable difference can be found in the routine

35

profiles of 128 Kbps compression and 320 Kbps compression. As the compression

ratio is reduced, less emphasis is placed on the quantization stage because

acceptable noise levels are easier to achieve, however the Huffman encoding

contributes to a higher overall percentage of the instruction trace due to the

increased size of the final bitstream.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

In
st

ru
ct

io
ns

Qua
ntiz

atio
n

Ps
ych

oa
co

us
tic

Huff
man Misc FF

T

W
ind

ow
/Po

ly
MDCT

Bitst
rea

m

Stage

128Kbps

320Kbps

Static Opcodes

Figure 5.2: Routine profile for ravi.wav

Generated from the average profile of all five input files, Figure 5.3 easily

identifies the stages that require significant instruction processing. Clearly,

optimization efforts are better spent on the quantization and Huffman encoding

stages. The MDCT, FFT, and polyphase filtering signal processing algorithms

36

contribute to less than 25% of the total instruction stream. It is important to note

that these stages are probably not the performance bottleneck in this general-

purpose implementation of the MP3 encoder application. Figure 5.4 shows how

320 Kbps compression relies more heavily on these DSP routines, but they are still

not a dominant factor in the encoding process.

Quantizate

Psychoacoustic

Huffman

Misc

FFT

Window / Polyphase

MDCT

Bitstream

Figure 5.3: Average routine profile for 128 Kbps compression

37

Quantizate

Psychoacoustic

Huffman

Misc

FFT

Window / Polyphase

MDCT

Bitstream

Figure 5.4: Average routine profile for 320 Kbps compression

The chart in Figure 5.5 depicts the MP3 algorithm behavior as bitrate is

increased from 128 Kbps to 320 Kbps. Hyen-O Oh, et. al., expect significantly

fewer iterations through the quantization loops at high bitrates, and thus a reduction

in instructions in the quantization steps [24]. This assumption is confirmed by the

quantization category change in the figure. However, an increase in Huffman

encoding instructions can be attributed to the larger code words and more extensive

searches required to determine optimal entropy coding. Reductions in algorithmic

complexity at 320 Kbps are also noted by the reduced amount of psychoacoustic

modeling and bitstream instructions executed. In spite of a constant or increased

function call rate, the instruction count demonstrates that these stages are simplified

by the addition of available bits in the output datastream.

38

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

P
er

ce
nt

 C
ha

ng
e

Qua
ntiz

atio
n

Psy
ch

oa
co

us
tic

Huffm
an Misc FF

T

Wind
ow

/Po
ly

MDC
T

Bitst
rea

m

Stage

% Change in Calls

% Change in Instructions

Figure 5.5: Percent change in dynamic functions calls and instruction count from

128 Kbps to 320 Kbps compression rate for ravi.wav

5.2 Instruction-Level Profiling

Instruction- level profiling consists of capturing the dynamic instruction

trace for the MP3 compression application and sorting the opcodes into six

categories: load, store, integer, floating-point, branch, and other. The “other”

category accounts for machine-specific instructions such as save, restore, nop and

various maintenance operations. Application-level and stage- level results for the

five input files are presented in this section.

39

Application-level analysis based on traces from the entire program

execution proves that the instruction mix was very similar for each of the audio

input files. Figure 5.6 contains the instruction class percentages for MP3 encoding

at 128 Kbps averaged across all input files. According to this figure, it is evident

that ALU operations comprise the majority of the instruction stream at 52%, while

the combined load and store memory access instructions contribute to 34% of the

trace. The arithmetic instructions (integer and floating point operations) together

account for approximately half of the total instruction mix; of that, integer

dominates floating point by about 2-to-1. In the category of memory access, the

load instructions clearly contribute more than the store instructions. Although

media kernels are typically considered to be memory access constrained, the

instruction analysis of the complete MP3 encoding application shows that the

general purpose instruction stream relies more heavily on the processor’s ability to

execute ALU instructions.

40

load, 27%

store, 8%

float, 18%

integer, 34%

branch, 11%

other, 3%

load

store

float

integer

branch

other

Figure 5.6: Average instruction mix for 128 Kbps

Comparing the results of 128 Kbps and 320 Kbps compression in Figure 5.7

shows that the instruction mix is not heavily dependent on compression ratio or

input file characteristics. However, as the compressed bitstream data-rate

increases, the branch instructions tend to take a slightly higher percentage of the

overall stream with a corresponding decrease in memory instructions.

41

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

antonio.wav chem.wav george.wav pnp.wav ravi.wav

other

branch

integer

float

store

load

Figure 5.7: Application instruction mix

MP3 encoding stages each contain a different mix of instructions as

required by their routines. Figure 5.8 compares the instruction makeup averaged

across traces from the five audio input files. Memory accesses are only a dominant

part of the window/polyphase filtering and MDCT stages, but remain noticeably

present in all stages aside from Huffman encoding and Miscellaneous routines. It

is also evident that the DSP stages (the first three in the chart) are not overwhelmed

by large amounts of branch operations. Performance of these three DPS stages

could be enhanced by a focus on the ALU and memory workload.

42

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

 Window /
Polyphase

MDCT FFT Psycho-
acoustic

Quantize Huffman Bitstream Misc

other

branch

int

float

store

load

Figure 5.8: Instruction mix for MP3 stages

The Huffman encoding stage is a conspicuously different from typical

mixes found in the rest of the MP3 application. In this stage, the processor is

heavily reliant on load and branch operations to compute a large amount of integer

instructions which are mostly comparisons and address calculations. Because of its

high overall percentage of dynamic instructions, as described in section 5.1,

specialized hardware designed to enhance the runtime performance of this stage

would be beneficial to the MP3 encoding application performance.

43

5.3 Memory Access Characteristics

As with most multimedia applications, the MP3 encoding algorithm places

a significant demand on the memory infrastructure of a general purpose processor.

The combination of results from the spixstats and lsfreq analyzers give a clear

indication of this requirement. An application-level view of the memory access is

first presented, and then results from each stage of the encoding process are

reviewed to understand how each contributes to the overall memory access profile

of the MP3 encoder.

A common measure of memory workload is the comparison of input data

size with the amount of data transferred to and from the memory during the

execution of the application. MP3 compression algorithms require appreciably

more memory transactions than that which is required to load the input data. For

example, the pnp.wav input is contained in a 6.8 Megabyte PCM file. Table 5.1

shows the LAME compression results for 128 Kbps compression rate. In this case,

the source reduces to a 632 Kilobyte file. From Table 5.2, it can be determined that

the application exchanges 13 Gigabytes of data with the memory hierarchy while

processing this input; this is nearly 2000 times the size of the source file. Clearly,

the MP3 encoding memory bandwidth is dominated by transactions other than

those that load and store the input and output data.

The final column of Table 5.2 contains a common memory access metric

that measures the traffic in relation to the size of the original and post-transform

44

data [15][19]. The total memory traffic volume is divided by the sum of the input

and output files to indicate memory access requirements independent of file size. It

also gives a measure of memory traffic, typically considered overhead, which can

be compared with other application workloads. In the case of pnp.wav, the

algorithm averages 1,786 bytes of memory traffic for each byte of input or output

data. Routine- level and instruction- level profiling did not show differences

according the type of audio input file; however, the spectral complexity of

antonio.wav caused noticeably more memory traffic for compression than the other

input files. It can also be observed that relaxing the audio compression rate to 320

Kbps reduces the memory transactions per input or output byte.

Table 5.2: Memory access characteristics

Source Information Memory Access Characteristics

Compression Filename Source Size
Mbytes

Output Size
Mbytes

Mbytes
Loaded

Mbytes
Stored

Mbytes
Transferred

(L+S) Mbytes /
(I + O) Mbytes

pnp.wav 6.8 0.6 10,050 3,189 13,238 1786

george.wav 30.5 2.8 39,709 12,958 52,667 1585

antonio.wav 30.5 3.3 51,995 16,511 68,506 2029

chem.wav 31.4 2.8 42,070 13,358 55,428 1618

128Kbps

ravi.wav 93.8 8.5 138,030 43,669 181,698 1777

pnp.wav 6.8 1.5 7,340 2,122 9,462 1134

george.wav 30.5 6.9 36,573 10,286 46,858 1254

antonio.wav 30.5 8.2 40,620 11,661 52,281 1351

chem.wav 31.4 7.1 36,036 10,567 46,603 1209

320Kbps

ravi.wav 93.8 21.3 104,783 29,857 134,641 1170

45

The next memory access analysis compares the demands of the major MP3

encoding stages. Figure 5.9 shows how load and store instructions in each group

contribute to the overall memory bandwidth required by the MP3 algorithm for the

ravi.wav input. The other audio input files are omitted from this analysis because

each exhibits very similar stage- level trends. When combined with the data in

Figure 5.2, it is evident that functions with a higher percentage of dynamic

instructions typically have higher memory bandwidth requirements. A key

exception is the bitstream stage which executes more memory transactions per

instruction than some of the other stages. This stage is relatively insignificant on

Figure 5.2, but among the top contributors in the memory traffic chart.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

P
er

ce
n

ta
g

e

Qua
ntiz

atio
n

Ps
ych

oa
co

us
tic

Huff
man

Bitst
rea

m

W
ind

ow
/Poly Misc FF

T
MDC

T

Stage

load instr.

bytes loaded

store instr.

bytes stored

Figure 5.9: Percentage of memory instructions and memory traffic for ravi.wav

encoded at 128 Kbps

46

The data in Figure 5.9 also gives an indication of the efficiency of the load

and store instructions. It is evident that a large quantity of instructions is required

to transfer data to and from the central processor. Some stages take advantage of

load and store instructions that transfer larger amounts of data per instruction. The

bitstream and miscellaneous categories demonstrate higher efficiency due to the

fact they transfer a higher percent of data than percent of instructions executed.

When compared to the behavior of the encoder at 128 Kbps, the data in

Figure 5.10 depicts a noticeable rearrangement of functions when sorted from

highest to lowest memory traffic for the 320 Kbps compression rate. Here, the

Huffman coding accounts for a more significant portion of the overall load/store

instructions. The Psychoacoustic routines conversely dropped in rank. This

difference can be attributed to a relaxation on the complexity of calculations for

signal-to-mask ratio which result in a reduced amount of instructions, as

documented in Figure 5.5.

47

0%

5%

10%

15%

20%

25%

30%

P
er

ce
nt

ag
e

Qua
ntiz

atio
n

Huffm
an

Bit
str

ea
m

W
ind

ow
/Po

ly

Psy
ch

oa
co

us
tic Misc FF

T
MDCT

Stage

load instr.

bytes loaded
store instr.

bytes stored

Figure 5.10: Percentage of memory instructions and memory traffic for ravi.wav

encoded at 320 Kbps

The percentage of store instructions contributed by the quantization routines

emphasizes the fact that this stage accounts for a major portion of the data created

by the compression application. Although the quantization stage accounts for a less

significant portion of load instructions and bytes, the absolute quantity of load

instructions and loaded bytes exceeds that of store instructions and stored bytes.

A more significant exception to the symmetry of load and store utilization is

the Huffman coding routines. This function his highly table- intensive, and

therefore requires mostly load instructions. At 320 Kbps, this disparity is even

larger as the algorithm conducts more extensive searches through the tables.

Conversely, the quantization steps are more reliant on balanced computations, and

thus require fewer load transactions for each store instruction.

48

Figure 5.11 compares the average memory throughput for each of the major

categories. Several MP3 stages sustain more than 1.5 bytes of memory bandwidth

for each dynamic instruction in that function. However, the Huffman stage again

provides an exception with its low data throughput of less than one byte per

instruction for both compression ratios. As evident in this chart, the architecture

studied in this report has an apparent limit of two bytes of data throughput per

instruction. A uniquely designed memory architecture and address co-processor

could affect a dramatic change in this mix by alleviating the overhead memory

access instructions.

0

0.5

1

1.5

2

2.5

B
yt

es
 T

ra
n

sf
er

re
d

 p
er

In

st
ru

ct
io

n

Wind
ow

/Po
ly MDCT

FF
T

PAM

Qua
ntiz

atio
n

Huff
man

Bits
trea

m Misc

Category

128Kbps

320Kbps

Figure 5.11: Bytes transferred per instruction for ravi.wav

49

5.4 Computational Workload

The final analysis consists of a measurement of the computational workload

of the MP3 encoding algorithm. Figure 5.12 evaluates the ratio of ALU

instructions to the memory and branch instructions present in the dynamic

instruction stream. In every stage of the application, ALU instructions exceed both

memory and branch instructions. It is likely that an optimizing compiler can affect

the ratio for the branch comparison by loop unrolling and other optimizations, but

the memory traffic is generally fixed by the demands of the algorithm.

0

5

10

15

20

25

30

35

40

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

12
8K

bp
s

32
0K

bp
s

 Window /
Polyphase

MDCT FFT Psycho-
acoustic

Quantize Huffman Bitstream Misc Entire
Application

ALU inst / mem inst

ALU inst / branch inst

Figure 5.12: Ratio of ALU instructions to memory and branch instructions

ALU operations effectively dominate the machine workload for the Signal

processing stages, thus providing a high level of computations for each branch

50

instruction. Although it would seem that enhancing or adding arithmetic units

could enhance the MP3 algorithm, the low ratio of ALU to memory instructions in

these and other stages caution that architectural changes that do not provide a

comparably scaled memory infrastructure could lead to lower than expected

performance gains. Stages aside from those related to signal processing show a

much higher dependence on branch instructions. In order to maximize utilization

of the computational units during these stages, hardware must effectively handle

the relatively frequent changes in control flow.

6 CONCLUSIONS

This report analyzed the significant characteristics of an application that

compresses PCM audio data into the MP3 format. From the results of detailed

simulation, it can be determined that the architecture of a general-purpose machine

cannot handle the large table lookups and significant intermediate data structures

without an excessive load on its memory architecture. The MP3 encoder

instruction and routine profile must be carefully considered before making

architectural enhancements to increase performance. It is likely that the register set

and local memory hierarchy are not well suited to this application. However, it is

evident in some cases that the memory access instructions do not dominate the

dynamic instruction stream.

51

It can also be noted that several aspects of the dynamic instruction mix vary

for each of the major MP3 encoder stages and this instruction stream is sensitive to

the requested compression ratio. For example, the psychoacoustic calculations of

this compression algorithm are dependent on both the input data and quality

expectations of the result. A custom-designed multimedia architecture must

accommodate the possibility that the true performance bottleneck might be

different for each invocation of the program.

The properties of a general purpose processor give it the ability to handle

multimedia workloads, but it is not the most optimal architecture for the task. As

an alternative to a general purpose machine, dedicated hardware could improve the

execution performance on this multimedia application. A key area to consider is

the vast amounts of data transferred to and from the processor core. A potential

solution might address this demand by placing several direct-access “cache”

memories near the processor to reduce demand on the external memory resources.

These memories could contain the tables required for the key kernel operations:

quantization, Huffman coding, psychoacoustic modeling, filtering, MDCT, FFT,

and the intermediate data required for each stage of the compression routine.

Processor enhancements that improve the performance of highly runtime-dominant

stages such as Huffman coding, quantization, and psychoacoustic modeling would

significantly impact overall application performance.

52

References

[1] E. Ambikairajah, A. G. Wong, W. T. K. “Auditory masking and MPEG-1

audio compression”. Electronics & Communication Engineering Journal,
Volume 9, Issue 4, pages 165-175, August 1997.

[2] J. N. Barkdull and S. C. Douglas. “General-purpose microprocessor

performance for DSP applications”. Record of the Thirtieth Asilomar
Conference on Signals, Systems and Computers, Pages 912-916, November
1996.

[3] K. Brandenburg and H. Popp. “An Introduction to MPEG Layer-3”. EBU

Technical Review, June 2000.

[4] Tian-Sheuan Chang, Chein-Wei Jen. “Embedded memory module design for

video signal processing”. IEEE Signal Processing Society VLSI Signal
Processing, Pages 501-510, September 1995.

[5] Bob Cmelik and David Keppel. “Shade: A Fast Instruction-Set Simulator for
Execution Profiling”. ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, 1994.

[6] Grainger David. “MP3s Are Big Music's Savior, Not Slayer”. Fortune,

Volume 146, Issue 5, September 2002.

[7] K. Diefendorff, and P. K. Dubey. “How multimedia workloads will change

processor design”. Computer, Volume 30, Issue 9, Pages 43-45, September
1997.

[8] Fraunhofer IIS. http://www.iis.fraunhofer.de/amm/techinf/layer3/

[9] B. Furht, R. Westwater, J. Ice. “Multimedia broadcasting over the Internet. I”.

IEEE Multimedia, Volume 5, Issue 4, Pages 78-82, December 1998.

[10] C. H. Gebotys and R. J. Gebotys. “Performance-power optimization of

memory components for complex embedded systems”. Proceedings of the
Thirtieth Hawaii International Conference on System Sciences, Volume 5,
Pages 152-159, January 1997.

53

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B.
Brown. “Mibench: a free, commercially representative embedded benchmark
suite”. IEEE International Workshop on Workload Characterization, Pages 3-
14, December 2001.

[12] M. Hans and R. W. Schafer. “Lossless compression of digital audio”. IEEE

Signal Processing Magazine, Volume 18, Issue 4, Pages 21-32, July 2001.

[13] C. N. Hinds. “An enhanced floating point coprocessor for embedded signal

processing and graphics applications”. Conference Record of the Thirty-Third
Asilomar Conference on Signals, Systems, and Computers, Volume 1, Pages
147-151, October 1999.

[14] ISO/IEC 11172-3 Compression of Audio standard

[15] L. K. John, V. Reddy, P. T. Hulina, L. D. Coraor. “Program balance and its

impact on high performance RISC architectures”. First IEEE Symposium on
High-Performance Computer Architecture, pages 370-379, January 1995.

[16] B. Kapoor. “Analyzing memory bandwidth requirements of video

algorithms”. Proceedings of the 1998 IEEE International Symposium on
Circuits and Systems, Volume 4, pages 170-173, June 1998.

[17] N. Kavvadias and S. Nikolaidis. “Parametric architecture for implementing

multimedia algorithms”. 14th International Conference on Digital Signal
Processing, Volume 2, Pages 1261-1264, July 2002.

[18] LAME Ain't an Mp3 Encoder. http://lame.sourceforge.net/

[19] Byeong Kil Lee and L. K. John. “Implications of programmable general

purpose processors for compression/encryption applications”. The IEEE
International Conference on Application-Specific Systems, Architectures and
Processors, Pages 233-242, July 2002.

[20] A. Mehis and R. Radhakrishnan. “Optimizing applications for performance

on the Pentium 4 architecture”. IEEE International Workshop on Workload
Characterization, Pages 59-67, November 2002.

[21] Joan L. Mitchell. MPEG Video: Compression Standard. New York Kluwer

Academic Publishers, 2002.

54

[22] P. Moravie, H. Essafi, C. Lambert-Nebout, J. L. Basille. “Real-time image
compression using SIMD architectures”. Computer Architectures for Machine
Perception, Pages 274-279, September 1995.

[23] P. Noll. “MPEG digital audio coding”. IEEE Signal Processing Magazine,

Volume 14, Issue 5, pages 59-81, September 1997.

[24] Hyen-O Oh, Joon-Seok Kim, Chang-Jun Song, Young-Cheol Park, Dae-Hee
Youn. “Low power MPEG/audio encoders using simplified psychoacoustic
model and fast bit allocation”. IEEE Transactions on Consumer Electronics,
Volume 47, Issue 3, Pages 613-621, August 2001.

[25] D. Pan. “A tutorial on MPEG/audio compression”. IEEE Multimedia,

Volume 2, Issue 2, Pages 60-74, 1995.

[26] M. J. Serrano and Youfeng Wu. “Memory performance analysis of
SPEC2000C for the intel itanium processor”. IEEE International Workshop
on Workload Characterization, Pages 184-192, December 2001.

[27] P. Singh, W. Moreno, N. Ranganathan, H. Neinhaus, “A flexible MPEG

audio decoder layer III chip architecture”. Proceedings of the 1998 IEEE
International Symposium on Circuits and Systems, Volume 4, Pages 37-40,
June 1998.

[28] N. T. Slingerland and A. J. Smith. “Cache Performance for Multimedia

Applications”. International Conference on Supercomputing, Pages 204-207,
2001.

[29] S. Sohoni, Rui Min, Zhiyong Xu, Yiming Hu. “A Study of Memory System

Performance of Multimedia Applications”. Joint International Conference on
Measurement and Modeling of Computer Systems, Pages 206-215, 2001.

[30] D. Talla, and L. K. John. “Cost-effective hardware acceleration of multimedia

applications”. International Conference on Computer Design, Pages 415-424,
September 2001.

[31] D. Talla, L. K. John, V. Lapinskii, B. L. Evans. “Evaluating signal processing

and multimedia applications on SIMD, VLIW and superscalar architectures”.
International Conference on Computer Design, Pages 163-172, Sept. 2000.

[32] D. Talla and L. K. John. “Execution characteristics of multimedia

applications on a Pentium II processor”. Conference Proceeding of the IEEE

55

International Performance, Computing, and Communications Conference,
Pages 516-524, February 2000.

[33] J. Tyler, J. Lent, A. Mather, Huy Nguyen. “AltiVecTM: bringing vector

technology to the PowerPCTM processor family”. IEEE International
Performance, Computing and Communications Conference, Pages 437-444,
February 1999.

[34] Jerry C. Whitaker and K. Blair Benson. Compression Technologies for Video

and Audio. New York McGraw-Hill Professional, 2000.

[35] S. Wong, S. Cotofana, S. Vassiliadis. “General-purpose processor Huffman

encoding extension”. International Conference on Information Technology:
Coding and Computing, Pages 158-163, March 2000.

56

Vita

Michael Lance Karm was born in Dallas, Texas on June 6, 1976 to Richard Gilbert

Karm and Jean Ann Karm. After graduating from Lake Highlands High School in

June 1994, he entered The University of Texas at Austin in August 1994. In

December, 1998 he received the degree of Bachelor of Science from the College of

Engineering and entered The Graduate School at the University of Texas at Austin

in January 1999. He has held internship positions at Texas Instruments, Raytheon,

and International Business Machines, and a full- time position at Wavefly

Corporation. He is currently employed by Avnet, Inc.

Permanent Address: 512 South Lynnwood Trail

 Cedar Park, TX 78613

This report was typed by the author.

