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An artificial neural network structure has been specified, implemented and optimized for

the purpose of predicting the perceived sound quality for normal-hearing and

hearing-impaired subjects.  The network was implemented by means of commercially

available software and optimized to predict results obtained in subjective sound quality

rating experiments based on input data from an auditory model.  

Various types of input data and data representations from the auditory model were used

as input data for the chosen network structure, which was a three-layer perceptron.  This

network was trained by means of a standard backpropagation procedure and tested on

selected stimuli from the subjective rating experiment.  The best results were obtained

with an additional input to the network, identifying the listener, and thus allowing

different states for each subject.  

The performance with previously unseen test was evaluated for two types of test set

extracted from the complete data set.  With a  test set consisting of mixed stimuli, the

prediction error was only slightly larger than the statistical error in the training data itself.

Using a particular group of stimuli for the test set, there was a systematic prediction

error on the test set.  The overall concept proved functional, but further testing with data

obtained from a new rating experiment is necessary to better assess the utility of this

measure.

The weights in the trained neural networks were analyzed to qualitatively interpret the

relation between the physical signal parameters and the subjectively perceived sound

quality.  No simple objective-subjective relationship was evident from this analysis.  

 

Abstract.

A neural network model for prediction of sound quality. Page 3

Abstract



Page 4 A neural network model for prediction of sound quality.



This report describes the specification, implementation and evaluation of a neural net

model for prediction of sound quality in normal hearing and hearing impaired subjects

(sensorineural hearing losses).

The neural network model is just one of the elements covered in the entire Ph.D. project

"Modeling of sound quality for hearing-impaired listeners".  The Ph.D. project is a joint

project between Oticon A/S and The Acoustics Laboratory, Technical University of

Denmark, and the report has thus been published by both parties:  Oticon Internal Report

No. 43-8-3 and The Acoustics Laboratory, Report no. 53.  This report is meant to cover

the neural network aspect of the entire project.  However, there may be aspects that are

not fully explained here, and there may be overlapping areas between the four reports

that together comprise the Ph.D. thesis:  Nielsen (1992), Nielsen (1993a), the present

report and Nielsen (1993b).  The last reference is the project overview and summary

report.  

The present report contains the following sections:

Section 1 is a brief introduction to artificial neural networks, what they can do and how

they are trained and applied.  The section deals primarily with supervised learning, which

was used for the current project.

Section 2 takes a look at an area related to the current project - neural nets applications

for speech processing and speech recognition.  Parallels between the applications are

made and useful ideas are discussed.

Section 3 summarizes the purpose of the present investigation and its scope within the

entire Sound Quality project.   

Preface.
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Section 4 describes the architecture of the neural net and the data reduction, from the

output of the auditory model, required to make training possible.  Various options for

data representation are discussed.

Section 5 deals with training and test parameters for the network.

In section 6, the training sessions are listed, with different choices of training data,

training parameters.  The training and test statistics are presented as well as plots of

predicted vs. actual ratings on the subjective scales Clearness and Sharpness.

In section 7, the weights in the trained neural networks are analyzed and the mapping

from physical signal parameters to subjective sound quality is touched upon.

Section 8 discusses the results of the report and some suggestions for future work are

made.  

Section 9, the Conclusion, summarizes the main results
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Artificial neural networks (ANN), or neural networks (NN), have become quite popular

in recent years, as solutions to complicated, non-trivial problems where parametric or

rule-based solutions have failed.  One such example is in the field of automatic speech

recognition, where ANN's  have supplemented existing parametric recognition models

and made them more robust (Lippmann, 1989).  A combination of an ANN combined

with a physiological model of the ear (Cochlear Model) as a front-end/preprocessor has

successfully been used to identify spoken vowels (Cosi et al, 1990).  Similarly, ANN's

have been used in speech synthesis, to select the correct phonemes for correct English

pronunciation of a text string (Sejnowski and Rosenberg, 1987).  These are all examples,

where it is difficult to formulate a model, or a set of rules, but easy to provide training

examples for a neural network, while leaving the hard task - formulating the model - to

the network.

An artificial neural network is composed of many simple, non-linear computational

elements operating in parallel and densely interconnected.  Hence the term neural nets,

since they are inspired from the biological nerve cell structures in the human brain or in

any animal, for that matter.  Each node in an ANN can be viewed as a nerve cell, and the

inter-connections (weights) are the counterparts of synapses in an organic nerve cell

structure.  The weights are adjustable, and are typically adapted by means of an adaptive

algorithm combined with training examples presented during a training (or learning)

phase.  The high degree of parallelism coupled with the adaptive process allows the

network to discover underlying features in the training data and extract relevant features

only, while discarding random noise or irrelevant information.  The network acquires the

ability to generalize based on the training data and, if these represent an entire population

(all possible outcomes) well, the network can predict outcomes for new, previously

unseen data.  As with biological systems, ANN's are not suited for precise numerical

calculations (the strong point of an ordinary computer), but are able to generalize by

example (what to do).  A computer, on the other hand, must be programmed, e.g. it must

be told exactly how to do it.  The fact that neural nets are often implemented as

1 An introduction to neural nets.

A neural network model for prediction of sound quality. Page 9

1.  An introduction to neural nets.



computer programs on ordinary computers does not affect the nature of their

performance, however it is a very inefficient way to implement them, since the parallel

structure is serialized and thus slowed down.  Recently, dedicated hardware and chips

have appeared that are truly parallel, and typically analog or mixed analog-digital.  These

nets provide a much larger throughput.

For the types of applications where neural nets are used for regression or classification,

there are also alternatives within traditional statistical  procedures.  However, NN

predictors or classifiers are non-parametric and make weaker assumptions concerning the

shape of underlying distributions.  This should make the NN approach a more robust

one, when the nature of the data is not fully understood.  

The neural networks perform  "distributed processing".  The processing of inputs is done

by most of the network - thus, the representation of knowledge is distributed throughout

the net.  Because of this, trained networks are typically very robust, and performance is

only degraded slightly if a few units (neurons) are removed.  This is similar to biological

cell structures, that continue to perform well if a few nerve cells have died.  

There are different terms used for NN's depending on the actual application, and thus,

the task performed by the NN.  Identification of vowels, for instance, is a classification

task, where the NN typically uses several discrete-value (or binary) outputs, one for each

of the output classes (i.e. ten different American-English vowels (Cosi et al, 1990)).  For

other purposes, the network is not a classifier, but rather used for prediction of some

output vector.  This will typically require continuously-valued outputs, and the NN can

be trained to perform a multidimensional, non-linear mapping (or regression) from an

input space to an output space.  This is an example of using the network for function

approximation, which is the type of application presented in the current report.  

Neural net models are specified by net topology, node characteristics and learning (or

training) rules.  Of many described structures, one of the most commonly used structures

is the multilayer perceptron  (Lippmann, 1987), which we shall focus on in the following,

since it is the choice for the current project.  The node characteristics include type of
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input summing (typically addition), which non-linearity is used to form the output and

possibly temporal integration or other types of time dependency.  

Finally, there is a distinction between un-supervised training, where no desired output is

presented to the network in the training phase and, on the other hand, supervised training

where output patterns (exemplars) are presented during training.  In the following, only

supervised training is considered.  Lippmann (1987) presents a broader overview and

taxonomy of neural nets for the interested reader, and more recent results on supervised

learning networks have been presented by Hush and Horne (1993).  

In the following, we will present an important and much applied neural network structure

for supervised learning, the multi-layer perceptron (MLP).  The perceptron is the basic

unit (node) in the multi-layer perceptron, which contains one or more layers of nodes

between the input and the output nodes.  This is illustrated in Figure 1.  All inputs are

multiplied with a corresponding input weight and summed:

u i =Sj w ijx j
(1)

This sum is passed through a non-linearity, commonly a sigmoid function:

f(u)= 1
1+ e −bu

(2)

where β is the gain of the sigmoid that determines the steepness of the transition region.

The neuron output from the hidden layer is then calculated as:

y i = f Sj wijx j
(3)

Usually all inputs and outputs to the network have been normalized to an internal

representation between 0 and 1, and the output is then rescaled to match the range of the

training data.

It has been shown that a three-layer perceptron can be used to represent a

decision-problem of any shape in the input-space, but the complexity of the problem is
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limited by the number of nodes (Lippman, 1987).  Until recently, multi-layer perceptron

networks were not used, due to the lack of an efficient training algorithm.  Now, the

back-propagation (BP) algorithm is commonly used for training of the multilayer

perceptron (McClelland & Rumelhart, 1986).  This is a gradient-search algorithm that

attempts to minimize the squared error on the output by adjusting the weights backwards

in the net, i.e. starting with the weights in the output layer and propagating the error

back through the preceding layers, while adjusting their weights.  Descriptions of this are

provided by Hush and Horne (1993), Hertz et al (1991) and McClelland & Rumelhart

(1986).  

1. Example of a simple three-input, one-output multi-layer perceptron with two neurons in the hidden
layer between input and output, and a total of eight weights (w .. and w'. , indicated by open
arrows). The output non-linearity shown is the commonly used sigmoid function.

One of the difficult aspects in the use of MLP is how to select the proper network size.

The network must be large enough to approximate the given problem by developing an

internal representation, but not so large that the weights (= degrees of freedom) cannot

be estimated reliably from the available training data.  A MLP-network consists of an

input layer, one or more "hidden" layers (i.e. not visible from the outside) and one output
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layer.  The input layer is simply the input terminals of the NN, distributing signals to the

first hidden layer.  The hidden layer(s) performs the feature extraction, i.e. the neurons in

a hidden layer, together with their input weights, are where the "intelligence" of the

network is stored.  Usually, one hidden layer is used, but more hidden layers have

provided an advantage in some cases.  Finally, there is the output layer, which uses

weighted sums of the hidden layer activity to form the network output.  This layer

usually also employs non-linear neurons, except for certain signal-processing

applications, where the output unit(s) are weighted sums without a non-linearity (Hush

and Horne, 1993).  

After this short introduction to neural networks, we will proceed with the description,

implementation and evaluation of the present NN application:  Predicting the sound

quality of processed sound signals based on an auditory model front-end and training

data obtained from subjective listening tests.  Good textbooks on neural nets and related

topics include:  Hecht-Nielsen (1990), Hertz et al (1991), Kohonen (1984, 1988),

McClelland & Rumelhart (1986, 1988) and Rumelhart & McClelland (1986).
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In this section, we will focus on applications of neural networks to speech processing

and related areas, since these applications might provide inspiration for the present

application.  There are no direct examples found in the literature on the use of ANN's in

the context of sound quality measures or prediction of sound quality.  

There is a crucial difference between the applications in speech synthesis and recognition  

(ASR) and the current project:  These models convey or extract the information carried

by the input (speech) signal.  In the present project we are interested in some perceptual

attributes of the incoming signal, and specifically not the information.  Speech

recognition by the hearing aid user is deliberately left out in the definition of sound

quality used in the present project (Nielsen, 1992).  Thus, the focus here is on extracting

the quality of the signal (whether this is music, speech or other signals) as opposed to the

information.  Nevertheless, the speech work summarized below has provided inspiration

for choice of window sizes, frame spacing, preprocessing, network topology and more.

Many papers on speech recognition are not particularly scientific, but more pragmatic,

and many choices are motivated by past experience, rather than strict scientific

argumentation.  And the present application is not different - one has to experiment and

gradually increase the sophistication and performance of the systems.  

One of the first large, successful applications of neural nets in the speech area is the

NETtalk system, a multilayer perceptron to pronounce English text (Sejnowski &

Rosenberg, 1987).  The network input was a window of 7 letters, each letter represented

by 26 units plus 3 units for punctuation and pauses, i.e. a total of 203 binary-valued

units.  There were 80 hidden units and 26 output units, representing the phonemes

combinations of articulatory features, such as place and manner of articulation, phoneme

type, vowel height, stress and punctuation.  After training, the output neurons were then

used to control a speech synthesizer, that converted the features to the acoustic signal.

The network was trained using backpropagation on 1024 words from children's speech

and speech was understandable after 10 passes.  Adding input groups (i.e. more letters)

and an extra layer of hidden units both improved performance.  The layer of hidden units

2 Speech-related applications. 
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in the trained network was analyzed, but no clear patterns emerged, except in a few

cases, where clusters of units seemed to provide the vowel/consonant distinction.  The

trained network was quite insensitive to damage (i.e. robust) and re-training after

damage was quick.  This is a classic and quite successful application.  

Cosi et al (1990) have used neural nets for a speech recognition problem: classification

of spoken vowels.  A physiological model of the ear (cochlear model: Seneff, 1985) was

used as acoustic pre-processor, that appears to encode phonetic features in a rather

straightforward way.  40-channel output vectors from the cochlear model were sampled

every 5 ms, and assembled (interpolated) into 10 frames, equally-spaced in time, that

contained the entire vowel.  The vowel boundaries were determined by using a vowel

detection algorithm directly on the speech signal.  This resulted in 400 spectral

coefficients for the neural network (= 400 input units).  20 hidden units in a single hidden

layer (no particular reason for this number) and 10 output units (representing 10 English

vowels) were used and the network was trained using back-propagation on 5 samples of

each vowel from 13 speakers.  The recognition score was approximately 95% for seven

new speakers.  By comparison, an FFT-based 40-channel mel-scale filterbank achieved a

score of 87%.  The authors point out that the overall advantage of the cochlear model

needs to be investigated further.  

Gramss & Strube (1990) did experiments with a psychoacoustic preprocessor and a

neural network for recognition of spoken German digits.  The preprocessor derived 8,16

or 38 Bark-scale (critical bands) filter outputs from a 512 point FFT.  The sampling

frequency was 10 kHz, with an overlap of 412 samples = 41.2ms, i.e. one frame was

obtained for each 10 ms.  The output power from each critical band was  converted to

loudness, using a power-law with exponents in the range p = 0.2 - 1.0, instead of just the

classical exponent of 0.3.  The resulting loudness spectrogram is contrasted (enhanced)

within a rectangular area of the spectrogram.  This is followed by extraction of spectral

and temporal features (not described in detail) and the neural network.  What neural net

structure was used, is unclear from the paper, but a recognition rate of 100% was

obtained.  It is interesting to note that the score was sensitive to the loudness power
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exponent, with optimal results for p = 0.5.  Training was done on 11 different utterances

of the 10 first digits in German, by one speaker.  Subsequent testing was done on a 12th

utterance by the same speaker.  

A summary of auditory and neural-net models used for automatic speech recognition

(ASR) was presented by Lippmann (1989).  Typically, a spectrum-based (Fast Fourier

Transform (FFT) or Linear Predictive Coding (LPC)) front-end delivers frames every 10

ms to the recognizer.  A summary of physiologically-based auditory preprocessors is

provided.  They have a potential advantage over purely spectrum-based preprocessors,

by providing time and synchrony information (intra- as well as inter-channel), which

appears to provide more robustness under noisy conditions.  Some of these physiological

(cochlear) models have been reviewed by Nielsen (1993a).  

Lippman (1989) identifies three other elements in ASR: pattern matching and

classification (phonemes), time alignment and pattern sequence classification (words).

The neural net can do a number of tasks related to ASR, such as computing local

distance scores to stored reference patterns on a frame-by-frame basis, perform vector

quantization and reduce the dimensionality of input patterns.  They may develop internal

hidden abstractions in hidden layers that can be related to meaningful acoustic-phonetic

speech characteristics, such as formant transitions.  Auto-associative unsupervised (e.g.

Kohonen, 1984) networks can reduce dimensionality and extract relevant features,

similar to principal component analysis.  Lippmann presents several examples on

multilayer perceptrons for static (time-aligned, pre-segmented) classification of speech

segments (e.g. determine which vowel is present).  One study found that the hidden

nodes (units) often become feature detectors and differentiate between important subsets

of sound types such as consonants versus vowels, and it was stressed that choosing the

right data representation for speech is crucial.  Various network sizes and time-feature

extraction schemes have been used.  For classification into speech feature maps,

combinations of unsupervised and supervised training in hierarchical nets have been

suggested and used successfully with rapid training.  For dynamic classification of speech

segments (e.g. running speech), time-delay neural networks (TDNN) are most common
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(notably Waibel et al (1989), Waibel & Hampshire (1989)).  TDNN's are multilayer

perceptrons with time delays in the input and some form of temporal integration in the

output nodes.  The TDNN used by Waibel et al contained successive layers, with

gradually fewer dimensions to provide specific feature-classification (e.g. classify voiced

stops /b,d,g/).  Several of these sub-nets can then be trained separately and combined

with some "glue"-nets for faster overall training.  This type of pre-defined architecture

probably has an advantage compared to a large, completely interconnected network, and

the resulting weight pattern may be easier to interpret.  New training algorithms have

also been developed for faster training.  Nets with internal memory and recurrent

connections have also been used to capture the time structure and discrete states in the

speech, and neural nets have been used in combination with traditional techniques

(Hidden Markov Models, Dynamic Time Warping) with success.  Much progress has

been made here since Lippmann (1989) published the summary paper.   

Waibel (1992) has provided a more recent summary on neural network approaches for

speech recognition.  The speech recognition is divided into three levels: The phonemic

level, the word level and the language level.  Only the first of the three is of relevance to

the present project.  Phoneme classification networks can be divided into two groups:

Temporally static classifiers, that require precise temporal alignment of input tokens, and

temporally dynamic classifiers that do not require this.  The static classifiers are often

multi-layer perceptrons with backpropagation training.  The temporally dynamic

classifiers include Time Delay Neural Networks (TDNN) and recurrent networks.   In

recent work with TDNN, it was again possible to "discover" phonetic features in the

trained network, given specialized sub-nets for different tasks.  Hidden layer activations

showed specific response to acoustic-phonetic features such as detectors for unvoiced

speech, vowel onsets and rising or falling formants.  

Sørensen (1991) used a multi-layer neural network for cepstral noise reduction.  The

entire system consists of an auditory (psychoacoustic) model for pre-processing, a

cepstral noise reduction neural network and a classification neural net.  The auditory

model output is specific loudness in 30 channels, every 10 ms, which is interpolated to
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256 points, fed to an inverse FFT, from which 8 LPC coefficients are derived and

subsequently transformed into 8 cepstral coefficients.  It is argued that the cepstral

domain works better due to the deconvolution property of the cepstrum transform.  The

cepstral input coefficients were then fed to a four-layer perceptron network with 1 input,

2 hidden and 1 output layers using 8, 32, 32 and 8 neurons in the four layers.  In this

application, 2 hidden layers gave better results than one.  The network was then trained

at this stage by presenting speech mixed with fighter plane cockpit noise at various

signal-to-noise ratios to the input and using the network outputs for the corresponding

clean speech signals as training data.  Thus, this network performed an eight-dimensional

autoassociative mapping from a "noisy" input space back to a "clean" input space, i.e. a

function approximation.

The subsequent classifier was trained to classify 1170 instances of the Danish digits 0 - 9,

spoken by 66 speakers, and tested using 510 words from 34 speakers.  At 0 dB S/N,

there was a 65% improvement in recognition score, using the auditory model front-end

and 35% using a traditional LPC-Cepstrum front end.  This application is another

example of a successful neural net application, and the advantage of an auditory-based

front-end is again demonstrated.  

Compared to speech recognition, there is an application that lies closer to the present

sound quality application, namely the task of speaker identification.  This is for instance

used in security systems, automated bank tellers, or elsewhere where a determination of

speaker identity is required.  The information carried by the signal is irrelevant, but the

speaker identity must be determined on speech characteristics, such as fundamental

frequency, timbre of the voice, articulation, prosody (rhythm) etc.  Bennani et al (1990)

presented a neural net approach to this problem.  The speech was pre-processed using

two different methods: LPC analysis, providing 12 LPC coefficients every 10 ms, and a

critical-band type front-end based on FFT analysis followed by 24 triangular filters, from

which 8 cepstral coefficients are derived (MFCC: Mel Frequency Cepstral Coefficient).

After pre-processing a sentence into N frames, a 12 x N or 8 x N matrix is obtained.  The

principal components for the matrix are determined (see also section 4.1.1) and these are
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passed onto a neural net that performs the speaker classification.  The MFCC

preprocessing, using the auditory model, showed ~20% higher recognition scores than

the traditional LPC preprocessing.  The preprocessing and data reduction used by

Bennani et al (1990) is interesting for the present investigation.  

All the papers presented above present actual, practical applications, proving that neural

networks are useful in the speech area.  It is characteristic that the decisions on

preprocessing, net size, topology etc. are often made with no strong scientific basis, since

no stringent theories are available, and that the applications nevertheless are successful in

performing the assigned task.  With this in mind, we shall proceed with the current neural

network application.  
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The neural network modeling is the final step in a larger project, aiming for the

development and evaluation of objective sound quality measures (Nielsen, 1993b).  The

overall idea in the project (also shown in Figure 2) is the following:  A sound signal is

processed through a hearing aid, where it is subject to "desired" signal processing

(frequency shaping, output limiting etc.) and "undesired" signal processing (resonance

peaks, non-linear distortion etc.).  The subjects - one normal-hearing group and one

hearing-impaired group - rate the subjective sound quality of the signals on a number of

perceptual rating scales (Loudness, Clearness, Sharpness, Fullness, Spaciousness and

Overall impression).  The same signals are presented to a computer model of the ear - an

auditory model - which mimics some of the dominant psychoacoustic properties of the

normal or the impaired ear, to the extent that these are known today.  

2. Overall project concept for an objective measure of sound quality.  See text for details.

3 Scope and purpose of neural net application.
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The auditory model thus implements known properties of the normal and the impaired

ear, and the remaining task in predicting sound quality is left for the neural network.  

In the actual rating experiment, the signals were not processed through a hearing aid, but

through various types of signal operations:  addition of background noise, filtering,

clipping, compression etc. in various combinations.  The purpose of this scheme was to

generate signals that were perceptually very diverse and which elicited responses also on

the extremes of the different perceptual dimensions (Nielsen, 1992).  

The neural network (NN) model must tie these two elements together: subjective rating

data and auditory model output.  By using the auditory model output as NN input and

the subjective rating data as desired NN output, the neural net can be trained to match

the rating data.  After training on the training set, the combined auditory model and

neural network should ideally be able to predict the sound quality of any signal with

which they are presented.  Most likely, it will predict (that is, mimic) well on the training

data, but it should also be able to predict the perceived sound quality of a stimulus, that

has never been presented to the model before, i.e. it should be able to generalize.  By

evaluating performance on the test set, we get some indication of the model's ability to

generalize beyond the training data.  These results must be treated with caution,

however, as the test set used in the following still originates from the same experiment,

i.e. the same class of signals, the same groups of hearing losses, the same subjects etc.  A

true cross-validation can only be performed with results from a new experiment with

different types of signals, different subjects, but the same subjective test method.  

Analysis of the weights in the trained network can provide interesting information on the

features that the network extracted during training.  In the current investigation, this

might give us some insight into what physical (or auditory) parameters have an effect on

the perceived sound quality.  The weights may provide a meaningful link between the

objective stimulus measures and the subjective impression.  
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In the present investigation, the neural network (NN) must perform a fitting of a

non-linear function to a multidimensional set of input and output data, thus creating a

mapping from input to output.  This is also referred to as function approximation.  The

trained network should be able to generalize between data points (interpolation) and for

new input data unknown to the network (extrapolation).  

There are alternatives to neural networks, such as linear and non-linear regression

methods, but these may often require some kind of "qualified guess", in order to estimate

a large number of free parameters (Conradsen, 1984a).  For the current approach, the

neural-network method was chosen as a 'non-parametric' type of modeling, where no

initial guess was required, except for the choice of network structure and training

method.  

Since there are no prevailing models or methods for objective evaluation of sound

quality, a neural network can potentially be used to determine the complex mapping from

sound signal (processed by a model featuring the known properties of the ear) to

subjective sound quality.  Ideally, a large pool of data representing all types of signals

and listening situations should be presented, unfiltered, to the NN, which should then be

able to analyze and extract the relevant features.  Such an approach, where as little a

priori knowledge as possible is used, is attractive, but has severe limitations in practice as

we shall see.  

Even though an auditory model was developed and used for the preprocessing of the

signals, it is not clear whether this type of advanced signal processing is necessary for a

good objective estimate of sound quality.   One could imagine using 1/3 octave filtering,

short-term FFT analysis or other signal measures with more or less perceptual relevance,

assuming that the neural network would still be able to establish the underlying relation

between signal and perceived sound quality.  Nonetheless, the present investigation used

a perceptual model of the ear as a signal preprocessor, which includes known properties

of the normal and impaired ear (Nielsen, 1993).  The literature presented in section 2

4 Model architecture.
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also indicated a potential advantage by using auditory models.  There are side-benefits

from the use of the present auditory model, such as the calculation of total loudness in

both the normal and the impaired case, according to established theories.  The use of

simpler pre-processors is left as a topic for future investigations.  

4.1 Input data representation.

For the subjective sound quality ratings, 64 stimuli with different types of input signal,

frequency shaping and spectral and temporal distortion were created.  These stimuli were

of 30 sec. duration, but presented twice in succession, allowing the subject 1 minute for

the rating task.  See Nielsen (1992) for a complete description of the subjective rating

experiment.  The 64 stimuli were processed through the auditory model using one

parameter file for the normal-hearing group and another one for the hearing-impaired

group.  The parameter file for the normal-hearing group was set with audiogram = 0 dB

HL across all frequencies, and stimulus level set at the most comfortable level (MCL)

averaged across the 12 normal-hearing subjects.  For the hearing-impaired group, the

parameter file was set with audiogram equal to the average audiogram across the 11

subjects (which were deliberately matched closely (Nielsen, 1992)) and the average

stimulus level.  The calibration procedure for the stimulus levels is described in Appendix

11.1.  The parameter files specified a 20.16 kHz sample rate and a 256 point window

size, with no overlap, corresponding to windows 12.8 ms in length.  The important

parameters for the two subject groups are listed in Figure 3, and the two parameter files

for the auditory model preprocessor are listed in Appendix 11.2.  For a detailed

description of the parameter file format, see the report on the auditory model (Nielsen,

1993a).  
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76.469.663.761.457.754.149.144.141.43530.5HI Audiogram (dB HL):

00000000000NH Audiogram (dB HL):

8000600040003000200015001000750500250125Frequency (Hz):

100.2dB SPL (HI):79.5dB SPL (NH)

880Stimulus RMS value:

0Overlap:

256Frame size:

20Sample rate (kHz)

30Number of channels:

Important Auditory Model parameters.

3. Table showing the auditory model parameters used for the processing of the 64 stimuli from the
listening experiment.  Example shown uses average audiogram and average stimulus level for the
hearing-impaired subject group. 

The auditory model of course allows for individual parameter files, such that individual

subjects' audiograms and stimulus levels would affect the calculated values of specific

loudness.  For the present purpose, it was considered too time-consuming and

cumbersome to process all 64 stimulus files on an individual subject basis, since the

individual variations in audiogram and stimulus level were relatively small.  

By processing the stimuli through the auditory model, 64 output files were generated,

each containing roughly 2350 frames, 30 channels wide.  To get an initial impression of

the data, selected output files were plotted in a spectrogram format, e.g. with time along

the x-axis, frequency along the y-axis and specific loudness (N') plotted as a grayscale.

This was done for selected files, namely the six signal files that received extreme ratings

by the normal-hearing group, on each of three rating scales: Clearness, Sharpness and

Spaciousness.  These are listed in Nielsen (1992).  In figures 4 and 5, the spectrograms

for the least and the most Clear stimuli, stimulus 12 and stimulus 61, are shown, along

with their average subjective ratings.
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4. Spectrographic plot of specific loudness (N') versus time and frequency.  N' is indicated by a gray
scale, with linearly spaced steps.  Signal shown is the least Clear stimulus (on a scale from 0 to
10) as judged on the average by the Normal-hearing group.

The loudness spectrogram in Figure 4 shows that no mid- or high-frequency information

is present and that the loudness over time is almost constant.  There is very little contrast

or detail in this picture.  The particular stimulus was music with background noise,

severely compressed in the low-frequency channel (i.e. little temporal information) and

switched off in the mid-frequency and high-frequency channel (i.e. 500 Hz lowpass

filtered).  The most clear signal shown in Figure 5 below, on the other hand, has a rich

and detailed structure with contrasts in both the spectral and the temporal domain.  This

stimulus was speech with no background noise, and no filtering, compression or clipping,

see Nielsen (1992) for details.  
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5. Spectrographic plot of specific loudness (N') versus time and frequency.  N' is indicated by a gray
scale, with linearly spaced steps.  Signal shown is the most Clear stimulus, on a scale from 0 to 10,
as judged on the average by the Normal-hearing group.

By inspecting Figures 4 and 5, it is obvious, that there is a lot of information (≅ 2350

frames by 30 channels equals ≅ 70500 data points) in such a loudness "spectrogram",

corresponding to only one rating on each of the subjective scales.  Furthermore, there are

in principle only 64 different stimuli , i.e. 64 different input vectors to the network, which

is a very small data sample for NN training.  Therefore, the size of the network input

layer must be kept small, and thus, some type of data reduction of the input data is

required.   Ideally this data reduction should not discard any perceptually relevant

information from the stimulus, with respect to perceived sound quality.  
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4.1.1 Spectral data reduction.

In the present configuration, the auditory model uses 30 channels, which may be more

than required to distinguish between the input stimuli used in the subjective rating

experiment (Nielsen, 1992).  

One option is to investigate correlation between the network inputs.  If there is a large

correlation between any of the auditory model channels, we can reduce the effective

number of dimensions, before presenting the data to the neural net.  Before training, a

principal-component analysis (PCA) on input data can reduce the dimensionality and

provide orthogonal input vectors.  If one can imagine the input vectors in a

30-dimensional vector space, the PCA will determine principal axes in the data "cloud",

organized in descending order, based on size of the axes.  This is similar to determination

of the main axes in an ellipse, for the 2-dimensional case.  In mathematical terms, the

PCA determines the eigenvectors and the eigenvalues for the covariance matrix of the

data, and extracts the eigenvectors for the largest eigenvalues, such that a given

percentage of data variance is accounted for.  The original input data is then multiplied

by the matrix of extracted eigenvectors, i.e. projected onto the principal axes, which are

fewer that the original data dimensionality.  The network size will be reduced, thus

making the size of the training set sufficient.  A similar approach has been used by

Bennani (1990) for a speaker-identification task.  See Hertz et al (1991) or Conradsen

(1984b) for further details on PCA.  

In the frequency domain, the following analysis was done to investigate redundancy in

the auditory model output:  The 64 stimuli were analyzed through the auditory model,

using the parameters listed in Figure 3.  Each output file consisted of ≅ 2350 frames by

30 channels equals ≅ 70500 data points.  For selected output files, a correlation matrix

was calculated by means of a software spreadsheet.  This is similar to the covariance

matrix, but normalized with respect to the internal variance in each variable - the pattern

in the two types of matrices are the same, but the correlation matrix is easier to interpret.
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The correlation matrices should ideally reflect on the auditory model and not the input

stimulus, but the two are intertwined when the auditory model output is analyzed, using

the stimuli from the subjective rating experiment as input.  As an alternative, one could

use idealized input signals, such as pure tones and/or noise signals, but these are difficult

to identify properly, since the auditory model performs complex level-dependent

operations on the stimulus.  If the correlation matrices could be obtained for a

cross-section of all stimuli, a more general result would be obtained, but this was not

possible due to memory limitations in the spreadsheet software.  

Instead, correlation matrices were examined separately for a number of the input stimuli.

One example of this is shown in Appendix 11.3.  There was a high degree of correlation

(r > 0.7) along the diagonal of the matrices, with different rates of decay away from the

diagonal.  Thus, the highest correlation was between adjacent auditory channels.  Thus,

for a reduction of auditory model output dimensionality, adjacent channels could be

grouped, i.e. summed together two-by-two or three-by-three, forming 15- or

10-dimensional output vectors.  This approach is meaningful from a psychoacoustic

point of view, since we must assume that adjacent channels are correlated to some

degree, due to the overlapping filter skirts in the auditory channel.  The spectral

resolution in the output is obviously reduced, but still large enough to resolve major

spectral differences in the input stimulus.  Change in bandwidth was found to be the

major cause of a changed perceived sound quality (Nielsen, 1992), compared to severe

clipping or compression in three frequency bands, and even a model with only 10 outputs

should be able to detect these changes.  An alternative was to use the auditory model

with fewer channels, thus deviating from the critical-band concept.  Furthermore, this

would leave no freedom for post-processing of the model output, which was faster than

running the auditory model again (~ 20 min. per stimulus).  

Another means of channel reduction is the aforementioned principal component analysis

(PCA).  This is a type of "unsupervised" or "unintelligent" data reduction, that in this

case will reflect the input stimulus as well as the auditory model.  This type of analysis

will remove correlated information from the model output, but may also in some cases
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discard crucial information for a succeeding neural network .  The major problem,

however is that the PCA will have different outcomes, depending on the type of input

stimulus.  Thus, this type of analysis was avoided for the first experiment.  Furthermore,

experiment indicated that there were severe memory limitations in existing software

(Matlab 3.0) which were exceeded by the ≅ 2350 input vectors per stimulus.  

In the following, only the 30-to-10 channel data reduction has been used.

4.1.2 Temporal data reduction.

As previously mentioned, a single stimulus (30 sec.) produces ≅ 2350 frames by 30

channels equals ≅ 70500 data points from the auditory model.  With the proposed

channel reduction in the frequency domain, there will be ≅ 2350 frames by 10 channels

equals ≅ 23500 data points.  The same stimulus results in 1 quality rating vector (6

scales).  Somehow the temporal dimension in the auditory model output must be

considered.  

One solution to this time problem could be a time-delay neural network (TDNN - Waibel

& Hampshire, 1989) or a temporally recurrent network (Dolson, 1989).  A TDNN

would for instance accept all input frames on successive input nodes to the network, i.e.

≅ 23500 input nodes with frequency domain data reduction, which is clearly not feasible.

The temporally recurrent network is a network with internal memory and internal

feed-back from previous network states.  Such a NN could in principle be used to cycle

through the time frames, and settle in a state corresponding to the quality rating for a

given stimulus.  The theoretical and practical issues with such a model are many, and no

clear examples of similar applications were found in the literature. 

Thus a much simpler strategy was tried initially, namely to extract certain statistics for

each channel in the reduced-channel output, and use these with a static (memoryless)

neural net.  Examples of statistics are:  Mean, standard deviation, median, maximum and

minimum.  In the following, mean and standard deviation of the specific loudness output

has been used.  The rationale behind this is:  Mean specific loudness characterizes the
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long-term spectral balance of the stimulus, and should be able to detect spectral

deformations of the stimulus such as band-limiting, resonant peaks and frequency

shaping in general as well as harmonic and intermodulation distortion.  The standard

deviation provides information about the temporal characteristics of the signal, or at least

how much the loudness fluctuates over time.

At a late stage during this study, another interesting idea was formed, namely to use the

average differential N'(t) as input, i.e. average (N'(t) - N'(t-1)).  This quantity should

presumably represent the amount of transients in the signal and be of relevance to the

Sharpness ratings and possibly also the Clearness ratings, but the idea was not pursued

further.

4.1.3 Other inputs. 

In the subjective rating data, the variance due to changing stimuli is the largest effect

(Nielsen, 1992), which is accounted for by presenting the NN with the auditory model

output.  However, statistical analysis of the results also indicated a large subject effect

(Nielsen, 1992).  That is, the subjects centered their responses differently on the scales.

If the NN input layer sees auditory model (AM) output only (with fixed audiogram and

signal level across subjects), the corresponding responses will diverge for the same input.

During training, the NN will never converge completely, due to variance in the training

output values from the subjects.  

The subject effect can be accounted for by providing the network with an input,

identifying the listener whose ratings are to be predicted.  The best way to do this is to

use binary-valued inputs, one for each subject in the group, i.e. 12 inputs for the

normal-hearing group and 11 for the hearing-impaired group.  The use of 12 (11) binary

inputs results in many more network weights, than the use of 1 input neuron with 12 (11)

different input values, but despite this, the use of binary inputs generally leads to a better

training result (Lawrence et al, 1992).
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Since each subject made three ratings on successive days, the day count could of course

also be used as a NN input, but this effect is either not significant or very small compared

to the stimulus and subject effects (Nielsen, 1992) and was thus not included.  The task

of averaging this small effect was thus left to the neural net.  

During training, the entire data set for the subject group (normal-hearing or

hearing-impaired) is cycled through, while the subject inputs are alternating.  This is

straightforward.  The question is:  How is the trained network used for prediction, if we

must choose one of the original subjects for the prediction?  The solution is to present

the output of the auditory model for the given stimulus to the NN input layer, while

cycling through the subject neurons and successively setting them to 1 followed by 0.

The 12 (11) output values from this process are stored and averaged to produce an

average rating, in the same way that an average would be calculated from all subjects in a

subject group.  

The types of data representation used in the following training sessions is summarized in

Figure 6 below, indicating both data reduction in the frequency and the time-domain.  

Page 32 A neural network model for prediction of sound quality.

4.  Model architecture



6. Schematic presentation of the data inputs and outputs to the neural network and the types of data
reduction used to facilitate training.

4.2 Output data representation.

The rating results on the network output side can also be represented in different ways.

Factor analysis on the data showed that there were two prominent rating scales (Nielsen,

1992): Clearness and Sharpness.  For the current experiment, it was decided to train one

network for each of the two scales separately in order to keep network complexity down

and to ease the interpretation of the weights in the trained network.  In principle, this

also allows for different types of data representation for the two scales.  For instance, if

the judgment of Sharpness relies primarily on spectral information, and Clearness

depends on temporal information as well.  

A neural network model for prediction of sound quality. Page 33

4.  Model architecture



As indicated in Figure 6, there are 3 replications for each subject and stimulus, giving 36

and 33 ratings per stimulus, for the normal-hearing and the hearing-impaired groups

respectively   The number of output values are:

NH listeners:  64 stimuli * 12 subjects * 3 replications = 2304

HI listeners:  64 stimuli * 11 subjects * 3 replications = 2112

Using this number of rating data, the network will be trained on conflicting data (due to

replication effects and subject effects, if these are not accounted for (Section 4.1.3).

However, the network may still be successful in extracting the relevant information while

ignoring outliers.  This approach was preferred instead of training on mean data only,

since the averaging might remove important information or be strongly affected by

outliers.    

Instead of training one ensemble network for each group, the simpler approach of

training one NN for each subject was tried first.  The NN would then be individual and

not have to adapt to the larger intersubject effect.  

Of course, it should also be possible to train one network to cover both groups together,

if the perceived sound quality depends on specific loudness only, i.e. if the impaired

auditory model correctly includes all aspects of hearing loss.  This approach was not

tested in the present investigation due to time limitations.

4.3 Neural network implementation.

The neural network is implemented by means of a commercially available software

package, BrainMaker Professional version 2.52 from California Scientific Software

(Lawrence et al, 1992), which includes BrainMaker for defining, training, testing and

running neural nets and NetMaker for building fact files (training data), test files (test

data) and network definition files.  BrainMaker can implement a standard multilayer

perceptron with from 1 up to 6 hidden layers and up to 8192 neurons per layer.  During
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training and testing, activation in the input and output neurons can be viewed along with

training and test statistics.  

The basic structure chosen for the current project is a 3-layer multilayer perceptron, thus

a single hidden layer was used.  The input layer is simply a distribution of signals to all

input weights of the first hidden layer.  The hidden layer acts as a feature extractor, and

should thus contain enough neurons to extract the salient features of the data.  The

optimal number of hidden units (neurons) in this layer is difficult to determine, but

typically it should be chosen between the number of input nodes (10 - 32 depending on

the choice of input data) and output units (1) and should be much less than the number

of training samples.  With these rules-of-thumb, the network sizes have been chosen for

the training runs in this study.  BrainMaker has a feature to modify the network structure

during training, by adding hidden units to improve the network fitting to the training

data.    This type of constructive learning has been used in all training sessions in section

6.
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5.1 Training algorithm.

BrainMaker Professional uses the classic Back-Propagation (BP) algorithm to update all

weights.  This is a generalization of the least mean squares (LMS) algorithm which uses

a gradient search to minimize a cost function equal to the mean square difference

between the desired and the actual net output across all  N data points (in the case of a

single output neuron):  

MS = 1
NSi=1

N (y i − o i )
2

(4)

Where yi is the actual net output and oi is the desired net output.  This cost function is

also referred to as the error surface in a n-dimensional space (corresponding to n

weights), where the gradient search attempts to find the global minimum.  The net is

trained by initially selecting small random weights and then presenting all training data

(facts) repeatedly, while updating the weights by means of the BP algorithm (Rumelhart

& McClelland, 1986a).  Weights are adjusted after each data sample, and the next fact is

presented to the net.  It is important that there is no trend in the training facts as a

function of the data sequence.  This is usually handled by randomizing the order of facts

before training begins.  

When training is commenced, the network will produce random outputs, but gradually it

will "learn" the data and converge towards some finite mean squared (MS) error.  The

weights are adjusted proportionally to the magnitude of the error and a learning rate

between 0 and 1.  A low learning rate causes the network to converge slowly, thus

training may take a long time.  A high learning rate may cause the network to speed past

the minimum of the error surface and perhaps oscillate around the minimum without ever

learning the facts optimally.  In BrainMaker, the learning rate can be adjusted during

training and slowed down, when the error is small, i.e. when the gradient descent is close

5 Model training and testing principles.
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to the minimum on the error surface.  This feature was used in most of the training

sessions in section 6.

There are also features in BrainMaker for destructive learning by pruning small weights

or inactive neurons, and thus "simplifying" the network. Constructive learning can also

be applied, where neurons are added to the hidden layer, if the training error does not

decrease over a given number of training runs.  If constructive learning is used, the initial

number of hidden neurons should be small (too few), and for destructive learning,

training should start with a high number of hidden neurons (too many).  In the current

investigation constructive learning was used.  

5.2 Training performance.

During training, BrainMaker Professional calculates certain training statistics for each

training run, i.e. at the end of the training set.  The number of bad facts are the number of

facts, where the actual output value differs from desired output by more than a given

distance, the training tolerance.  This statistic provides a simple count of network

training progress, but is not the most useful for determining the optimal network state,

since only a 'cube' in output space is considered, whereas the magnitude of the error

inside the cube is not considered.  Other training statistics are:  Training run, Total no. of

facts, Number of good and bad facts in the last complete training run and in the training

run before that.  Training will stop when the bad fact count reaches 0.  The training

tolerance can also be decreased during training when a certain percentage of facts are

matched correctly by the network.  

Training statistics can be written to files at specific intervals during training.  In addition

to the above statistics, this file will contain the average error and the RMS error during

the past training run, which is the quantity being minimized by the LMS gradient search.

Also, the coefficient of determination, R², is computed.  This is also referred to as the

multiple correlation coefficient, which is the ratio of the variance explained by the model,
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i.e. total variance (SStot) minus residual variance (SSres) divided by the total variance of

the output ( SStot):  

R2 = SS tot − SSres
SS tot

(5)

R² should ideally be close to 1, indicating a perfect match between actual network output

and desired output.  

The same statistics can be computed for the test set, by interrupting training and testing

the network at specific intervals during training.  The state of the network can also be

saved at regular intervals, and after training, the optimal network can be chosen by

inspecting the test and training statistics.  

5.3 Test facts.

Test facts are facts that the NN has not seen during training, typically obtained from the

same original data set.  NetMaker can generate a test set automatically by randomly

picking out a certain percentage (e.g. 10 %) of the data from the entire set before

training.  For the current application, we know that there are 36 (normal-hearing) or 33

(hearing-impaired) different outputs for the same input and only 64 different inputs

altogether.  Thus, if 10% are picked for testing, it is very likely that the same stimuli are

represented in both training and test sets, thus it is important to select all ratings for

some of the stimuli. For a test set of 10%, which is common, we must pick on the order

of 6 stimuli.  

Instead of picking the test facts randomly, it was decided to pick a combination of

stimuli, such that all stimuli and processing parameters were equally represented.  The 64

stimuli have been generated as a fractional factorial experiment, combining two factors

on two levels (signal: speech or music and background noise: on or off) with three

factors on four levels (each of three frequency bands: off, linear, clipped or compressed)

for a total of 256 combinations (See Nielsen (1992) for further details on the

experimental design).  Out of these, 64 were picked by means of two defining relations
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and subsequently blocked into 4*16 blocks by two more defining relations.  To select the

test set, three defining relations were found that did not coincide with any of the previous

relations - we could term this a factorial pick.  The stimuli selected in this manner were:

1, 6, 28, 31, 41, 46, 52, 55.  See Appendix 11.4 for a table of all stimuli, listing the signal

and processing conditions.  This way of picking the test stimuli creates a balanced set: 4

with music, 4 with speech, 4 without noise, 4 with noise etc.  This test set is very

representative of the data set with all types of processing equally represented.  

Another way to pick the test set is to set a certain class of stimuli aside for testing.  This

will probably cause poorer performance on the test set, since training and test sets

represent different types of signals and processing.  This type of test set is more similar

to an optimal situation, where the test data originate from a different experiment than the

training data.  As an example of this, all speech signals that are clipped in the

mid-frequency band were picked for the test set, a very important group of signals,

totaling eight stimuli.  All other processing parameters were balanced, i.e. 4 with noise

and 4 without, 2 switched off in the LF channel etc., see Appendix 11.4 for details.  The

8 test stimuli based on the class pick were: 17, 19, 21, 23, 25, 27, 29, 31.

5.4 Test performance.

The trained network will have some prediction error on the test set.  The error is

acceptable within certain limits, since the test fact itself is noisy.  The amount of error

that is acceptable depends on the reliability of the particular subject and must be obtained

from the statistical analysis.  It was decided to use the confidence intervals for the

stimulus means as found in the rating experiment (Nielsen, 1992), thus if the test set

predictions were outside of the 95% confidence intervals, the prediction error was larger

than the data error.   

The best available objective criterion to use is the multiple correlation coefficient R² from

BrainMaker Professional, calculated from the test set.  It is difficult to set criteria for

this, but R² should at least be close to 0.5.  
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There are theoretical results in the literature concerning the prediction of test

performance and generalization based on the training performance (Moody, 1991), but

based on the sensitivity to choice of test set in the present experiments - with very small

training and test sets - it did not seem justifiable to apply these models.  
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6.1 Training and test schedule.

The various options for data representation, training parameters etc., are outlined in a

table in Figure 7.  The table is a chronological listing of the stepwise refinement of input

data, network structure, training algorithm etc.  This was a stepwise process of

incremental changes rather than a systematic combination of all possible parameters,

since this is not feasible with so many options and so few theoretical and practical rules.

The resulting evolutional process of learning and optimization is presented in this

section.  

6 Training sessions.
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Very good
means

0.340.16282750ClassHISharp20+m+s+TSH_17

Good, little
overest. - test set

0.520.1720100ClassHIClear20+m+s+TSH_16

Underestimating
clustered test set

0.350.18221000ClassNHSharp20+m+s+TSN_15

Overestimation
on test set

0.560.17241450ClassNHClear20+m+s+TSN_14

As N_12, but
better means

0.530.1420400Fact.HISharp20+m+s+TSH_13

Much scatter,
good mean

results

0.40.1820100Fact.HIClear20+m+s+TSH_12

Slightly worse
than N_10

0.480.1520100Fact.NHSharp20+m+s+TSN_11

Much scatter,
good mean

results

0.490.14272300Fact.NHClear20+m+s+TSN_10

As N_5, poorer
convergence

----Fact.NHClear15+m+sN_6

Facts shuffled -
better than N_1

0.320.1810150Fact.NHClear10+m+sN_5

Slower  training:
Poorer than N_1 

0.080.284750Fact.NHClear2+ m+sN_4

Poorer than N_10.160.23363300Fact.NHClear5+m+s
+ noise

N_3

Poor for
Clearness > 5

0.290.198400Fact.NHClear5+m+sN_1

Good prediction,
except stim 55

0.460.17151500Fact.TS 780Clear5+m+s780_2

Rather poor0.280.255400Fact.TS 780Clear3+m780_1

CommentsR²RMS
Error

Hid.
units

Opt.
run

Test
set

Training
set

Output
data

Hid.
units

Input
data

Sess.

7. Listing of the conditions tested in a series of training sessions.  Explanation of symbols: Input
data, m = mean, s = standard deviation, TS = test subject.  Hidden units: + =  add neurons during
training.  Training set:  TS 780 = Test subject 780 (NH), NH = Normal-Hearing group, HI =
Hearing-Impaired group.  Test set: Fact = Factorial, Class = One class of stimuli.  Optimum =
number of training runs for best result on test set: RMS error and multiple correlation, R² shown.
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6.2 Single subject.

The first training sessions were conducted on a single subject to test the neural net

approach on a limited data set.  

Test subject 780 (TS 780) was chosen as the most reliable on the Clearness and

Sharpness scales combined (Nielsen, 1992).  The day-to-day effect for this subject was

non-significant ( p > 0.05) for all scales, except Sharpness, i.e. this subject was very

consistent, and therefore provided a relatively well-defined input-output relationship.  

The network input consisted of the 10 mean values for specific loudness. The hidden

layer contained 3 units (neurons), and the output unit represented Clearness. Units were

added to the hidden layer, if the RMS error decreased by less than 0.05 over 100 training

runs.  The training set had the stimuli arranged in the same order as used for the

subjective evaluation, and the test set was picked on the factorial basis (section 5.3).

The training and test statistics as a function of training runs are shown below in Figures 8

and 9.
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 780_1 Training statistics
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8. Training progress for session 780_1, subject 780, mean specific loudness only.  In some cases,
performance is improved, as hidden neurons are added.
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9. Training progress (test set) for session 780_1, subject 780, mean specific loudness only.  Arrow
indicates, where optimal performance was reached for training and test set combined.
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The optimal performance of the network was reached around 400 training runs, as a

compromise between minimum Bad facts, minimum RMS Error and maximum R² on

both training and test sets.  On the test set alone, the optimum was reached at 200

already, but the training performance had not nearly converged at that point.  Addition of

hidden neurons improved performance on the training set, while degrading it on the test

set.  At 400 runs, the network contained 5 hidden neurons.

On the test set, the resulting performance was: RMS Error = 0.25 and R² = 0.28, which

is not good.  The divergence between training and test set performance could be due to

lack of useful input data, i.e. mean specific loudness is not adequate in accounting for

perceived sound quality.

Thus, the next training session, 780_2, included 10 more input units, the standard

deviation for each of the 10 bands after reduction from 30.  The network initially

contained 5 hidden units, with 1 more added after 100 training runs with less than 0.05

decrease in RMS Error.  The remaining options were identical to 780_1.  The training

(Figure 10) showed convergence to constant performance around 500 runs, while the

test set performance continued improving (Figure 11). 
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780_2 Training statistics
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10. Training progress for session 780_2, subject 780, mean and standard deviation input.  Hidden
units were added during training.  

Therefore, choosing the optimal training point was based on the test set only, which had

0 bad facts (using a 40% test tolerance) after 1500 training runs.  Here, the RMS Error

was 0.17 and the R² was 0.46, a substantial improvement over session 780_1.  
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780_2 Test statistics
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11. Training progress (test set) for session 780_2, subject 780, mean and standard deviation of
specific loudness.  Arrow indicates, where optimal performance was reached for the test set.

Using this optimal network, the training and test vectors were run through the network

in order to compare the predicted values from the model with the actual clearness ratings

- this is shown in Figure 12.  The figure shows that there are often 3 points in a group

with same predicted and different actual ratings, corresponding to the three ratings per

stimulus.  In some cases, there have been identical actual ratings, thus two or three

points have been plotted on top of each other.  The training set data form a parallel band

around the 1:1 line, and the test set points are within that band, except for one group of

three points.  This group is stimulus 55, which is speech with background noise, clipped

in the LF and HF channels and unchanged in the MF band (see appendix 11.4).  The

model underestimates the Clearness of this stimulus by roughly 2.5.  A comparison of

mean actual ratings to mean predicted ratings was not done. 
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780_2 Prediction
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12. Predicted vs. actual ratings of Clearness for test subject 780, training session 2.  The plot contains
64 stimuli * 3 ratings = 192 data points, however some may be plotted on top of each other.  The
three deviating test set points represent stimulus 55.

6.3 Subject group (Normal hearing).

The next step was to include an entire group of subjects, which was done for the

normal-hearing group in session N_1 through N_6.  Using the same 20 inputs for mean

and standard deviation of specific loudness, the neural net would likely need to handle

more divergent data, since the subjects used the rating scales differently (Nielsen, 1992).

In session N_1, 5 hidden units were used initially, and hidden units were added during

training if the RMS error decreased by less than 0.05 during 100 training runs.  The

output unit represented Clearness.  The test set was picked on the factorial basis, i.e. the

same 8 stimuli as before, totaling 12 subjects*3 repetitions*8 stimuli = 288 data points

for testing and the remaining 12 subjects*3 repetitions*56 stimuli = 2016 data points for
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training.  The training set was sorted by subject and stimulus, i.e. subject 1, stimulus 1,

stimulus 2 etc.  The optimum was found at 400 training runs and 8 hidden units, with an

RMS Error of 0.19 and R² = 0.29 - a rather poor multiple correlation coefficient.  The

poor prediction performance on both training and test sets is shown in Figure 13.  
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13. Predicted vs. actual ratings of Clearness for the Normal-Hearing subject group.  Clearness is very
poorly predicted for Clearness ratings above 5.  The data point on the y-axis (y ~ 6.7) represents a
missing observation that was erroneously set to 0 by BrainMaker.

This network is clearly not capable of fitting the diverging data, in particular above 5 on

the Clearness scale, where prediction errors are large.  

In session N_3, an attempt to improve convergence and generalization was made by

means of added input noise.  Random noise (amplitude 0.01 re. 1.0 maximum value for

normalized inputs) made the input vectors slightly different all the time, qualitatively

corresponding to the output noise inherent in the Clearness ratings.  However, the input
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and output noise were obviously not correlated.  The training session gave poorer

performance on the test set than N_1, and the use of input noise was abandoned.  

Session N_4 used a lower learning rate (1, then 0.8 if more than 75% of the facts were

correct) and slower addition of hidden units (if RMS error decreased by less than 0.01

over 200 runs) from the initial 2 units, with no improvement in performance.

In session N_5, the training facts were presented to the network in pseudo-random

order, by using the "Shuffle rows" feature in the NetMaker program to shuffle the facts

prior to training.  Furthermore, the network started at 10 hidden units, with the same

slow addition of units as in N_4.  This led to some improvement in training and test

performance and was the best result for the NH group with specific loudness inputs only.

The training and test statistics are shown in Figures 14 and 15.  
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14. Training  progress for session N_5.  The network converges fast on the training set.  
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N_5 Test statistics
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15. Network N_5 performance on the test set.  Performance increases quickly and decreases as hidden
units are added.  

The optimum for this network was after 150 training runs, with 10 hidden units, resulting

in an RMS Error = 0.18 and R² = 0.32.  This result is slightly better than N_1, but not as

good as the single-subject result from session 780_2.  Adding more hidden units

degraded the test performance.

A final attempt was made with session N_6, with a slower learning rate of 0.6 (when

more than 75% of training facts are correct), but this degraded the test set performance,

probably because too many hidden neurons were added.  Therefore, no optimum was

found for this session. 

To summarize:  Training one network on the entire group of normal-hearing subjects,

using specific loudness inputs only does not produce satisfying results.  

6.4 Subject group, with subject input.

The next step was to account for the subject effect in the ratings by informing the neural

net about the current test subject.  New training sets were prepared where the subject
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number was included and transformed into symbolic information by NetMaker, i.e. the

neural net had one binary input for each test subject.  When training data for a given

subject was used, the corresponding input unit was set to 1 and the remaining test

subject inputs were set to 0.  See figure 6 for an illustration of this principle.  

The corresponding training sessions were labeled N_10 through H_13, where N stands

for Normal-hearing and H is for Hearing-impaired.  

6.4.1 Normal hearing.

Training session N_10 used 32 input units, 20 from the auditory model and 12

representing the 12 test subjects.  The initial number of hidden units was 20, with

additional units added if the training RMS Error decreased by less than 0.01 in 200 runs.

The output unit represented Clearness for the Normal-hearing group.  The training and

test progress is shown in Figures 16 and 17 below.
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16. Training progress for session N_10.  The network definition file was set up to decrease the
training tolerance from 0.2 by a factor 0.8 when more than 90% of the training facts were correct
according to present training tolerance.  
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17. Training progress on test set for session N_10.  This is a very fluctuating test pattern with the best
performance found at 2300 runs.  Network state was only saved every 50 runs.  

The network converged quickly on the training set, but test performance (generalization)

was very fluctuating as training progressed.  As a compromise between number of bad

facts, RMS Error and R², the best point was found after 2300 runs, where RMS Error =

0.19 and R² = 0.49.  This is better than any of the sessions where subject input was

absent (N_1 through N_6) and as good as the single-subject training session 780_2.  

The plot of predicted output vs. actual output for network N_10 is shown in Figure 18.

Most of the training set is scattered in a symmetrical band around the 1:1 line, but the

model underestimates Clearness for actual ratings above 8.  This is an area with few

samples, most actual ratings are below 5.  The test set is mostly within that band with a

few test samples outside.
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N_10 Prediction

Actual Clearness

P
re

di
ct

ed
 C

le
ar

ne
ss

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

1:1 line

Training set

Test set

18. Predicted vs. actual ratings of Clearness for the Normal-Hearing subject group, using a 32-input
network with test subject inputs.  Clearness is under-predicted for Clearness ratings above 8.  

The scatterplot in Figure 18 indicates how well the neural net makes individual

predictions, and this can of course be with no more precision than the original noisy

rating data.  To make predictions based on the entire NH group, predicted and actual

means for the 64 stimuli should be compared.  The predicted means are calculated by

running the input vectors for the 64 stimuli through the NN, once while each of the 12

subject inputs is set high, and the mean is calculated for the resulting 12 outputs.  The

result is shown in Figure 19.
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N_10 Mean prediction
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19. Predicted vs. actual mean ratings of Clearness for the Normal-Hearing subject group, using a
32-input network with test subject inputs.  

This figure shows very good prediction results for the mean.  The training set data points

are scattered in a parallel band around the 1:1 line, with some overprediction around 5.

The test set points are also in this band, but spread out more.  The figure shows that the

network is capable of inferring the mean itself, when presented with repeated measures

of a noisy rating value.  The mean values of the actual rating are of course estimates,

with a 95% confidence interval of +/- 0.5.  On the figure this could be indicated by a

horizontal band, 1 unit wide, around each data point.  If this interval does not cross the

1:1 line, then the prediction error is larger than the data set error.  In the figure this is

shown in a different way, with parallel lines indicating the 95% confidence interval

around the 1:1 line.  The data points outside of this band have a larger prediction error,

but still quite small, on the order of +/- 1.  
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The same training was then done on the Sharpness scale, with predicted values as shown

in Figure 20 below.  The test set statistics (figure 7, session N_11) are only slightly

worse than for N_10.  
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20. Predicted vs. actual ratings of Sharpness for the Normal-hearing subject group, using a 32-input
network with test subject inputs.  

The predictions are generally not quite as good as for Clearness (N_10), and the trend in

the scatterplot has a more shallow slope than the 1:1 line.  The plot for the mean values,

shown in Figure 21, shows mean predictions nearly as good as for N_10.  

Page 58 A neural network model for prediction of sound quality.

6.  Training sessions



N_11 Mean prediction
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21. Predicted vs. actual mean ratings of Sharpness for the Normal-hearing subject group, using a
32-input network with test subject inputs. 

The predicted Sharpness values are below the actual values for ratings above 5, which

corresponds to better sound quality (this scale is "inverted" compared with the other

rating scales).  The underestimation of Sharpness is on the order of 0.5.  
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6.4.2 Hearing impaired.

H_12 Prediction
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22. Predicted vs. actual ratings of Clearness for the Hearing-impaired subject group, using a 32-input
network with test subject inputs.  

The same network structure was now trained and tested with the rating data from the

hearing-impaired group.  For Clearness (session H_12), the optimal test set performance

was worse than for the NH group (N_10), with RMS Error = 0.18 and R² = 0.4, not a

good correlation coefficient.  The scatter plot (Figure 22) also shows a large spread

around the 1:1 line.
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H_12 Mean prediction
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23. Predicted vs. actual mean values of Clearness, Hearing-impaired subject group.

The prediction of mean values, however, is still good, as shown in Figure 23.  The band

around the 1:1 line is broader compared to the normal-hearing subject group (Figure 19),

with some over-prediction of Clearness.  
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H_13 Mean prediction
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24. Mean predicted vs. mean actual values of Sharpness for the 64 stimuli, Hearing-impaired group.

The mean predictions of Sharpness are better than for Clearness (H_13:  RMS Error =

0.14 and R² = 0.53), in fact the mean predictions show a very good fit as shown in figure

24, as good as for the normal-hearing group (Figure 21).    

6.5 Test with a class of stimuli.

In the following training sessions, (N_14 through H_17), the training and test sets were

made more divergent, by selecting 8 similar stimuli from the original 64 stimuli, namely

all speech signals with clipping in the mid-frequency band (see Section 5.3 and Appendix

11.4).   This would more closely resemble a situation, where the test data came from an
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entirely different experiment.  The drawback is that some of the most important stimuli

are also omitted from the training set.   

6.5.1 Normal hearing.

Two networks were trained:  N_14 for Clearness and N_15 for Sharpness.  The network

for Clearness had slightly larger RMS error than for the same net with a factorial test set

(N_10), but also better multiple correlation (0.56 vs. 0.49).  The mean predictions for the

normal-hearing group are shown below in Figure 25.  
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25. Predicted vs. actual mean Clearness ratings with one class of stimuli in the test set.

The training performance is as seen previously, with a parallel band around the 1:1 line,

but the test set performance is poorer than for the factorial test set N_10 (Figure 19).
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All stimuli in the test set are over-predicted beyond the confidence interval of the actual

ratings.  Performance must be degraded, when an important class of stimuli are removed

from the training set.  

If a true test set was generated in an independent experiment, the performance would

probably lie somewhere between the factorial test set performance (Figure 19) and the

class test set performance (Figure 25).  These speculations can only be confirmed in a

future experiment.  

For Sharpness ratings, there is also a larger test set deviation as shown in Figure 26

below, when compared to the factorial test set in session N_11 (Figure 21).
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26. Predicted vs. actual mean Sharpness ratings with one class of stimuli in the test set.
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The Sharpness is under-predicted, but since this scale is oriented opposite of the other

scales, the quality is over-predicted, as for the Clearness dimension.  For this scale, the

test stimuli are not scattered much, but tend to have actual Sharpness ratings around the

average.  This also explains the low multiple correlation coefficient, R² = 0.35.

6.5.2 Hearing impaired.

For the Clearness scale, the network (H_16) trained well on the remaining training set

after removal of the "class" test set.  RMS Error  = 0.17 and R² = 0.52 were better

training results than for H_12 (Figure 23).  The mean predictions for this model are

shown in Figure 27.
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27. Predicted vs. actual mean ratings of Clearness for the Hearing-Impaired group, using one class of
stimuli as test stimuli.  
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The mean predictions for Clearness are roughly as good for the test set as for the training

set, and the spread for both sets is about as large as for the factorial test set in session

N_12 (Figure 23).  

The Sharpness mean predictions for session N_17 are shown in Figure 28 below.  
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28. Predicted vs. actual mean ratings of Sharpness for the Hearing-Impaired group, using one class of
stimuli as test stimuli.  

The training statistics for this are: RMS Error = 0.16 and correlation R² = 0.34, which

can be compared to the good predictions on both training and test sets as shown in

Figure 24.  It should be kept in mind, that the multiple correlation coefficient is a

measure of how much of the total variance can be explained by the model, rather than a

measure of the correlation between predicted and actual output from the net.  
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As mentioned previously, the trained networks contain "knowledge" about the

underlying input-output relation.  This knowledge could potentially be used to infer the

mechanism or model that the network has formed, quantitatively or qualitatively.  There

are examples of such interpretations in the literature, using specialized nets for speech

recognition (Waibel & Hampshire, 1989).  These are neural applications for

classification.  Within function approximation, as used in the present report, there have

been examples of no clear structure in the network (Sejnowski & Rosenberg, 1987).  

Two types of analyses of the trained networks were done to investigate the input-output

relation, which tells us something about the mapping from the physical (stimulus) domain

to the subjective domain:  Plotting of the trained network weights and plotting of neuron

activity (i.e. outputs) for selected input stimuli.  

The first network to be analyzed was N_10: normal-hearing subjects, binary subject

inputs, and factorial pick of test set.  The test set performance for this network was very

fluctuating as training progressed (Figure 17), and the optimum (2300 runs) was not

clearly located at one point.  After 2300 runs, 7 hidden units had been added, to a total

of 27 units.  The network then contained 32 inputs * 27 hidden units = 864 + 1 output *

27 hidden units, totaling 891 weights.  In the weight analysis, we were only concerned

with the weight connected to the 20 stimulus inputs, i.e. 20 * 27 = 540 + 27 weights =

567 weights.  These weights have been visualized in a 3-D contour plot shown in Figure

29.  

7 Analysis of network weights.
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29. N_10 trained network weights shown in a 3-D contour plot.  Along the x-axis are the 20 stimulus
inputs plus the output.  Along the y-axis are the 27 hidden units.  The network weight values are
shown by means of a gray-scale.

The weight values are shown as a gray-scale, covering the range -8 to 8.  This is the

numerical range that BrainMaker allows for weights, thus they saturate at -8 or 8, which

is generally a sign of less than optimal network convergence.  In Figure 29, there are

horizontal white stripes, i.e. the weights for that particular hidden unit have all saturated

at -8.  The input values are positive only, thus any small input is multiplied to form a

large negative value.  A number of these are summed and passed through the sigmoid

nonlinearity with an output range from 0 to 1, thus resulting in 0 output (see Figure 1 for

example).  The hidden unit will never respond and has been trained to be inactive.  Many

of the units added during training (21 - 27) have not found a function and have been

trained into saturation.  The plot in Figure 29 has a pattern, but the pattern is too

complicated to provide for any simple interpretation.  If an assignment of neurons to

certain features has taken place, this is random across weights and depends on the initial

weight values, which were initialized with small random values before training.  A
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reordering of the hidden units in Figure 29 might provide more information, but sorting

after magnitude of the weight to the output layer, did not provide a clearer picture.

None of the output weights were saturated, thus they were all active.  Another way to

investigate the trained network is to visualize the activity within the network as certain

stimuli are presented to the network.  This has been done for the same network, N_10,

and  is shown in Figure 30.

The activity patterns show that some hidden units are mostly sensitive to changes in

stimulus, by having different patterns for the two stimuli shown here.  Some of these

hidden units are: 1, 2, 5, 7, 15, 16.  Other neurons respond mostly to changing subjects,

which is seen as vertical groups of three identical characters - examples are: 11, 12, 24.

Some of the remaining units respond to both stimulus and subjects. Finally, some units

are never active:  3, 4, 6, 10, 13, 14, 17, 20 - 23 and 25 - 27.  These same units have the

large negative input weights indicated by the horizontal stripes in Figure 29.  Some of

these units could of course become active for other input stimuli, but inspection of

activity patterns for all 64 stimuli confirmed that these units were in fact always passive.  
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30. Diagram of N_10 Network activity for two stimuli: 12 (very unclear) and 61 (very clear).  The
activity is roughly indicated by a character-based gray-scale as shown in the bottom.  Note that
the first 20 inputs are for stimulus and the remaining 12 represent the 12 normal-hearing subjects.
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The N_10 network had been trained for a long time, and saturated many weights, thus

was far from ideal.  Thus, another example was investigated, which converged faster

towards optimum test set performance: N_11 reached optimum after 100 training runs,

and no hidden neurons had been added at that point.  Few weights in this network were

saturated, thus the 3-D surface plot was set to cover only the -4 to +4 range, as shown in

Figure 31 below.
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31. N_11 trained network weights shown in a 3-D contour plot.  Along the x-axis are the 20 stimulus
inputs plus the output.  Along the y-axis are the 20 hidden units.  The network weight values are
shown by means of a gray-scale.

As in Figure 30, we can identify passive units by the horizontal bright stripes, although

not as many: 5, 15.  A plot of network activity (not shown) confirmed this.  Otherwise,

there are no clear patterns that can indicate the meaning of individual units.  

The examples presented here document that the information is distributed throughout the

network, with no clear functionality in individual hidden units.  The neural network has
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been used as a function approximator, and has accomplished the function fitting by

superposition of many non-linear sigmoid functions (Hush & Horne, 1993).  A

superposition means the sum of many contributions, that are all important to form the

result.  

The network functionality could also be investigated using idealized network inputs

representing various combinations of low- and high-frequency energy with varying

shapes in the frequency domain (Mean values:  Network inputs 1 - 10) and temporal

domain (Standard Deviation values: Network inputs 11 - 20).  This option has not been

investigated further at present.
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Section 6 described the training and test set performance, and the prediction performance

provided by the neural net in various configurations of input data, subject groups, test set

selection etc.  These prediction plots indicate surprisingly good results for a quite simple

concept of stimulus preprocessing, feature extraction and training data.  Best results

were obtained by providing the network with a subject input, thus allowing different

states in the network for each subject.  This provided acceptable results for the factorial

(balanced) test set (sessions N_10 through H_13: R² = 0.49, 0.48, 0.4, 0.53).  For the

other type of test set, a selected class of stimuli, the results were as good for Clearness

(sessions N_14 and H_16: R² = 0.56, 0.52) and poorer for the Sharpness scale (sessions

N_15 and H_17: R² = 0.35, 0.34).  

The prediction performance was only slightly poorer for the hearing-impaired (HI) than

for the normal-hearing (NH) group, which is probably due to the slightly poorer

reliability and lower sensitivity of the HI group (Nielsen, 1992).  This is of course

reflected in the subjective rating data that were used for training.  

The auditory model developed as part of the overall project, and used here as a

pre-processor appeared to provide adequate information for good model prediction

performance.  A simple scheme for temporal data reduction of the auditory model output

was used: calculation of mean and standard deviation across the time axis for each

auditory model channel.  This seemed to work well, and indicates that temporal effects

(temporal integration, post-masking) are not crucial for a good result, since the temporal

data reduction used here would ignore the temporal effects to a large extent.  Temporal

effects are presently not incorporated into the auditory model (Nielsen, 1993a).  

The choices made through this work are many and to some extent they just represent the

most qualified guesses.  There are many other potential ways of matching the models -

auditory and neural net - to the subjective ratings.  The present results could probably be

optimized further.   

8 Discussion.
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From a neural net perspective, the models applied here - traditional static multi-layer

perceptrons with backpropagation training are very simple compared to some of the

sophisticated network topologies, such as recurrent nets, hybrids with Hidden Markov

models, etc.  As pointed out earlier these models are based on huge research efforts to

recognize speech, i.e. to extract the information carried by the signal.  In the current

application we are not concerned with the information, but with the quality of the signal,

and most of the current speech models are therefore not relevant here.  The theoretical

basis and arguments for using more sophisticated models was not present for the work

carried out here.  As a first step, the present training results look promising.  

There is one clear limitation in the evaluation of model performance as presented here.

This is the close relationship between training and test data - they originate from the

same experiment, meaning the same types of stimuli and the same subjects.  The model

can only be thoroughly evaluated with new test data from a new experiment with

different stimuli and subjects, but the same rating scales.  There are theoretical results in

the literature concerning the prediction of test performance and generalization based on

the training performance, but based on the sensitivity to choice of test set in the present

experiments - with very small training and test sets - it did not seem justifiable to apply

these models.  

When the networks have been trained and evaluated, the next logical step is to examine

the established input-output relation further to make at least qualitative statements about

the relation between physical parameters (i.e. objective) of the input stimulus and the

subjective sound quality rating.  Such an examination of the weights may reveal

meaningful patterns, but this is not always the case (Sejnowski & Rosenberg, 1987),

even when the network provides an acceptable generalization.  This was done in section

7 for two of the trained networks, and a simple interpretation of the weight patterns was

not possible.  The reason is that the network does distributed processing to form the

predicted output, and the "knowledge" that the neural net has learned is thus not easy to
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deduce.  The hope of deducing the relation between physical (signal or auditory)

parameters and subjective sound quality parameters was thus not fulfilled.  

Another way to view this is to view the neural net approach as a very complex model to

solve a prediction problem.  Such a complicated model may perform the required

prediction well, but will most likely be very difficult to interpret.  A simple model (i.e.

multiple linear regression) will probably perform worse, but is the easier to interpret.  

Other ideas were discussed during this training phase but not tested due to time

limitations.  Other features could be extracted from the huge amount of data from the

auditory model., such as the differential loudness in each channel, representing the

transients in the signal.  The use of an auditory model to account for some of the known

psychoacoustic properties of the impaired ear (frequency selectivity, loudness

recruitment) raises the question whether hearing loss affects the perceived quality beyond

the psychoacoustic properties.  In other words: does equal specific loudness (in

frequency and time) for a normal hearing and a hearing impaired person mean equal

perceived sound quality?  This question might be answered by training and testing on all

subjects in the experiment, instead of using the two groups separately.  
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The neural network model implemented in the present investigation was successful in

predicting subjective ratings of sound quality, when used with an auditory model as

pre-processor.  The output of the auditory model was reduced in both the frequency and

time domains to allow for a reasonably small neural network.  

Best prediction results were obtained by providing the neural network with a subject

input in addition to the auditory model output.  This allowed for different states in the

network for each subject.  

The verification of the network was done with a test set picked from the total data set

from the subjective rating experiment.  The accuracy of the test set predictions depended

on how the test set was picked.  Using a mix of stimuli for testing showed prediction

errors only slightly larger than the random errors in the subjective rating data itself.

Poorer prediction was found, using a specific group of stimuli as test set: clipped speech

signals.  In this case, the neural network tended to overpredict the sound quality on both

of the subjective scales:  Clearness and Sharpness.  A true verification should be

performed using data from a new subjective rating experiment with different stimuli and

the same rating procedure.  

An analysis of the weights in the trained neural networks showed no simple functional

patterns that could be used to deduce the qualitative relation between physical

parameters in the sound signal and the perceived sound quality.  

9 Conclusion.
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11.1 Calibration and stimulus levels.

Procedure:  The 64 stimulus files all had the same digital RMS-value: 880, and were
referenced to the free field.  Four pure-tone files with the same RMS-value (peak
amplitude 1245) were created and played back through the play-back setup (see Nielsen
(1992) for further details) with the system attenuator set at 40 dB.  Sound pressure levels
were measured in the KEMAR manikin equipped with the small pinna.  The following
values were measured.

9293.398.8100.2Free field SPL
14.412.83.62.2Free field correction

106.4106.1102.4102.4L-R Average

4 kHz2 kHz1 kHz500 Hz

18.8Average attenuator (MCL) setting for the HI group: 

71.372.678.179.5Free field SPL
14.412.83.62.2Free field correction
85.785.481.781.7L-R Average

4 kHz2 kHz1 kHz500 Hz

39.5Average attenuator (MCL) setting for the NH group: 

Based on average actual attenuator settings, the stimulus levels could be
calculated for the two groups.  These were referred back to free-field
levels by subtracting the free-field gain of KEMAR (Münster-Swendsen,
1981).  Subsequently, the 500 Hz value (bold) was used as reference,
since the least influence from KEMAR and headphone irregularities was
expected here.

85.284.981.281.2L-R Average (dB SPL)
85.184.380.980.6Measured right (dB SPL)
85.285.481.481.8Measured left (dB SPL)
80868888mV RMS at phones
880880880880file RMS-value

4 kHz2 kHz1 kHz500 Hz

11 Appendices.
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11.2 Auditory model parameter files.

AUDITORY MODEL PARAMETERS

Filename: nh_anal.aud
Date: 15.04.93
Time: 15:00
Note: Analyze all NH stimuli with audmod,

CSV file output

No. channels: 30
Lower E limit: 3
Upper E limit: 32
Output channel: 0

0 for all channels.
Output level: 0

0 for end of model.
Input sample rate (Hz): 20000
dB SPL of cal. sinus: 79.5
Peak value of cal. sin: 1245

sqr(2)*signal rms value
Recording coupler: 1

1: Free field, 2: IEC711/KEMAR, 3: IEC303
Transmission factor: 1

1: Zwicker's A0, 2: ELC 100, 3: ELC 100 flat below. 1 kHz
Binaural: 0

0: Monaural, else binaural loudness
Output sample rate (Hz): 0
Input frame size: 256

Must be power of two and no more than 8192
Overlap: 0

0 % overlap
Process: 1

0 = all frames, 1 = single frame, n = # frames to average
Output frame size: 100
No. frames to process: 0

0 for all frames.
No. zero frames to add: 0
Output format: 12

Hypersignal FRQ (10), TXT (11) or CSV (12)
Audiogram (Hz): 125 250 500 750 1000 1500 2000 3000 4000 6000 8000

Audiogram (dB HL):0 0 0 0 0 0 0 0 0 0 0
UCL (dB HL): 120 120 120 120 120 120 120 120 120 120 120

32. Auditory model parameter file for the Normal-hearing subject group used for the processing of the
64 stimuli from the listening experiment.  The parameter file uses 0 dB audiogram (per definition)
and average signal level for the normal-hearing subject group.  See Nielsen (1993a) for further
explanation on file format.
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AUDITORY MODEL PARAMETERS

Filename: hi_anal.aud
Date: 27.05.93
Time: 15:00
Note: Analyze all HI stimuli with audmod,

CSV file output

No. channels: 30
Lower E limit: 3
Upper E limit: 32
Output channel: 0

0 for all channels.
Output level: 0

0 for end of model.
Input sample rate (Hz): 20000
dB SPL of cal. sinus: 100.2
Peak value of cal. sin: 1245

sqr(2)*signal rms value
Recording coupler: 1

1: Free field, 2: IEC711/KEMAR, 3: IEC303
Transmission factor: 1

1: Zwicker's A0, 2: ELC 100, 3: ELC 100 flat below. 1 kHz
Binaural: 0

0: Monaural, else binaural loudness
Output sample rate (Hz): 0
Input frame size: 256

Must be power of two and no more than 8192
Overlap: 0

0 % overlap
Process: 1

0 = all frames, 1 = single frame, n = # frames to average
Output frame size: 100
No. frames to process: 0

0 for all frames.
No. zero frames to add: 0
Output format: 12

Hypersignal FRQ (10), TXT (11) or CSV (12)
Audiogram (Hz): 125 250 500 750 1000 1500 2000 3000 4000 6000 8000
Audiogram (dB HL):30.45 35.00 41.36 44.09 49.09 54.09 57.73 61.36 63.64 69.55
76.36
UCL (dB HL): 200 200 200 200 200 200 200 200 200 200 200

33. Auditory model parameter file for the Hearing-impaired subject group used for the processing of
the 64 stimuli from the listening experiment.  The parameter file uses average audiogram and
average signal level for the hearing-impaired subject group.  See Nielsen (1993a) for further
explanation on file format
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11.3 Example of auditory model output correlation.

This example is for stimulus 44:  Music + background noise, compressed in all three

frequency bands.  This stimulus has relatively little inter-band correlation between the 30

channels.

-0.040.170.180.09-0.14-0.14-0.05-0.02-0.05-0.1-0.0500.050.060.0829

-0.020.180.170.07-0.12-0.0900.01-0.02-0.08-0.04-0.010.030.040.0528

-0.010.180.180.08-0.12-0.11-0.010.020.01-0.06-0.020.020.060.080.0927

-0.040.130.210.14-0.08-0.080.040.080.04-0.05-0.03-0.010.020.040.0526

-0.030.150.180.12-0.02-0.010.090.120.07-0.03-0.05-0.05-0.03-0.02-0.0125

-0.030.060.160.120.010.040.140.150.07-0.02-0.03-0.05-0.06-0.08-0.0724

-0.010.040.130.130.030.030.10.110.080.010.0100-0.02-0.0323

0.030.040.120.120.040.060.10.090.060.020.030.020.020.010.0122

0.040.070.150.120.090.080.110.120.10.070.10.090.070.060.0421

0.080.140.170.150.060.090.150.160.120.050.080.070.060.050.0420

0.110.250.10.060.110.120.170.160.140.060.03-0.01-0.03-0.03-0.0319

0.140.10.04-0.010.120.180.140.10.070.110.080.03-0.04-0.03-0.0218

0.140.120.180.10.040.070.110.110.10.070.080.080.060.060.0617

0.210.150.150.160.080.020.050.090.10.060.060.080.10.110.0916

0.720.12-0.05-0.010.150.140.0400.030.120.110.080.050.060.0615

10.470.02-0.10.040.160.110.0300.080.080.070.040.070.0714

10.60.16-0.020.060.180.150.07000.020.030.060.0713

10.670.10.020.180.250.19-0.03-0.06-0.05-0.02-0.05-0.0512

10.540.20.170.210.20.03-0.02-0.04-0.04-0.08-0.0911

10.740.310.110.090.180.10.03-0.06-0.09-0.110

10.710.320.10.120.080.01-0.09-0.11-0.119

10.80.390.060.01-0.04-0.09-0.11-0.18

10.770.230.04-0.05-0.08-0.11-0.117

10.590.210.05-0.06-0.08-0.086

10.620.370.060.050.045

10.890.490.370.214

10.80.660.453

10.870.642

10.921

10

14131211109876543210Chan.
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10.870.740.620.480.410.360.310.30.290.130.050.140.15-0.0629

10.870.680.510.440.390.350.340.330.160.090.160.18-0.0328

10.80.540.420.380.340.330.340.190.110.190.2-0.0327

10.760.570.460.350.340.340.160.110.220.21-0.0126

10.740.540.390.310.320.240.150.180.16-0.0325

10.70.490.370.270.160.180.20.14-0.0124

10.710.420.290.180.150.220.170.0223

10.550.310.170.170.190.190.0722

10.640.250.190.210.180.1321

10.510.250.210.170.0720

10.580.190.120.0519

10.570.150.1318

10.550.1817

10.5416

115

292827262524232221201918171615Chan.
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11.4 List of stimuli test sets.

See Nielsen (1992) for further details on how to generate this experiment.

LinClipCompOffMusic26

CompClipCompOffSpeech25

CompClipClipOnMusic24

LinClipClipOnSpeech23

LinClipClipOffMusic22

CompClipClipOffSpeech21

ClipClipOffOnMusic20

OffClipOffOnSpeech19

OffClipOffOffMusic18

ClipClipOffOffSpeech17

LinOffLinOnMusic16

CompOffLinOnSpeech15

CompOffLinOffMusic14

LinOffLinOffSpeech13

OffOffCompOnMusic12

ClipOffCompOnSpeech11

ClipOffCompOffMusic10

OffOffCompOffSpeech9

OffOffClipOnMusic8

ClipOffClipOnSpeech7

ClipOffClipOffMusic6

OffOffClipOffSpeech5

LinOffOffOnMusic4

CompOffOffOnSpeech3

CompOffOffOffMusic2

LinOffOffOffSpeech1

Ch3Ch2Ch1NoiseSignalStimulus

I7=DEF

I6=BDF

I5=ACETest stim:

I3I4=ABCDEF

I4=BDE

I3=ACFBlock:

GH = ABEF

H=CDEF

G=ABCDAlias:

Resolution V2^(8-2) design

Factorial design
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LinLinLinOnMusic64

CompLinLinOnSpeech63

CompLinLinOffMusic62

LinLinLinOffSpeech61

OffLinCompOnMusic60

ClipLinCompOnSpeech59

ClipLinCompOffMusic58

OffLinCompOffSpeech57

OffLinClipOnMusic56

ClipLinClipOnSpeech55

ClipLinClipOffMusic54

OffLinClipOffSpeech53

LinLinOffOnMusic52

CompLinOffOnSpeech51

CompLinOffOffMusic50

LinLinOffOffSpeech49

ClipCompLinOnMusic48

OffCompLinOnSpeech47

OffCompLinOffMusic46

ClipCompLinOffSpeech45

CompCompCompOnMusic44

LinCompCompOnSpeech43

LinCompCompOffMusic42

CompCompCompOffSpeech41

CompCompClipOnMusic40

LinCompClipOnSpeech39

LinCompClipOffMusic38

CompCompClipOffSpeech37

ClipCompOffOnMusic36

OffCompOffOnSpeech35

OffCompOffOffMusic34

ClipCompOffOffSpeech33

ClipClipLinOnMusic32

OffClipLinOnSpeech31

OffClipLinOffMusic30

ClipClipLinOffSpeech29

CompClipCompOnMusic28

LinClipCompOnSpeech27
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OffClipLinOnSpeech31

ClipClipLinOffSpeech29

LinClipCompOnSpeech27

CompClipCompOffSpeech25

LinClipClipOnSpeech23

CompClipClipOffSpeech21

OffClipOffOnSpeech19

ClipClipOffOffSpeech17

Ch3Ch2Ch1NoiseSignalStimulus

Test stimuli (class pick):

ClipLinClipOnSpeech55

LinLinOffOnMusic52

OffCompLinOffMusic46

CompCompCompOffSpeech41

OffClipLinOnSpeech31

CompClipCompOnMusic28

ClipOffClipOffMusic6

LinOffOffOffSpeech1

Ch3Ch2Ch1NoiseSignalStimulus

Test stimuli (factorial pick):
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