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Annotation

The thesis gives a comprehensive study of some parametric methods of speech processing

with the emphasis on the sinusoidal model with harmonically related component sine waves.

Improvements of known methods and new algorithms are devised for achieving better

synthetic speech quality. Various approaches are implemented for the harmonic model with

autoregressive and cepstral parametrization. Proposed methods are compared with respect to

the spectral measure, the perceived speech quality, and the computational complexity.
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List of Most Important Abbreviations

ABS, AbS analysis-by-synthesis
AIC Akaike information criterion
AR autoregressive
ARMA autoregressive moving average
BIC modified Akaike information criterion
CAT criterion of autoregressive transfer
CELP code-excited linear prediction
CSM composite sinusoidal model
FFT fast Fourier transform
FPE final prediction error
HAP harmonic model with AR parametrization
HCP harmonic model with cepstral parametrization
HNM harmonic plus noise model
HSX harmonic-stochastic excitation
H/S harmonic/stochastic
IFFT inverse fast Fourier transform
LPC linear predictive coding
LSF line spectrum frequencies
LSP line spectrum pairs
MA moving average
MBE multiband excitation
MDL minimum description length
MEM maximum entropy method
MHC multimode harmonic coder
MSE mean squared error, mean square error
MVDR minimum variance distortionless response
OLA overlap-add, overlap-and-add
PCW pitch-cycle waveform
RMS root mean square
TD-PSOLA time-domain pitch-synchronous overlap-add
TTS text-to-speech
V/UV voiced/unvoiced
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List of Most Important Symbols

{ak} LPC (AR) filter coefficients
{Am} harmonic model amplitudes
Bn (n>0) n-th formant bandwidth
{cn} (real) cepstrum
ep pitch frequency error in points of FFT
es pitch period error in samples
F0 fundamental (pitch) frequency

0
�F pitch frequency estimate

Fn (n>0) n-th formant frequency
fmax maximum voiced frequency
{fm} pitch harmonics
{ϕm} harmonic model phases
ϕmin minimum phase
fs sampling frequency
G LPC (AR) filter gain
H(z), H(ejω) discrete transfer function, and corresponding frequency response
h(n) impulse response
HP(z) preemphasis filter transfer function
L pitch period in samples
Lk k-th frame pitch period in samples
LP synthesis frame length with pitch-synchronous beginning
LS synthesis frame length in samples
N analysis frame length in samples
NA AR model order
NC number of cepstral coefficients
NF number of points of FFT
P(ejω) frequency response of the vocal tract model
P(z) transfer function of the vocal tract model
r(m) autocorrelation function
S(ejω) speech spectrum
SF spectral flatness measure
s(n) speech signal
sy(l) synthetic speech signal
Tk k-th frame vector of speech parameters
w(n) weighting window
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1 Introduction

Parametric modelling of speech signals finds its use in speech analysis and synthesis, speech

coding, speech recognition, and speaker verification and identification [1]-[5]. Parametric

methods of speech processing might be divided into two classes: source-filter modelling with

the filter representation of the vocal tract transfer function, and sinusoidal modelling where

the source and the system features are included in the parameters of the sinusoidal model. In

the source-filter model the vocal tract can be modelled either by a filter bank, or a realizable

rational transfer function, or an approximation of a nonrealizable exponential function in

homomorphic modelling.

The rational transfer function modelling is equivalent to the parametric spectrum estimation,

or the system identification. It includes pole-zero, all-pole, and all-zero models. However, an

all-pole model has been used almost exclusively in speech processing being known as a linear

predictive coding (LPC) model. For these models the excitation is produced by the impulse

train, and/or the random noise.

The homomorphic modelling uses the sequence of cepstral coefficients to parametrize the

vocal tract system. It inherently includes both poles and zeroes in its approximation. The

excitation is similar to that used in the LPC model.

The sinusoidal modelling is based on superposition of the sine waves comprising properties of

the system (vocal tract) and the excitation (glottal) signal as well. If the frequencies of the

component sine waves are restricted to be integer multiples of the fundamental (pitch)

frequency, the model is called the harmonic model.

The performance of the models is evaluated with respect to their temporal and spectral

properties. The model spectral properties are compared with those of traditional spectrum

estimation methods using the fast Fourier transform (FFT).
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2 Speech Production

Speech sounds are produced by causing modulation of the airflow through constrictions in the

airways between the larynx and the lips. This modulation of the flow gives rise to the

generation of sound. One type of modulation arises from vibration of the vocal folds, which

causes quasiperiodic changes in the space between the vocal folds (the glottis), and hence

modulation of the volume flow through the glottis. Another type of modulation is a

consequence of turbulence in the flow and hence the generation of turbulence noise. Transient

sound sources can also be produced by raising or lowering the pressure behind a closure in the

airway, and then rapidly opening this constriction, causing an abrupt change in the pressure

behind constriction. The acoustic process involved in production of speech sounds can be

modelled as in Figure 2.1.

Figure 2.1  Representation of speech sound production as a source E(z) filtered by a transfer
function H(z) to give the spectrum S0(z) at the mouth or nose, and a radiation characteristic
Hr(z) to give the spectrum of the radiated sound pressure Sr(z).

One or more sources, with spectrum E(z), form the excitation for an acoustic system with a

transfer function H(z)=S0(z)/E(z), where S0(z) is the spectrum of the acoustic volume velocity

at the mouth or nose, and a radiation characteristic Hr(z)=Sr(z)/S0(z), where Sr(z) is the

spectrum of the radiated sound pressure. Thus we have

( ) ( ) ( ) ( )zHzHzEzS rr ⋅⋅= .            (2.1)

When the vocal folds are appropriately positioned and the pressure is raised in the airways

below the glottis, the folds are set into vibration and the airflow through the glottis is

modulated periodically. The spectrum of this modulated flow is rich in harmonics. This

periodic flow forms an acoustic source that provides excitation for the airways above the

larynx. The frequency of vibration of the vocal folds during normal speech production is

usually in the range 80-160 Hz for adult males, 170-340 Hz for adult females, and 250-500 Hz

for younger children [6]. Time waves and spectra of a 24-ms frame of voiced speech (vowel

"A") sampled at 8 kHz with different fundamental frequencies F0 corresponding to male,

female, and childish voices are shown in Figure 2.2 a), b), c).

H(z) Hr(z)
E(z) S0(z) Sr(z)
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Figure 2.2  Comparison of time waveforms and spectra of voiced speech (vowel "A") for
three different voices, and unvoiced speech (consonant "�").

Vowel sounds are normally produced with a source at the glottis and with the airways above

the glottis configured such that any narrowing in the airways is not sufficient to cause a

buildup of pressure behind the constriction. The transfer function of the vocal tract for vowels

has a relatively simple form for the special case in which the area function is uniform, the

acoustic losses are neglected, and the radiation impedance at the mouth opening is assumed to

be small.

For a cylinder tube of length x, this transfer function is

( ) ( )vx
H

/cos
1
⋅

=
ω

ω .            (2.2)

The transfer function has only poles, and these are at frequencies F1=v/4x, F2=3v/4x,

F3=5v/4x,... These are called formant frequencies, and they are the natural frequencies of the

vocal tract when it is closed at the glottis end. The velocity of the sound, v, at body

temperature is 354 m/s, and the length of a typical adult male vocal tract is 0.17 m [6]. For
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male speech the normal range of variation is F1 = 180-800 Hz, F2 = 600-2500 Hz, F3 = 1200-

3500 Hz, and F4 = 2300-4000 Hz. The average distance between formants is 1000 Hz.

Females have on the average 20% higher formant frequencies than males, but the relation

between male and female formant frequencies is nonuniform and deviates from a simple scale

factor. Formant bandwidths may vary considerably. Typical values are Bn
 = 50 (1 + Fn

 / 1000)

 Hz. Formant amplitudes vary systematically with the overall pattern of formant frequencies

and the spectral properties of the voice source [7].

Consonants are produced with a relatively narrow constriction in some region of the airway

above the larynx, whereas for vowels the airway is more open. Consonants can be classified

along several dimensions depending on the articulator that is responsible for making the

constriction in the vocal tract, the degree of constriction, the state of the glottis and the vocal

folds when the constriction is formed, and whether or not pressure is built up behind the

constriction [6].

Fricative consonants are produced by exciting the vocal tract with a steady airstream that

becomes turbulent at some point of constriction. Some fricatives also have a simultaneous

voicing component, in which case they have what is called mixed excitation. Those with

simple unvoiced excitation are usually called unvoiced fricatives (e.g. "F", "S", "�"), while

those of mixed excitation are called voiced fricatives (e.g. "V", "Z", "�") [8]. Figure 2.2 d)

shows the time wave and the spectrum of the unvoiced fricative consonant " �".

Nasal consonants are voiced sounds produced by the glottal waveform exciting an open nasal

cavity and closed oral cavity. The closed oral cavity is still acoustically coupled to the

pharyngeal and nasal cavities, and will therefore affect the resulting spectral resonances by

trapping energy at certain frequencies. This phenomenon gives rise to antiresonances in the

overall vocal system. For nasals, formants occur approximately every 850 Hz instead of every

1000 Hz. The antiresonance produces a spectral zero in the frequency response that is

inversely proportional to the length of the constricted oral cavity. Bandwidths of nasal

formants are normally wider than those for vowels. This is due to the fact that the inner

surface of the nasal cavity contains extensive surface area, resulting in higher energy losses

due to conduction and viscous friction. Since the human auditory system is only partially able

to perceptually resolve spectral nulls, discrimination of nasals based on the place of

articulation is normally cued by formant transitions in adjacent sounds [8].
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3 State of the Art

3.1 Source-Filter Speech Modelling

A rather useful model of speech production consists of a filter that is excited by either a

quasiperiodic train of impulses (for voiced sounds) or a random noise source (for unvoiced

sounds). The source-filter model realized by electrical circuits was first proposed by H.

Dudley at Bell Laboratories in the 1930s. The output of the electrical excitation source was

passed through a filter whose frequency response was adjustable. This variable filter was

performed by a bank of bandpass filters covering the range of speech frequencies [1]. In

1960s, the formant synthesizers were proposed. Here, the resonant characteristics of the filter

bank track the movements of the formants [4]. At present, two types of the source-filter model

are useful for speech processing: the all-pole model known as the autoregressive (AR) model,

and the pole-zero model known as the autoregressive moving average (ARMA) model [9].

Since the estimation of parameters for the AR model results in linear equations, it has a

computational advantage over the ARMA techniques [10]. The AR model of a vocal tract is

well known in speech processing as a linear predictive coding (LPC) model. For the LPC

speech model, preemphasis should be performed prior to the analysis and postemphasis

should be performed prior to the synthesis [11]. Preemphasis is a simple and effective way of

accenting the higher formants, thus allowing more accurate formant tracking results [105].

The AR spectral estimate was originally developed for geophysical data processing, where it

was termed the maximum entropy method (MEM) [12]-[18]. It has been used for many

applications including LPC techniques in speech processing. For AR parameters

determination in MEM [19], [20] the Burg algorithm is used. For speech modelling the

autocorrelation and covariance methods of linear prediction analysis have been used more

widely [9], [21]-[23]. However, as the autocorrelation method has a frequency domain

interpretation [9], [24] a weighting window must be applied to speech data to reduce the

spectral leakage associated with finite observation intervals [121]. The covariance method

may yield unstable results; the Burg method and the autocorrelation method with Hamming

window give comparable results, however, the Burg method has much higher computational

complexity than the autocorrelation method [24], [25]. The Burg method belongs to a class of

lattice methods guaranteeing stability of the LPC filter. In order to utilize this advantage

several approaches were used to reduce computational costs of this class of methods [26]-



14

[28]. The computationally less expensive autocorrelation method does not yield unstable

synthesis filters too, for it is looking only at the short term spectral behaviour, and a

decreasing time sequence can show the same short term spectral behaviour as a growing

sequence [24]. The AR model will be presented in Section 5.1.1. The autocorrelation method

of the AR parameters determination will be described in Section 5.1.1.1. Methods of the AR

model order selection together with the original results will be a subject of Section 5.1.1.2.

Another type of the source-filter speech model is the cepstral model using homomorphic

signal processing [29]-[31] based on the idea of the log magnitude approximation filter [32],

[33]. Padé approximation of the continued fraction expansion of the exponential function [30]

is used to approximate a nonrealizable exponential function in homomorphic modelling.

Other types of speech models use cepstral analysis on a perceptually warped frequency scale

[34]-[36]. The cepstral model will be introduced in Section 5.1.2. The cepstral model

parameters determination will be discussed in Section 5.1.2.1. The cepstral model order

selection will be mentioned in Section 5.1.2.2.

Some original aspects of speech processing common to the source-filter model as well as the

sinusoidal speech model (see Section 3.2) will be a subject of Chapter 4.

3.2 Sinusoidal Speech Modelling

3.2.1 Sinusoidal Model in Speech Coding and Synthesis

When compared with the source-filter model, a rather different approach represents a

sinusoidal speech model. In its simplest form it needs neither an excitation that models the

vocal cords activity, nor a filter that models the vocal tract system. It simply models the

speech signal as a sum of sine waves with defined frequencies, amplitudes, and phases. The

excitation and the transfer function of the vocal tract are inherently comprised in these

sinusoidal model parameters. Perhaps, the first most detailed description of speech

analysis/synthesis based on a sinusoidal model was presented in 1986 by R. J. McAulay, and

T. F. Quatieri [37], [38], although some information about sinusoidal and harmonic coding

and synthesis had been published a few years before also by other authors. In this model, first

in every frame the amplitudes are computed from the local maxima of the magnitude

spectrum, and the phases are determined from the phase spectrum at the corresponding

frequencies. Then the frequencies of the local maxima in the consecutive frames are matched,
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i.e. the frequencies of the current frame are connected with the nearest neighbour frequencies

of the previous frame. For a given frequency track, the amplitudes are interpolated linearly,

and a cubic function is used to unwrap and interpolate the phase such that the phase track is

maximally smooth. However, this model cannot be used for speech synthesis or speech coding

at low rates because of a very high number of sinusoidal parameters. The same authors later

proposed a harmonic sine-wave model, i.e. a sinusoidal model with harmonically related sine

waves [39], [40]. Section 5.2 introduces the harmonic model together with theoretical

derivation of the number of composite harmonics and their amplitudes, the type and the length

of the weighting window, and is normalization. Using a minimum-phase assumption not only

for the vocal tract but also for the glottal pulse contribution in voiced speech, and using a

random phase for unvoiced speech, there is only need for properly coding the sine-wave

amplitudes. It can be done using an all-pole model or a cepstral model of the magnitude

spectral envelope. The former is a subject of Section 5.2.1, the latter is a subject of

Section 5.2.2. In [39], [40] for modelling of voiced fricatives and other speech sounds with

mixed excitation the voicing probability is determined using pitch estimation based on a

sinusoidal speech model. The sine-wave phases are made random above the voicing-adaptive

cutoff frequency, which is determined by the voicing probability that is a measure of how well

the harmonic set of sine waves fits the measured set of sine waves and is determined as a part

of the pitch estimation process minimizing the mean squared error (MSE) [41]. A different

approach is presented in Section 5.2.1.4, where the maximum voiced frequency is determined

from the magnitude spectrum comparing the frequency distances between the pitch harmonics

and the spectral local maxima. In [40] the authors propose the overlap-and-add (OLA) method

with triangular, Hanning, or trapezoidal window instead of a computationally expensive

matching algorithm with linear interpolation of amplitudes and cubic interpolation of phases.

Sections 5.2.1.6 and 5.2.2.7 present a comparison of OLA with Hanning window and a

concatenation of pitch-synchronous frames. The sinusoidal model [37]-[41] is suitable for

prosodic modifications that are necessary in the text-to-speech (TTS) systems. A time-scale

and pitch modification system that preserves shape-invariance property during voicing is done

using a version of the sinusoidal analysis/synthesis system modelling and independently

modifying the phase contributions of the vocal tract and the vocal chord excitation [42]. It

improves the temporal structure of time-scale modified speech [38] determining pitch pulse

locations, referred to as onset times. Illustration how this method can be applied to the TTS

system was presented in [43]. Its further refinement [44] shows the treatment of the phase
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information in the case of synthesis by concatenation, where it is necessary to assure phase

continuity when concatenating two realizations of an allophone segmented from different

words. In another modification to the shape-invariant sinusoidal speech model [45] the phases

of the component sine waves used for excitation are made to add coherently at each glottal

closure. It is useful especially for high degrees of modification, where the phase coherence is

often lost using the method of [42]. To cope with this problem a variable order polynomial

phase interpolation is used. Its order depends on the number of the excitation points in the

synthesis frame. A new and simple approach to shape invariant time-scale modification

operating entirely within the original sinusoidal model [37] was presented in [46]. The method

is based upon a harmonic coding of each speech frame and makes no use of pitch-pulse onset

times. Parameters of the cubic function interpolating phase of the time-scaled speech are

chosen, not such that the smoothest possible frequency track is obtained but such that the

shape of the track matches, as closely as possible, the shape of the original. No decoupling

(into source and vocal tract models) of the speech production process is necessary. Instead of

the excitation phase determination, phase coherence between the frames is kept by calculating

the amount of time taken for the first harmonic to move from its measured phase to the phase

adjusted by time-scaling while keeping its frequency constant. The target phase of each

remaining harmonic is adjusted by the product of this amount of time and frequency. To keep

track of previous phase adjustments when moving from frame to frame, this amount of time is

accumulated before processing every new frame and it is used to adjust the target phase prior

to the time-scaling of the frame. However, phase coherence was found to begin to break down

for larger scaling factors (greater than 1.8). The method would then be of most use in

concatenative speech synthesizers where scaling factors lie usually within the bounds handled

by the algorithm. Although the time-scaling algorithm [46] needs no speech signal

decomposition to a glottal and a vocal part, this decomposition must be incorporated in a pitch

modification algorithm [47]. Here the time-scaling method [46] is extended to handle pitch

modification. The speech is first inverse filtered using a simple algorithm to estimate the

glottal wave. A pitch estimate is assigned to each frame of the estimated glottal wave. The

fundamental frequencies of adjacent frames are matched and the original frequency track is

computed. The integral of the new pitch-scaled frequency track is estimated by time-scaling

the original frequency track by the pitch modification factor to give a new target phase value

for the first harmonic. In a similar way as in time-scaling, the new target phase value for each

of the remaining harmonics is adjusted by the accumulated amount of time descibed above.
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Assuming that the glottal wave spectrum is relatively flat, the amplitude of each harmonic

after pitch-scaling is left unchanged, i.e. the glottal wave spectrum is not resampled at the new

harmonic frequencies but simply expanded/compressed to effect the desired pitch change.

Although the glottal wave spectrum is altered, the shape of the time-domain glottal waveform

is preserved and so voice quality should remain constant. Combining pitch and time-scale

modification is straightforward. A single algorithm allows the independent modification of

pitch and duration. For a given frame, the net scaling factor is given by a product of the time-

scale and the pitch modification factors. The modified glottal wave subsequently serves as

input to an LPC vocal tract filter. This algorithm also produces high quality results for scaling

factors of the order required for concatenative speech synthesis avoiding the need for �pitch

pulse onset time� estimation. In [123] the time-scale modification introduced in [46] was

improved to process voiceless speech during time-scale expansion. �Noisy� sinusoids are split

into two separate components each following a different frequency track modelled with a

parabola. Using this approach, the tonal quality associated with time-scale expanded voiceless

speech was eliminated even for large scaling factors.

In [48] the sinusoidal model was compared with a code-excited linear prediction (CELP)

concluding with complementarity of the two methods. The authors state that �an ideal coder

should be able to combine the noise-free quality of sinusoidal models with the robust analysis-

by-synthesis procedures of CELP coders�. The powerful features of the sinusoidal as well as

the CELP coding algorithms are used in the hybrid speech coder proposed in [49]. The

harmonic sinusoidal analysis is used to encode the periodic part of speech and to split the

speech spectrum into two frequency regions of harmonic and random components. The

unvoiced speech and the random part of voiced speech are coded using the CELP algorithm.

The periodic part of speech waveform is obtained by applying an IFFT to the speech spectrum

with the aperiodic part zeroed out. Subtracting the resulting periodic waveform from the

original speech waveform, the aperiodic speech waveform is achieved. The spline envelope

fitted to the sine-wave amplitudes in the spectral domain is modelled by the transfer function

of an all-pole filter. A harmonic tracking algorithm is used for interpolating the sinusoidal

parameters between their update points in adjacent frames to achieve high level of periodicity

in voiced frames and remove the discontinuities across the frame boundaries.

The idea of speech modelling as a sum of sinusoids was addressed also in [50]. However, here

the so called composite sinusoidal modelling (CSM) is considered as equivalent to line
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spectrum frequencies (LSF) or line spectrum pairs (LSP) being only a useful representation of

LPC parameters for speech coding purposes. CSM uses a rather complex mathematical

procedure to compute amplitudes and frequencies from the sample autocorrelation function,

while resetting the phases of sinusoids every pitch period.

An original approach to speech synthesis based on a sinusoidal representation was mentioned

in [51], where numerical solutions of non-linear differential equations, which generate

sinusoidal waves are used. For voiced sounds, these equations behave as a group of mutually

synchronized oscillators; for voiceless sounds, they work as passive filters with input noise

sources.

The harmonic model with an ARMA spectral envelope fitting accurately the harmonic short-

time Fourier transform components was described in [52]. The narrowband components of

speech are reproduced by sampling the pole-zero envelope at integer multiples of the

fundamental. The residual is random-like and broadband, and its statistics are reproduced by

exciting the pole-zero filter with white noise.

Similar to the harmonic speech model is a multiband excitation (MBE) model [53]. It uses an

analysis-by-synthesis method, in which the excitation and vocal tract parameters are estimated

simultaneously so that the synthesized spectrum is closest in the least squares sense to the

spectrum of the original speech. Then, the voiced/unvoiced decisions are made based on the

closeness of fit between the original and the synthetic spectrum at each harmonic of the

estimated fundamental. Voiced speech is synthesized from the voiced envelope samples by

summing the outputs of a band of sinusoidal oscillators running at the harmonics of the

fundamental frequency. Unvoiced speech is synthesized from the unvoiced envelope samples

by first synthesizing a white noise sequence. Its normalized Fourier transform is multiplied by

the spectral envelope and then synthesized using the weighted OLA method. The final

synthesized speech is generated by summing the voiced and unvoiced synthesized speech

signals. A similar method called a hybrid harmonic/stochastic (H/S) model is mentioned in

[54] and described in more detail in [55]. Possibilities offered by this model in the context of

wide-band TTS synthesis based on segment concatenation are addressed here. When

compared with MBE speech coding, the hybrid H/S model assigns frequency dependent

voiced/unvoiced decisions associated to wide frequency bands rather than to individual

harmonics. It computes samples by overlap-adding the IFFT of spectral frames, obtained by

summing stochastic components (in the form of FFT bands with constant amplitudes and
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random phases) and harmonic ones (in the form of the most significant samples of their

Dirichlet kernels). A fast OLA/IFFT synthesis algorithm reduces computational load in

comparison with the computationally expensive parameters interpolation approach. However,

the resulting OLA synthesis frames are not pitch-synchronously related.

A modification of MBE called a variable-spectrum MBE model was proposed in [56]. Speech

is described as a sum of periodic and noise components within a given time frame. The

periodic part is a set of pitch harmonics with amplitude and frequency changing linearly

within the time frame. The noise part is determined as a difference between the input signal

and the synthesized periodic part. Its synthesis employs a white noise signal weighted by the

noise spectrum envelope and transferred back to the time domain. The periodic and noise

components are added and then combined using the OLA method.

Assumption that the speech signal is composed of a periodic and a stochastic part was also

used in a harmonic plus noise model (HNM) [57]-[59]. When compared with the MBE [53] or

hybrid H/S [55] models, the spectrum of the HNM is divided into only two bands. Although

the notion of a maximum voiced frequency is introduced in [57], [58], its meaning is the same

as the voicing transition frequency or the voicing-dependent cutoff frequency used in [39]-

[41]. However, the upper band of the spectrum in the HNM is modelled using an all-pole filter

driven by a white Gaussian noise instead of a sum of sine waves with random phases. The

positions of the analysis instants are set at a pitch-synchronous rate (regardless of the exact

position of glottal closure). Synthesis is also performed in a pitch-synchronous way using an

OLA process. If the frame is voiced, the noise part is filtered by a high-pass filter with cutoff

frequency equal to the maximum voiced frequency. Then, it is modulated by a triangular-like

time-domain envelope synchronized with the pitch period. Thanks to the pitch-synchronous

scheme of the HNM, time-scale and pitch-scale modifications are quite straightforward. In

[60], [61] the HNM was used for voice conversion, i.e. modifying the speech signal of one

speaker so that it sounds as if it had been pronounced by a different speaker. A methodology

for representing the relationship between two sets of spectral envelopes is based on a Gaussian

mixture model of the source speaker spectral envelopes. In [62], [63] a problem of removing

phase mismatches at the frame boundaries is solved using the notion of centre of gravity.

However, although using different mathematical foundation, its meaning is equivalent to the

pitch onset time [39], [40], [42] determined by the same procedure of seeking the minimum of

the MSE between the original speech frame and its sinusoidal resynthesis.
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At AT&T Labs-Research, HNM was compared with a time-domain pitch-synchronous OLA

(TD-PSOLA) method [64]. TD-PSOLA relies on the speech production model described by

the sinusoidal framework, although the parameters of this model are not estimated explicitly.

The analysis process consists of extracting short-time analysis signals by multiplying the

speech waveform by a sequence of time-translated analysis windows. The analysis windows

are located around glottal closure instants and their length is proportional to the local pitch

period. During unvoiced frames the analysis time instants are set at a constant rate. During the

synthesis process a mapping between the synthesis time instants and analysis time instants is

determined according to the desired prosodic modifications. This process specifies which of

the short-time analysis signals will be eliminated or duplicated in order to form the final

synthetic signal. Results from the formal listening tests showed that HNM is a very good

candidate for the next generation TTS. The score for HNM was consistently higher than for

TD-PSOLA in intelligibility, naturalness, and pleasantness. The segment quality of synthetic

speech was high, without smoothing problems and without �buzziness� observed with TD-

PSOLA. An important point is that HNM is a pitch-synchronous system, which does not

require glottal closure instants as in the case with TD-PSOLA. Although elimination/

duplication of short-time waveforms in TD-PSOLA is very simple and the computational load

is very low, it introduces a tonal noise quality because of the repetition of segments,

noticeable more during unvoiced frames and fricative voiced frames. Because of the non-

parametric scheme of TD-PSOLA, limited smoothing possibilities are offered. Comparing

TD-PSOLA and HNM regarding computational cost, it is clear that HNM has a much higher

complexity than TD-PSOLA. Actually, this is the only drawback of HNM versus TD-PSOLA.

In [124] the application of the HNM for concatenative TTS synthesis is described resuming

the results of [57], [62], and [64].

A model similar to HNM is called a hybrid model [65] used for concatenation-based TTS

synthesis. A pitch-synchronous analysis uses pitch-period detection and chaining described in

[66]. However, although the pitch detection algorithm is described in detail here, it is rather

time-consuming, sometimes giving bad location of pitch marks [67]. In the hybrid model [65]

the Fourier transform-based analysis is performed over the overlapped segments with a double

pitch-period periodicity. For 16-kHz sampling, the normalized energy of the even harmonics

(i.e. harmonics of the pitch) in the frequency bands 0-2, 2-3, 3-4, 4-5 kHz is calculated.

According to the results, the maximum voiced frequency is equal to one of the four values: 2,
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3, 4, or 5 kHz. Then the harmonic part up to the maximum frequency is synthesized and

subtracted from the original signal giving the noise part synthesized by a random excitation

applied to an all-pole filter. The hybrid algorithm was tested on duration and pitch

modifications of recorded sentences, and on the TTS synthesis system outperforming other

speech models.

Also the authors of [68] discussed the adequacy of the sinusoidal model to the requirements of

concatenative speech synthesis in TTS. They carried out a preference test between speech

synthesized using a pitch synchronous LPC synthesizer and the sinusoidal synthesizer. The

sinusoidal model used, is the harmonic speech model with cepstral parametrization of the

spectral envelope according to primary description in [37]-[39], [41], [42]. In informal

listening tests the sinusoidal synthetic speech was clearly preferred, especially in the case of

male speech and synthetic prosody. For female speech a sampling frequency of 8 kHz might

probably be too low to adequately reflect the characteristics of speech. The computational load

of the sinusoidal synthesizer is about 10 times the computational load of the pitch

synchronous LPC synthesizer due to computationally expensive frequency matching and

interpolation algorithms of [37].

A new method for harmonics extraction in sinusoidal representation of a speech signal was

introduced in [69]. The speech signal is decomposed into the harmonic components using a

set of band-pass filters, and the harmonic frequencies are obtained as the instantaneous

frequencies of these components.

A modification of the sinusoidal-based vocoder, called band-widened harmonic (BWH)

vocoder [70], removes the �buzzy� quality due to strong periodicity. Here, controllable low-

pass filtered random signals are combined into the harmonic amplitudes, which are linearly

interpolated between frames. In this way the bandwidths of the harmonics could be properly

widened and the �buzzy� quality is efficiently reduced, although it can still be heard mainly

because of the linear interpolation between the previous and present spectrum.

In [71]-[73], the use of an LPC analysis along with gain adjustment, delay compensation, and

all-pass phase correction was proposed for simultaneous representation of sinusoidal

amplitude and phase parameters. The proposed algorithm results in improved phase matching

for all categories of speech (voiced, unvoiced, onset, and transition) and yields improved

reproduction of nasal and vowel sounds.
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A method of fitting a spectral envelope parametrized by cepstral coefficients to a discrete set

of spectral points using a log-spectral distortion criterion comprising a roughness penalty

functional and a regularization (smoothing) parameter was introduced in [74]. This approach

was extended in [75] by defining a statistically significant performance criterion, a penalized

likelihood criterion, for measuring the envelope fit. The method is suitable for parametric

modelling of the sinusoidal model spectral envelope in presence of measurement noise both

for all-pole and cepstral parametrization.

Another approach to fitting an all-pole filter to harmonic spectrum is based on minimum

variance distortionless response (MVDR) [76] determining an envelope fitting the spectral

harmonic peaks rather than resolving the harmonics. The inverse MVDR filter is designed to

minimize its output power subject to the constraint that its frequency response at the

frequency of interest has unity gain. This distortionless constraint ensures that the MVDR

filter will let the input signal components with the frequency of interest pass through

undistorted, and the minimization of the output power ensures that the remaining frequency

components in the signal are supressed in an optimal manner. The MVDR all-pole filter is

stable and causal, and can be used in a manner similar to the way in which LPC filters are

used in speech processing systems, e.g. source-filter speech models or sinusoidal speech

models. Another approach to spectral envelope determination of the harmonic model with all-

pole parametrization was implemented in the harmonic-stochastic excitation (HSX) vocoder

[77]. It solves the similar problem as the MVDR that the minimization of the MSE tries to fit

the synthesis filter frequency response to speech power spectrum and not to its envelope.

Here, the speech spectrum is computed using pitch-synchronous Fourier transform with the

length dependent not only on pitch period but also on voicing information, i.e. for strongly

periodic signal it is longer to ensure better spectral resolution, for transition signal it is

smaller. Harmonic frequencies are determined from amplitude spectrum by a peak-picking

algorithm and a simple linear interpolation is used between frequencies of adjacent harmonics

in the log scale. The interpolated log envelope representation is then brought to the linear

spectral scale and the autocorrelation coefficients are found through the inverse Fourier

transform of the envelope power spectrum. Filter coefficients are finally computed using

classical LPC method. A somewhat different approach was used in [78]. Here, the pitch

determination is performed in equidistant overlapping frames using the clipped

autocorrelation function [79]. In [78] the staircase log spectral envelope is formed by the
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maximum values within the intervals of the pitch-frequency length around the pitch

harmonics. This staircase envelope is smoothed using the weighted moving average having

the shape of the normalized Blackman window. Then, the inverse Fourier transform of the

smoothed spectral envelope is treated as a real speech signal. Thus, the AR parameters are

computed by the autocorrelation method from the time-domain signal corresponding to the

speech envelope of the original speech signal. The method was first applied to childish voice

resynthesis in [78] (see Section 5.2.1.7) as for high-pitch speakers (also for low-pitch speaker

and higher AR order) enhancement of the spectral envelope using the proposed method is

more evident. In Section  5.2.1.4 the proposed method is described in more detail and its

application to male voice is presented.

The authors of [81] indicate the inadequacy of the minimum-phase assumption for modelling

voiced speech because glottal pulses tend to have rather slow rising edges which are teminated

by much sharper trailing edges. They introduce a method of determining both magnitude and

phase information for a noncausal all-pole spectral envelope parametrization. In this model

the vocal system represents the composite characteristics of the glottal pulse, vocal tract, and

lip-radiation filters and maximum-phase nature of differentiated glottal pulses is matched

well. The poles of the noncausal model are not constrained to be within the unit circle and a

linear phase offset is used as additional parameter. Parameter estimation is performed using

quasilinear and nonlinear least squares techniques. Noncausal models can be used in

sinusoidal-model-based approaches without the difficulties of noncausal infinite impulse

responses that occur in time-domain approaches. Although instability may occur when using

the noncausal all-pole model for filtering the excitation signal, there is no such a problem

when the noncausal model is used to encode both the magnitudes and phases of the measured

harmonics. The speech is then reconstructed by evaluating the model at the harmonic

frequencies and using the resulting magnitudes and phases in the bank of harmonic oscillators.

In the sinusoidal transform coder [82], [83] noncausal all-pole modelling of the vocal tract is

used to enhance the accuracy of phase representation. In addition, the Bark spectrum is used

for perceptual coding of the sine-wave amplitudes because of its ability to achieve a uniform

perceptual fit across the spectrum (Sounds separated by more than one Bark are resolvable as

separate sounds). The MSE between the original waveform and its model fit for the noncausal

all-pole model outperforms its minimum-phase counterpart with either all-pass compensation

included or not.
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A speech analysis/synthesis system described in [84] is based on the combination of an OLA

sinusoidal model with an analysis-by-synthesis technique (ABS/OLA) to determine model

parameters. Analysis as well as synthesis is performed by a constant frame rate, i.e. it is not

pitch synchronous. Analysis-by-synthesis determines amplitude, frequency, and phase

parameters minimizing the mean-square modelling error. The approximation of the original

speech signal by adding a single component is updated recursively. In fact, it is approximation

of the residual error left after approximating the speech segment by previous components.

Since analysis-by-synthesis removes each component after determining its parameters,

sidelobe effects, which have been observed to produce slight tonality in synthetic voiced

speech using peak-picking analysis, are reduced. Time-scale, frequency-scale, and pitch-scale

modifications preserving shape invariance, but more specifically suited to the OLA model, are

described too. Pitch-scale modification is achieved by interpolating the complex phasor form

of excitation amplitude/phase pairs uniformly at harmonic frequencies to produce a

continuous excitation spectrum. Given a pitch-scale factor, the excitation spectrum is then

resampled at modified harmonic frequencies. When compared with [37] where a direct

summation of sinusoids is performed, the OLA model used in this system reduces synthesis

computation by using the inverse FFT. An extension to the ABS/OLA sinusoidal speech

modelling and modification algorithm [84] for unvoiced speech was presented in [85] using a

perceptually motivated modulation of the sinusoidal component phases. It simply represents

phase randomization implemented within the context of an OLA model by subdividing each

synthesis frame and randomizing the phase offsets between components prior to synthesis of

each subframe. The number of subframes is usually made proportional to the time-scale

expansion factor. This refined model eliminates the problem of unnatural tonal artifacts that

often arise in modification of unvoiced speech. The implementation of the ABS/OLA model

within a TTS system is described in [86]. Apart from the phase randomization used in time-

stretched speech [85], the pitch modulation compensation improving pitch-lowered speech is

described here. However, for general use in the TTS system, the benefit of these extensions is

counterbalanced with the problems of mis-estimation of other parameters. In [87]-[90] the

ABS/OLA [84], [85] was used with pitch-synchronous analysis/synthesis [57], [58], [62], [63]

and a regularized discrete cepstrum estimation of the spectral envelope [74], [75].

Enhancement of LPC spectrum for harmonic speech coding was presented in [91]. Since in

sinusoidal and harmonic coders the amplitudes should be represented accurately at a set of
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discrete frequencies, the goal is to fit a smooth curve through the desired spectral peaks. Then

the LPC model is fitted to the smooth curve represented usually by a cubic spline. However,

this biases the model fit in favour of the specific frequencies of interest, In sequel, it cannot be

used for speech modification purposes necessary in TTS, where the spectral envelope must be

preserved. Further improvement of this method uses a perceptual enhancement technique

based on mel-warping the spectrum, i.e. mapping it linear at lower frequencies and

logarithmic at higher frequencies [92].

Another improvement of the phase spectrum model considering the non-minimum-phase

glottal pulse contribution to the vocal system phase was introduced in [93], [94]. It uses a

phase only pitch-cycle waveform (PCW), i.e. a sum of harmonic sinusoids with unit

amplitudes with the length of the integer part of the pitch period. The minimum-phase PCW is

computed from the magnitude spectrum of the vocal tract system using the discrete cepstral

coefficients. PCW corresponding to the measured harmonic phases is determined too.

Temporal waveform alignment in the PCW domain is performed by finding the shift that

maximizes the circular cross-correlation of both PCWs. The difference between the shifted

measured PCW and minimum-phase PCW constitutes the residual waveform, which can be

quantized with relatively small amount of bits. Harmonic phases over 1.5 kHz are directly

obtained from the minimum-phase spectrum. Informal listening tests showed that naturalness

of low pitched speakers can be significantly improved using this algorithm in a low bit rate

multiband excitation coder.

A modified harmonic model able to produce also non-periodic pulse sequences in conjunction

with a closed-loop analysis-by-synthesis scheme was described in [95]. It is effective for

representing speech in transition regions such as voicing onsets, plosives, and non-periodic

pulses. The excitation signal synthesis uses the classical harmonic model of the LPC residual

for voiced and unvoiced speech. For the transitional speech, apart from amplitudes and phases

representing the shape, pulse occurrence times and gains are used to preserve time domain

information better. The reconstructed excitation signal is passed through the inverse short-

term filter to obtain the reconstructed signal. A similar approach to transition speech synthesis

combines a frequency-domain harmonic coding for periodic and �noise like� unvoiced

segments with a time-domain waveform coder for transition signals [96]. It uses a multi-pulse

excitation and a closed-loop analysis-by-synthesis search algorithm for time-domain

waveform coding of transition segments, and a three-layer fully connected feed-forward
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neural network classifier, trained by a large training set, to obtain one of the three classes �

voiced speech, unvoiced speech, and transition speech. When switching from a transition

frame to a harmonic frame, signal continuity is preserved using a phase obtained by

maximizing the correlation of the shifted reconstructed harmonic excitation frame with the

reconstructed transition excitation frame. To synchronize the reconstructed transition frame

with the preceding harmonic one, the drift between the original signal and the reconstructed

one is measured by the encoder, and the transition frame is extracted with the corresponding

shift. No phase synchronization is required when switching to and from stationary unvoiced

segments. Another similar enhanced frequency domain transition model is used in an analysis-

by-synthesis multimode harmonic coder (AbS-MHC) [97]-[99] as an extension of [95]. The

algorithm for the time domain closed-loop pitch estimation and classification has three stages.

The first stage pre-classifies the input speech into one of two categories: the first category

includes unvoiced speech and silence; while the second includes voiced speech and transition

speech. The second stage is performed only on the voiced speech and the transition speech to

perform the voiced/transition speech classification and determine the pitch. At the last stage, a

pitch refinement and harmonic bandwidth estimation procedure is performed on subframes,

which are declared as voiced. This procedure is similar to that described in [96]. Another

enhancement of the analysis-by-synthesis sinusoidal model for low bit-rate speech coding was

introduced in [100]. Classification of voiced/unvoiced and transition frames is similar as it

was in [95]-[99]. However, the ABS/OLA [84] approach is used to model the LPC residual.

For voiced frames, harmonically related frequencies represent the periodic part; non-

harmonically related frequencies represent the aperiodic part above 1 kHz to account for the

non-uniform frequency resolution of the human auditory system, the frequency resolution of

which decreases with increasing frequency. The voiced residual is modelled as a sum of the

harmonic and the non-harmonic models. In harmonic analysis, the frequency space consists of

a set of non-overlapping frequency intervals, which are centred at the pitch harmonics. The

frequency points generated during analysis do not have to be exact multiples of the pitch

frequency, enabling harmonic analysis to capture periodic components even in frames that

have changing pitch period. Non-harmonic analysis works on the error residual generated by

the harmonic analysis. For the synthesis of the periodic part, a cubic phase model is used. The

aperiodic part is synthesized by applying uniformly distributed random phases. Unvoiced

analysis is the same as harmonic analysis with frequency intervals located at multiples of

100 Hz, with the exception that a magnitude envelope is used as in the case of transition
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frames. The synthesizer applies uniformly distributed random phase to each frequency

component.

Another modification of a sinusoidal model suitable in transitional speech segments such as

speech onsets and voiced/unvoiced transitions was proposed in [101]. It is a generalized

sinusoidal model called the exponential sinusoidal model, in which the amplitudes of the

sinusoidal components are allowed to vary exponentially with time. The damping factor of

each exponentially varying amplitude may be positive, negative, or zero. The models were

evaluated in 25-ms frames with an overlap of 5 ms between consecutive frames. Modelled

signals were generated by overlap-adding the modelled frames. Results have shown a

considerable objective and subjective improvement, especially in transitional segments,

compared to the basic sinusoidal model with a peak-picking procedure [37]. However, a

drawback of the exponential sinusoidal model is the computationally expensive parameter

estimation scheme.

Papers [102]-[104] use the trigonometric identity to represent the sinusoidal model as a sum

of sine and cosine waves without explicit phases. In [102] syllable long speech segments (100

to 200 ms) are modelled with a single set of parameters. An instantaneous frequency is

obtained by fitting the estimated pitch contour by a third order polynomial. The model is

simplified by the fact that the higher instantaneous frequencies are assumed to be

approximately harmonically related. Amplitude functions corresponding to the sine and cosine

terms consist of connected polynomial pieces forming box-splines (B-splines) of degree three.

Experiments gave better synthetic signal when compared with ABS/OLA [84] method. The

model described in [103], [104] is called instantaneous amplitude (IA) model and it represents

each component with two parametrized instantaneous amplitudes and one constant �centre�

frequency. In this model the composite waves are not harmonically related, and the short

analyzed segments are assumed to be stationary, so the instantaneous amplitudes are slowly

time varying functions approximated by a Taylor series of finite terms. However, in practice

they use a first order polynomial for all the amplitudes. Individual frequencies are determined

by recursively finding the most significant frequency of the periodogram and computing

amplitude parameters that minimize the time signal with this most significant component

removed. The authors say that when compared with the classical model of [37], with the same

complexity, the IA-model provides better modelling quality.
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An improved harmonic coder for the wideband was presented in [106]. Speech frames are

classified into fully unvoiced and mixed frames, which can contain a harmonic structure and a

noise structure within the same spectral subband. Both unvoiced frames and voiced part of

mixed frames are modelled as a sum of harmonically related sine waves. Then, for mixed

frames, in all subbands, the ratio between the energy of the harmonic spectrum and the

original one is evaluated. Considering spectral auditory masking effect, the comparison of this

ratio to a threshold then discriminates subbands into �audible� ones and �inaudible� ones. In

audible subbands, the error between the original and the harmonic spectra is modelled. The

synthesized signal for a mixed frame is obtained by summing a voiced signal corresponding to

the modelling of the original speech spectrum with a harmonic model, and of a noisy signal

corresponding to the modelling of this error spectrum.

Comparison of three different AR orders for coding the parameters of the harmonic model are

the subject of Section 5.2.1.5. Comparison of the AR and the cepstral coding of the harmonic

model parameters using the same number of the AR or cepstral parameters is presented in

Section 5.2.3. The same number of cepstral parameters is used also for comparison of the

source-filter cepstral model and the harmonic model with cepstral parametrization in

Section 5.2.4. It regards comparison with the model described in [30], [31] presented in [107],

[108].

3.2.2 Sinusoidal Model in Other Speech Processing Applications

In [80] the use of the sinusoidal model for noise reduction is achieved by applying the hidden

Markov model-based minimum MSE estimator to find the harmonic sinusoidal parameters of

clean speech from speech corrupted by additive noise. The system needs two sets of training

data: speech recorded under quiet conditions, and noise from the expected operating

environment. It finds its use especially in speech compression and speech recognition in noisy

mobile environments. This area will not be a subject of this thesis.
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3.3 Research Goals of the Thesis

On the basis of the state-of-the-art evaluation, the main objectives of this thesis were

determined as follows:

1. Use the harmonic model with AR and cepstral parametrization for speech analysis and

synthesis.

2. Find new approaches to synthetic speech quality improvement.

3. Compare the proposed methods with respect to the spectral measure, the perceived speech

quality, and the computational complexity.
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4 Suggestions for All the Speech Models

Quality of speech synthesis depends highly on the choice and precision of speech signal

parameters determined during analysis.

4.1 Pitch Precision in Time and Frequency Domain

A very important speech signal parameter independent on the type of the speech model is the

fundamental frequency (or pitch), introduced in Chapter 2, and voicing mentioned in some of

publications cited in Section 3.2.1. The pitch can be determined in time domain (in seconds or

milliseconds, corresponding to samples), or in frequency domain (in Hertz, corresponding to

points of FFT). Let us find relationship between the pitch period determination error in

samples and the pitch frequency determination error in points of FFT. Let 0
�F  be the estimate

of the real pitch frequency 0F  in Hz. For sampling frequency fs in Hz and NF-point FFT the

pitch period error es in samples is
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and the pitch frequency error ep in points of FFT is
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Although number of samples and number of points of FFT are integer values, let us suppose

them to be real values for derivation of more precise relation between es and ep.
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Substituting (4.3) into (4.2) we obtain
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In the similar way the value of 0
�F  from (4.2) is
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Using (4.5) in (4.1) the value of es is
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Relationship of ep as a function of es according to (4.4) for three different pitch frequencies

F0 = 100 Hz, F0 = 200 Hz, F0 = 320 Hz is depicted in Figure 4.1 for fs = 8 kHz, NF = 512, and

in Figure 4.2 for fs = 16 kHz, NF = 1024. Using (4.6), intervals of the pitch period error es (in

samples) corresponding to the maximum pitch frequency error ep of ± 1 point of NF-point FFT

for the sampling frequency fs and the pitch frequency F0 are shown in Table 4.1 for NF = 512,

NF = 1024, and NF = 2048. Here we can see that for low-pitch male voice the pitch frequency

error ep of ± 1 point represents the pitch period error es greater than ± 1 sample (always

several samples, sometimes even tens of samples). It means that if a frequency-domain pitch

detector is used, its error of 1 point of FFT in the frequency domain corresponds to rather a

great error in the time domain. Even increasing NF to 2048 does not give much better

precision of the frequency-domain pitch detector for male voice. For that reason the time-

domain pitch detector is used in this work, where speech analysis is performed for fs = 8 kHz,

NF = 512, and fs = 16 kHz, NF = 1024. The algorithm based on a clipped autocorrelation

function [79] with binary voicing decision is utilized for all the experiments included in this

thesis.

F0 [Hz]
NF fs [kHz] ep

100 200 320
8 -1 ≤ ep ≤ 1 -10.81 ≤ es ≤ 14.81 -2.9 ≤ es ≤ 3.39 -1.16 ≤ es ≤ 1.28

512 16 -1 ≤ ep ≤ 1 -38.1 ≤ es ≤ 72.73 -10.81 ≤ es ≤ 14.81 -4.45 ≤ es ≤ 5.41
8 -1 ≤ ep ≤ 1 -5.8 ≤ es ≤ 6.78 -1.5 ≤ es ≤ 1.63 -0.6 ≤ es ≤ 0.63

1024 16 -1 ≤ ep ≤ 1 -21.62 ≤ es ≤ 29.63 -5.8 ≤ es ≤ 6.78 -2.33 ≤ es ≤ 2.57
8 -1 ≤ ep ≤ 1 -3.01 ≤ es ≤ 3.25 -0.77 ≤ es ≤ 0.8 -0.3 ≤ es ≤ 0.31

2048 16 -1 ≤ ep ≤ 1 -11.59 ≤ es ≤ 13.56 -3.01 ≤ es ≤ 3.25 -1.19 ≤ es ≤ 1.25

Table 4.1  Intervals of the pitch period error es (samples) corresponding to the maximum pitch
frequency error ep of ± 1 point of NF-point FFT for the sampling frequency fs and the pitch F0.
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Figure 4.1  The pitch frequency error ep as a function of the pitch period error es for
fs = 8 kHz, NF = 512, and three different pitch frequencies F0.

Figure 4.2  The pitch frequency error ep as a function of the pitch period error es for
fs = 16 kHz, NF = 1024, and three different pitch frequencies F0.
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4.2 Pitch Synchronization

If analysis is performed in equidistant speech frames, pitch synchronization must be used for

good-quality synthesis. Pitch synchronization used in this thesis is inspired by the idea

published in [31], however, the proposed algorithm is much more simple and it gives much

less of pitch discontinuities at the frame boundaries with rapidly changing fundamental

frequency. The speech signal is analyzed in the frame intervals of LS samples with the frame

length of  N = 2 LS  and synthesized in equidistant frames of LS samples (see Figure 4.3). The

proposed method of pitch synchronization is illustrated in Figure 4.4.

Figure 4.3  Positions of analysis frames (N samples) and equidistant synthesis frames (LS
samples).

Figure 4.4  Illustration of pitch synchronization of equidistant analysis frames.

New synthesis frames of LP samples with pitch-synchronous beginning are determined. In the

first frame its length is initialized to be LP = LS, and it begins with the beginning of the first

frame. Let Lk determines the pitch period in samples measured in the k-th frame. For speech

frames classified by the pitch detector as unvoiced, the pitch period Lk is set to an implicit

value, e.g. the mean value of the pitch period, or the pitch period of a previous voiced frame.

In the first frame the number of pitch periods of the length L1 will be [ LP / L1 ], where

LS LS LS LS

N

N

N

LP (2)

LN L2

L1 LR

LS LS

1st frame 2nd frame

LP (1)
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[ LP / L1 ] denotes the integral part of the number LP / L1. The remainder after division LP / L1

will be LR = LP
 modulo L1, and it becomes a part of the next pitch period with the length of LN

samples. Its length should be between the values L1 and L2, so that following is satisfied:

11 LLLL NR ≅⇒≅ ,            (4.7)

20 LLL NR ≅⇒≅ .            (4.8)

LN consists of LR comprised in the 1st frame containing the pitch period L1, and ( LN − LR )

comprised in the 2nd frame containing the pitch period L2. Proportionality can be ensured if LN

satisfies

1
21

=
−

+
L

LL
L
L RNR .            (4.9)

Expressing LN from (4.9) gives

2
1

21 LL
L
LL RN +⋅





−= .          (4.10)

This relation is also valid for (4.7) and (4.8). Figure 4.5 shows LN as a function of LR for

actual integer values of L1, L2, LR. The next synthesis frame with a pitch-synchronous

beginning has the length of LP = LR + LS − LN.

Next frames are treated in the same way as the first frame, however with the actualized value

of LP. For the k-th frame it means:

1st step:    [ LP / Lk ]  frames of the length Lk ,

2nd step:    LR = LP
 modulo Lk ,

3rd step:    a frame of the length  





+⋅





−= +

+
1

11round kR
k

k
N LL

L
LL ,

4th step:    LP = LR + LS − LN.

Using the determined value of LN, the vector of other speech parameters (e.g. autoregressive

or cepstral) TN in the frame of the length LN, spanning from the k-th frame to the (k+1)-th

frame, is given by
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1 TT
TT ,          (4.11)

where Tk and Tk+1 represent vectors of these parameters in the k-th and (k+1)-th frames (see

Figure 4.6).

Figure 4.5  A pitch period LN as a function of the remainder LR for L1 = 40, L2 = 50.

Figure 4.6  Speech parameters TN as a function of the pitch period LN.

Lk Lk+1

Tk+1

TN

LN

Tk

0

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

LR [samples]

L N [s
am

pl
es

]

L1=

L2=

L1=



36

5 Evaluation of the Speech Models

5.1 Source-Filter Model

Apart from the pitch and voicing comprised in the excitation, the source-filter model is

represented by the parameters describing the transfer function of the vocal tract model. The

principle is shown in Figure 5.1. Here P(e jω ) is the frequency response of the filter

represented by the transfer function P(z).

Figure 5.1  Principle of the source-filter speech model.

5.1.1 AR Model

The AR model mentioned in Section 3.1 has the frequency response given by

( )
( )∑

=

−+
=

AN

k
k

j

jka

GeP

1
exp1 ω

ω ,            (5.1)

where NA is the order of the AR model, the gain G and the coefficients { ak}  are the AR

parameters or the LPC parameters. It is an all-pole model of a vocal tract given by the IIR

filter

( )
∑

=

−+
=

AN

k

k
k za

GzP

1
1

.            (5.2)

5.1.1.1 AR Model Parameters Determination

The autocorrelation method addressed in Section 3.1 uses the Levinson-Durbin recursion

applied to first NA autocorrelation function values to compute the parameters { ak}  and G

describing the frequency response P(e jω ).

First, the autocorrelation function is computed using the formula

P(z)
Excitation Synthetic speech
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( ) ( ) ( )mnsnsmr
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n
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=

1

0

,            (5.3)

where values s(n) represent samples of the analyzed speech signal for 0 ≤ n ≤ N −1.

The Levinson-Durbin algorithm recursively computes the parameter sets },{ 2
111 Ga ,

},,{ 2
22221 Gaa , ... , },,...,,{ 2

21 AAAAA NNNNN Gaaa . An additional subscript has been added to each

of the AR parameters to represent the order of the model. The final set of the order NA is the

desired solution. The recursive algorithm is initialized by

( )
( ) ,
0
1

11 r
ra −=    ( ) ( )01 2

11
2

1 raG ⋅−= ,            (5.4)

and the recursion for k = 2, 3, ... , NA is given by

−=kka
( ) ( )
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1

1

1
,1
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− −⋅+∑

k

k

i
ik

G

ikrakr
,            (5.5)

ikkkkikki aaaa −−− ⋅+= ,1,1 for  i = 1, ... , 1−k ,            (5.6)

( ) 2
1

22 1 −⋅−= kkkk GaG .            (5.7)

The Levinson-Durbin algorithm provides the AR parameters for all the lower-order AR

models fitting the data.

5.1.1.2 AR Model Order Selection

A rather crucial point in AR modelling of signals is the determination of the order of the AR

process. In order to determine the most suitable model order NA, one approach would be to try

different values of NA experimentally, and then choose the particular value which seems to be

optimal in the sense that it satisfies some predetermined requirements for the particular

situation. In general, it has been observed that, for a given value of record length N, small

values of NA yield spectral estimates with insufficient resolution, whereas for large values of

NA the estimates are statistically unstable with spurious details. Thus, it is expected that the

value of the filter order NA should be in the vicinity of some percentage of the record length N.

Since the choice also depends on the statistical properties of the time series under analysis, it

turns out that for the majority of practical measurements where the data can be considered
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short-term stationary, the optimum value of NA lies in the range from 0.05 to 0.2 N [109]. On

the other hand an empirical rule for harmonic processes with noise constrains the order NA to

the range from N/3 −1 to N/2 −1 [110]. For speech signals a reasonable guess of the order can

be made if one has a priori knowledge regarding the number of basic resonances one can

expect in the data at hand. The resulting order estimate should serve as the lower bound;

anything less than that will result in a poor model [111]. Since one formant occurs

approximately every 1 kHz and one pole pair is necessary to model each formant, the model

order is typically selected to be around twice the bandwidth of the signal in kilohertz [81].

Several information theoretic criteria are available for AR model order selection. The main

idea of these criteria is that there should be a trade-off between a model fit and a model

complexity. Thus all the criteria have one term measuring the model fit, the data term

comprising estimated variance of the driving process represented by the gain G, and one term

penalizing its complexity, the penalty term comprising the model order NA.

The final prediction-error (FPE) criterion is defined as an estimate of the mean-square error in

prediction expected when a predictive filter, calculated from one observation of the process, is

applied to another independent observation of the same process. For a filter of the order NA,

the FPE is defined by

,
1
1

)( 2
AN

A

A
A G

NN
NNNFPE ⋅

−−
++

=            (5.8)

where 2
ANG  is the output error energy of the filter. Since 2

ANG  decreases with NA, while the

other term increases with NA, the FPE(NA) will have a minimum at some optimal value NA.

The Akaike information criterion (AIC) is based on the minimization of the log-likelihood of

the prediction-error variance as a function of the filter order NA. The criterion is defined by

.2ln)( 2

N
NGNAIC A

NA A

⋅+=            (5.9)

Here, again, the optimum value of NA is the value for which the AIC(NA) has minimum.

In the criterion of autoregressive transfer (CAT) function the optimal filter order is obtained

when the estimate of the difference in the mean-square errors between the true filter, which
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exactly gives the prediction error, and the estimated filter, is minimum. This difference can be

calculated, without explicitly knowing the exact filter, by using the formula [109]

.1)(
1

22∑
= ⋅

−
−

⋅
−⋅=

A

A

N

i N

A

i
A GN

NN
GN

iN
N

NCAT          (5.10)

Besides these, some other criteria have been developed, e.g. the modified Akaike information

criterion (BIC) [112] (in [113] referred as the minimum description length (MDL) criterion)

.lnln)( 2 NNGNNBIC ANA A
⋅+⋅=          (5.11)

According to [110] the mentioned criteria give orders which produce acceptable spectra in the

case of low noise but underestimate the order for higher noise levels.

The FPE, AIC, and CAT are asymptotically equal, i.e. for the data length N approaching

infinity they select the same order. The BIC has higher penalty term, so it results in lower

orders.

The male voice sampled at 8 kHz was analyzed using the FPE, AIC, CAT, and BIC criteria

[114]. First, the speech signal was applied to the preemphasis filter

( ) 19.01 −⋅−= zzH P .          (5.12)

The criteria were performed on the frames of 24 ms stationary parts of the vowels "A" (193

frames), "E" (195 frames), "I" (198 frames), "O" (192 frames), "U" (192 frames), nasals "M"

(629 frames), "N" (757 frames), and unvoiced fricative "�" (894 frames) spoken by Jiljí

Kubec with the mean pitch frequency of about 110 Hz. These frames were made from

segments of 384 samples of "A", 386 samples of "E", 389 samples of "I", 383 samples of "O",

383 samples of "U", 820 samples of "M", 948 samples of "N", and 1085 samples of "�" by

shifting a window of 192 samples with the shift of one sample. Spectra of the optimal orders

according to the order selection criteria were compared with the conventionally used model of

the 8th order for 8 kHz sampling (twice the bandwidth of 4 kHz as discussed at the beginning

of this section). Model parameters were computed using the autocorrelation method described

in Section 5.1.1.1. The RMS log spectral measure [116] between these spectra and a reference

spectrum was used as a comparison criterion. A smoothed logarithmic FFT spectrum was

used as a reference. It was performed by homomorphic filtering using convolution of the log

spectrum with the Blackman window specified by following equation [29]
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for 0 ≤ n ≤ M −1.

The filter length M is given by [115]





 +

⋅
= 5.0

3
L
NM F ,          (5.14)

where NF is the FFT length and L is the pitch period in samples (brackets represent integral

part of the number).

Experiments have shown that the FPE, AIC and CAT criteria have almost always higher

values than the BIC criterion. Comparison of minimum, maximum, and median values of

these criteria for all the mentioned frames is in Table 5.1. The FPE, AIC and CAT criteria

give nearly the same minimum, maximum, and median values, however, there exist some

frames where their values differ. Dependence of AIC and BIC on the AR model order for a

frame of the vowel "A" and nasal "M" is shown in upper part of Figure 5.2 and Figure 5.3.

Lower parts of these figures represent the AR spectra of the optimum AIC and BIC orders

together with the smoothed periodogram for the same speech frames. Comparison of the

spectral measure of the 8th order AR model and the optimum order model according to the

four criteria can be seen in Table 5.2.

FPE order AIC order CAT order BIC order
sound

min max median min max median min max median min max median

"A" 9 20 9 9 20 9 9 20 9 9 9 9

"E" 11 11 11 11 11 11 11 11 11 6 11 11

"I" 16 26 16 16 26 16 16 26 16 9 11 9

"O" 8 14 8 8 14 8 8 14 8 8 8 8

"U" 8 20 20 8 20 20 8 20 20 8 8 8

"M" 11 38 20 11 38 20 11 37 18 4 14 11

"N" 18 34 20 18 34 20 15 25 20 4 15 12

"�" 7 40 17 7 40 17 7 40 16 4 12 7

Table 5.1  Minimum, maximum, and median values of the optimum AR order according to
the FPE, AIC, CAT, and BIC for 5 vowels, 2 nasals, and 1 unvoiced fricative.
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Figure 5.2  Upper: Dependence of AIC and BIC on AR order for a frame of the vowel �A�.
Lower: AR spectra of the optimum AIC order 20 and BIC order 9 together with the smoothed
periodogram (RMS(AIC) = 4 dB, RMS(BIC) = 4.05 dB).

Figure 5.3  Upper: Dependence of AIC and BIC on AR order for a frame of the nasal �M�.
Lower: AR spectra of the optimum AIC order 18 and BIC order 4 together with the smoothed
periodogram (RMS(AIC) = 4.81 dB, RMS(BIC) = 7.47 dB).

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

AR Model Order

C
rit

er
ia

AIC(solid)        AICmin = 20

BIC(dotted)      BICmin =  9

0 0.5 1 1.5 2 2.5 3 3.5 4
-30

-20

-10

0

10

20

30

Frequency [kHz]

S
pe

ct
ru

m
 [d

B
]

Smoothed periodogram(wide), AR model of AIC order(solid), AR model of BIC order(dotted)

0 10 20 30 40 50 60 70 80 90 100
-2

-1.5

-1

-0.5

0

0.5

AR Model Order

C
rit

er
ia

AIC(solid)        AICmin = 18

BIC(dotted)      BICmin =  4

0 0.5 1 1.5 2 2.5 3 3.5 4
-30

-20

-10

0

10

20

Frequency [kHz]

S
pe

ct
ru

m
 [d

B
]

Smoothed periodogram(wide), AR model of AIC order(solid), AR model of BIC order(dotted)



42

sound
RMS(FPE)

[dB]

RMS(AIC)

[dB]

RMS(CAT)

[dB]

RMS(BIC)

[dB]

RMS(8)

[dB]

"A" 3.96 3.96 3.98 4.03 3.73

"E" 3.07 3.07 3.07 3.23 2.95

"I" 3.94 3.93 3.98 4.92 5.70

"O" 3.66 3.65 3.67 3.86 3.86

"U" 4.29 4.29 4.29 4.63 4.63

"M" 4.09 4.07 4.16 4.87 5.73

"N" 3.97 3.95 4.03 5.10 6.01

"�" 2.56 2.53 2.60 3.67 4.28

Table 5.2  Mean values of the RMS log spectral measure. RMS(8) means the RMS log
spectral measure between the spectrum of the 8th order AR model and the smoothed
periodogram. RMS with indices FPE, AIC, CAT, and BIC means the RMS log spectral
measure between the spectrum of the optimum order AR model according to respective
criteria and the smoothed periodogram.

Results of the FPE, AIC, CAT, and BIC minimization should give optimum orders for the AR

modelling. However, comparison according to the RMS log spectral measure has not

approved it in general. The median optimum order according to the criteria is at least 8 for

voiced sounds. It agrees with the theoretical order for modelling of basic resonances of speech

sounds. The BIC criterion exhibits worse results than the FPE, AIC, and CAT criteria, which

give higher optimum orders. The FPE, AIC, and CAT criteria give excellent results for the

measured frames of the sounds "I", "M", "N", and "�", where the mean spectral measure of the

optimum order is better than that of the 8th order. The BIC criterion also gives good results for

these sounds, though the mean spectral measure is higher what might be caused by lower BIC

orders. On the other hand, the measured frames of the vowels "A" and "E" give bad results,

where the optimum order model mean spectral measure is higher than the 8th order model

mean spectral measure. Neither the high order according to the criteria improves the RMS log

spectral measure in general. It can be seen in Figure 5.4, where the model of the optimum FPE

order 20 gives even worse spectral measure than the 8th order model. Experiments have shown

that in general the use of the FPE, AIC, CAT, and BIC criteria is not justified for choice of the

AR model order of speech signals. Conventionally used model order of twice the bandwidth

of the signal in kilohertz is always a good compromise.
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Figure 5.4  Comparison of the AR spectra for a frame of the vowel "A" with the FPE order
20, and the conventional 8th order, and the smoothed periodogram (RMS(FPE) = 4 dB,
RMS(8) = 3.81 dB).

5.1.2 Cepstral Model

The cepstrum { cn}  of a signal (sometimes referred to as the real cepstrum) is defined as the

inverse Fourier transform of the logarithm of the magnitude of the Fourier transform [29], i.e.

( ) ( ) ωω
π

π

π

ω djneSc j
n ⋅⋅= ∫

−

expln
2
1 .          (5.15)

Then, the logarithmic speech spectrum can be described by the cepstral coefficients { cn}  using

the expression

( ) ( )∑
∞

−∞=

−⋅=
n

n
j jnceS ωω expln ,          (5.16)

where ω denotes the normalized angular frequency.
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Using NF-point FFT it may be rewritten as

∑
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n F
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jncS π ,    k = 0, 1,..., NF �1.          (5.17)

A nonrealizable minimum-phase digital filter corresponding to the cepstral speech model,

whose logarithmic magnitude frequency response approximates the function (5.16), is defined

by the transfer function [30]
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and the transfer function of the filter modelling the vocal tract drawn in Figure 5.1 is given by

truncation of the real cepstrum to NC cepstral coefficients as follows

( ) ( ) 
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N

n
n zcczP

C 1

1
0 2expexp .          (5.19)

In other words, the frequency response of this filter determined by NC cepstral coefficients is

realized as a product of exponential functions. Each of the NC
 − 1 exponential elements of the

product included in the second exponential function of (5.19) can be approximated by Padé

approximation of the continued fraction expansion of the exponential function [30], or

Maclaurin approximation [117]. The former is performed as a cascade of IIR filters, the latter

is performed as a cascade of FIR filters. A detailed block diagram of the cepstral speech

model is in Figure 5.5 [108]. For unvoiced speech the excitation is formed by the noise

generator. For voiced speech it is formed by the impulse generator plus high-pass filtered

noise according to the value of the spectral flatness measure SF. The impulse generator

produces pulses with the shape of the impulse response of the Hilbert transformer in the pitch

period intervals. The first cepstral coefficient c0 is comprised in the gain of the filter and the

next NC
 − 1 coefficients are implemented in a cascade of NC

 − 1 digital filters with the

frequency response given by the chosen approximation. The output of the cascade is a

synthesized speech signal.
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Figure 5.5  Block diagram of the cepstral speech model.

5.1.2.1 Cepstral Model Parameters Determination

The cepstral coefficients are determined using the definition (5.15). Using NF-point inverse

FFT it may be rewritten as
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where Sk are the FFT spectral values of the speech signal s(n) weighted by the normalized

Hamming window and zero-padded to NF points. The window must be normalized in such a

way that the energy of the original signal weighted by the Hamming window and a rectangular

window with unitary magnitude are equal. The Hamming window w(n) without normalization

is specified by following equation [29]
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nnw π , 0 ≤ n ≤ N −1,          (5.21)

where N is the length of the analysis frame.

The window wn(n) after the aforementioned normalization must satisfy the relation

( ) Nnw
N

n
n =∑

−

=

1

0

2 , 0 ≤ n ≤ N −1.          (5.22)

Then the normalized window can be derived as follows
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The spectral flatness measure SF, according to which high frequency noise is mixed in voiced

frames, is determined by [118]
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5.1.2.2 Cepstral Model Order Selection

For the cepstral speech model there exist no way similar to AR model order selection

described in Section 5.1.1.2. It was found out by simulation that the minimum number of 26

cepstral coefficients (a cascade of 25 approximation filters) is necessary for sufficient log

spectrum approximation at 8-kHz sampling [119], and 51 cepstral coefficients (50

approximation filters in a cascade) are necessary for sufficient log spectrum approximation at

16-kHz sampling [120]. Both the values stem from the suggestion that the approximation

error should be maximally about 1 dB. The real order of the filter cascade depends on the

order of composite IIR and FIR filters approximating each of NC
 − 1 exponential functions.

5.2 Harmonic Model

The principle of the harmonic speech model is shown in Figure 5.6. It is performed as a sum

of harmonically related sine waves with frequencies given by pitch harmonics, and amplitudes

and phases given by sampling the frequency response of the vocal tract model at these

frequencies.

Figure 5.6  Principle of the harmonic speech model.
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sine waves

pitch harmonics
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synthetic speech
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The number of the sine waves to be summed depends on the pitch period, and their

amplitudes depend also on the fact whether the number of samples of the pitch period L is

even or odd. Let us illustrate it for L = 16 and L = 17 corresponding to F0 = 500 Hz and

F0 = 470 Hz at fs = 8 kHz using a synthetic signal with the constant magnitude frequency

response of the vocal tract model. The first case can be seen in Figure 5.7. Here, L is even and

the number of composite sine waves is L / 2. The amplitudes, obtained from spectral sampling

at pitch harmonics, must be multiplied by 2 for first L / 2 − 1 harmonics. The amplitude of the

last harmonic (L / 2) must not be multiplied by 2, because it coincides with fs / 2. The second

case can be seen in Figure 5.8. In this case L is odd and the number of composite sine waves is

the integral part of the half the pitch period in samples [L / 2]. All the amplitudes, obtained

from spectral sampling at pitch harmonics, must be multiplied by 2. It can be generalized in

the following way:

1st step:  number of pitch harmonics = [L / 2],

2nd step: sampling the frequency response of the vocal tract model at pitch harmonics

  => amplitudes { amplitudem} ,

3rd step: for the first ([L / 2]  − 1) harmonics: }2{}{ mm amplitudeA ⋅= ,

4th step:  L modulo 2 = 0   =>   }{}{ ]2/[]2/[ LL amplitudeA = ,

   L modulo 2 ≠ 0   =>   }2{}{ ]2/[]2/[ LL amplitudeA ⋅= .          (5.25)

For voiced speech, using a minimum-phase assumption not only for the vocal tract but also for

the glottal pulse contribution, the logarithm of the magnitude frequency response and the

phase frequency response form a Hilbert transform pair. For unvoiced speech, the phases are

randomized instead of using a random noise source known from the source-filter model. Such

a phase randomization models a noise-like character of unvoiced speech while preserving its

magnitude spectral shape.



48

Figure 5.7  Spectrum of a synthetic signal with constant frequency response of the vocal tract
model for  L = 16,  fs = 8 kHz.

Figure 5.8  Spectrum of a synthetic signal with constant frequency response of the vocal tract
model for  L = 17,  fs = 8 kHz.
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Before computing the spectrum, the analysis frame is weighted by the normalized Hamming

window. The Hamming window is chosen as a good compromise between the side-lobe

attenuation and the main-lobe bandwidth. The highest side-lobe level of the Hamming

window is − 43 dB, and the 6-dB bandwidth is 1.81 bins; where a bin is the frequency

resolution ωs
 / N [121], where ss fπω 2= . Then, to resolve two adjacent pitch harmonics, the

following relation must be fulfilled:

081.1 F
N
f s ≤⋅ .          (5.26)

After substituting for the pitch period in samples

0F
f

L s= ,          (5.27)

the length of the Hamming window should be

LN ⋅≥ 81.1 .          (5.28)

In [37], [39], [40] the window length is made at least 2.5 times the average pitch period to

maintain the resolution properties. The same condition is taken over for the analysis frame

duration throughout this thesis.

For the harmonic speech model the normalization of the window is different than the

normalization for the source-filter model given by (5.23). The peak values of the periodogram

must correspond to the amplitudes of the harmonic model. The peak signal gain of a window

is defined by [121]

( ) ( )∑
−

=

=
1

0

0
N

n
nwW .          (5.29)

As the peak values of the periodogram must be retained after spectral sampling, the

normalized Hamming window for harmonic speech modelling must be of the form

( ) ( )
( )∑

−

=

= 1

0

N

n

n

nw

nwnw , 0 ≤ n ≤ N −1,          (5.30)

where w(n) is defined by (5.21).
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Synthesis of consecutive pitch-synchronous speech frames can be performed by simple

concatenation or by OLA used e.g. in [40], [53]-[56], [64], [65], [78], [84]-[86], mentioned in

Section 3.2.1. An asymmetric Hanning window is chosen for the OLA synthesis in this thesis.

For every pair of consecutive pitch-synchronous frames the pitch period L1 of the first frame is

used for determination of the pitch harmonics {fm}. The AR or cepstral parameters of the first

and the second frame of the pair (T1, T2) are averaged. The harmonic parameters are

determined according to Section 5.2.1.2 or 5.2.2.2. Speech is synthesized as a sum of sine

waves during two consecutive pitch-synchronous frames of the length L1 and L2, as follows

( ) ( )∑
=

+=
]2/[

1

1

2cos
L

m
mmmy lfAls ϕπ , 0 ≤ l ≤ L1

 + L2.          (5.31)

Then, this pair of frames is weighted by an asymmetric Hanning window with its left and right

parts corresponding to the pitch periods of the first and the second frame. A symmetric

Hanning window is defined by [29]

( ) 














−
⋅−=
1

2cos1
2
1

N
nnw π , 0 ≤ n ≤ N −1.          (5.32)

For the consecutive pitch periods L1 and L2, the asymmetric Hanning window may be written

as

( ) 












 ⋅−=
1

cos1
2
1

L
nnw π , 0 ≤ n ≤ L1,

         (5.33)

( ) ( )













 −⋅+=
2

1cos1
2
1

L
Lnnw π , L1

 +1 ≤ n ≤ L1
 + L2,

so that the left part of the current asymmetric window has the same length as the right part of

the previous window, and the right part of the current window has the same length as the left

part of the next window, and the overlapped asymmetric windows are complementary. For the

final synthesis the weighted overlapped consecutive pairs of pitch-synchronous frames are

added to avoid discontinuities at the frame boundaries. The idea of the asymmetric Hanning

window was inspired by [65], where this term had been mentioned only in the context of the

noise component calculation by the harmonic component subtraction from the original signal.
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In next sections the concatenated synthesis will be compared with the OLA for various

parametrizations of the harmonic model.

5.2.1 AR Parametrization of the Harmonic Model

The harmonic model with AR parametrization (HAP) uses the description (5.1) to code the

frequency response of the vocal tract model determining the amplitudes and phases of the

composite sine waves.

5.2.1.1 AR Parameters Determination of the HAP

The HAP may use the same method of AR parameters determination as the AR model,

however, much better results are given by the method with prior spectral envelope

determination [78]. It will be discussed in detail In Section 5.2.1.4.

5.2.1.2 Harmonic Parameters Determination of the HAP

To determine the magnitude frequency response, first, the relation (5.1) is rewritten by

( ) ( )ω
ω

j
j

eB
GeP = ,          (5.34)

where ( ) ( )∑
=

−+=
AN

n
n

j jnaeB
1

exp1 ωω .          (5.35)

Using NF −point FFT, the relation (5.35) may be rewritten as

∑
−

=






−⋅=

1

0

2exp
FN

n F
nk k

N
jnbB π ,          (5.36)

where

bn =          (5.37)

Then the AR model magnitude frequency response is given by

k
k B

GP = .          (5.38)

an, 1 ≤ n ≤ NA,

0, NA < n ≤ NF −1.

1, n = 0,
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Using a definition of the Hilbert transform [29] the relation between the magnitude frequency

response and the minimum-phase frequency response may be rewritten in the following

convolution form

( ) ( )khPk k ∗−= lnminϕ ,          (5.39)

where h(k) is the impulse response of a 90-degree phase shifter corresponding to its frequency

response

( )=ωjeH          (5.40)

Using the NF-point FFT, the relation (5.40) may be rewritten as

=kH          (5.41)

The minimum-phase frequency response may be computed using the FFT-s of the first and the

second element of the convolution (5.39), and the inverse FFT of their product. Sampling the

magnitude and minimum-phase frequency responses (|Pk| and ϕmin(k)) at the pitch harmonics

{ fm}  using the algorithm (5.25) gives the amplitudes { Am}  and phases { ϕm}  of a composite

synthetic speech signal

( ) ( )∑
=

+=
]2/[

1

2cos
L

m
mmmy lfAls ϕπ , 10 −≤≤ Ll .          (5.42)

5.2.1.3 Number of Parameters for the HAP

In Section 5.1.1.2 it has been stated that the minimum AR model order of preemphasized

speech should be twice the bandwidth of the signal in kilohertz. For the harmonic speech

model no preemphasis is performed prior to the analysis and no postemphasis is performed

prior to the synthesis. As the preemphasis is done by passing the speech signal through a

single-zero filter given by (5.12), the AR model order of speech without preemphasis must be

at least one order higher than that of speech with preemphasis. For the sampling frequency of

fs [kHz] it means the minimum AR model order of  fs+1. The real number of the HAP

parameters is given by the pitch period using the algorithm (5.25).

-j,   0 ≤ ω < π ,

 j, −π ≤ ω < 0.

2, k = 1, 2, ... , NF / 2 − 1 ,

0, k = NF / 2 + 1, ... , NF − 1.

1, k = 0,  NF / 2 ,
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5.2.1.4 AR Parameters Determination with Prior Spectral Envelope

Experiments with speech analysis and synthesis were performed on a male voice with the

mean pitch frequency of about 110 Hz, recorded in an unechoic room using a 12-bit A/D

converter with the sampling frequency of 8 kHz, and a magnetodynamic microphone. The

analysis was performed in the frame intervals of 12 ms with the frame length of 24 ms, i.e. in

24-ms overlapping frames. The same conditions were used for application of the methods

described in Sections 5.2.2.4, 5.2.2.5, and 5.2.4. In Figure 5.9, we can see spectra of a 24-ms

voiced frame. Three orders of the AR model were compared: NA = 9 (as it is the minimum

necessary order as described in Section 5.2.1.3), NA = 25 (as it corresponds to the same

number of parameters as the cepstral model, see Sections 5.1.2.2 and 5.2.2.3), and NA = 17 (as

it is in the middle between these two values). Figure 5.9 shows comparison of the original

speech spectrum and the AR spectrum of these orders using the standard autocorrelation

method and a proposed new method.

Figure 5.9  The original speech spectra (solid) together with the AR spectra of the order NA
(wide) for the standard autocorrelation method (left) and the proposed new method (right) for
a 24-ms frame of a vowel �I� spoken by the male voice.
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Let the standard method is denoted by HAP1, and the new method is denoted by HAP2. The

block diagram of speech analysis using HAP2 is depicted in Figure 5.10. Standard

autocorrelation method (HAP1) is performed with the dashed block omitted. In HAP2 the AR

parameters are computed from the time-domain signal corresponding to the spectral envelope

instead of the original speech signal. First, the staircase log spectral envelope is determined

using steps of a pitch-frequency width. In each of the intervals of a pitch width the local

maxima are found by detection of the slope change from positive to negative. The mean value

of their amplitudes is chosen as the amplitude of the step. If no local maximum is found in the

interval using this algorithm, the mean value of the interval boundary amplitudes is chosen as

the amplitude of the step. The idea of the staircase envelope was inspired by the �piecewise

constant interpolation of the sine wave amplitude measurements� mentioned in [39], where it

had been used to compute what they had called �cepstral envelope�. However, in this thesis, a

new algorithm is proposed and the resulting staircase envelope is smoothed using the weighed

moving average having the shape of the Blackman window defined by (5.13) and normalized

in such a way that

( ) 1
1

0

=∑
−

=

nw
M

n
.          (5.43)

The length of the window has been determined experimentally to be one and a half of the

pitch frequency. Then, the inverse Fourier transform of the smoothed spectral envelope was

treated as a real speech signal. Thus, the AR parameters were computed by the autocorrelation

method from the time-domain signal corresponding to the speech spectral envelope of the

original speech signal.

To consider mixed voicing of many sounds detected as voiced by the pitch detector with

binary voicing decision, a maximum voiced frequency fmax determines the degree of voicing.

For totally unvoiced frames fmax is set to zero. For voiced frames fmax is computed from the

magnitude spectrum comparing the frequency distances between the pitch harmonics and the

spectral local maxima. If there is no spectral peak in the predefined vicinity of the pitch

harmonic for two consecutive pitch harmonics, the last pitch harmonic before these two

harmonics is chosen as the maximum voiced frequency. The predefined value of the distance

between the pitch harmonic and the spectral peak was determined experimentally as a portion

(0.4) of the pitch frequency.
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The proposed algorithm for the staircase envelope determination may be written as follows:

S = log spectrum from  0 to  fs

For the first interval of  F0 / 2  duration
Sx = S  from  0  to  F0 / 2
Approximate gradient  G  of  Sx

Find frequencies  F  of change  G  from positive to negative
If  F  not found

T = mean of  Sx  at  0  and  F0 / 2
Else

T = mean of  F
End
Step of  T  amplitude from  0  to  F0 / 2

End

For next  L −1  intervals of  F0  durations
Sx = S  from   (2 l −1) F0 / 2   to   (2 l +1) F0 / 2
Approximate gradient  G  of  Sx

Find frequencies  F  of change  G  from positive to negative
If  F  not found

T = mean of  Sx  at   (2 l −1) F0 / 2   and   (2 l +1) F0 / 2
Else

T = mean of  F
End
Step of  T  amplitude from   (2 l −1) F0 / 2   to   (2 l +1) F0 / 2

End

For the last interval of  F0 / 2  duration
Sx = S  from   (2 L −1) F0 / 2   to   fs

Approximate gradient  G  of  Sx

Find frequencies  F  of change  G  from positive to negative
If  F  not found

T = mean of  Sx  at   (2 L −1) F0 / 2    and   fs

Else
T = mean of  F

End
Step of  T  amplitude from   (2 L −1) F0 / 2   to   fs

End          (5.44)
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Figure 5.10  Analysis of one equidistant speech frame with determination of the maximum
voiced frequency for the HAP model.
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5.2.1.5 Speech Synthesis Using the HAP

The block diagram of speech synthesis as a sum of sine waves coded by AR parameters is

shown in Figure 5.11. The output parameters of the analysis (the pitch period L, the gain G,

the coefficients { ak} , and the maximum voiced frequency fmax) serve as the input parameters

for the speech synthesis.  The vocal tract transfer function block is performed using the

procedure described in Section 5.2.1.2. The phases {ϕm} for unvoiced frames are randomized

in the interval < -π, π >. The phases at frequencies lower than fmax are minimum phases

{ ϕm
min} and the phases at frequencies higher than fmax are randomized in the same way as the

phases of unvoiced frames.

Figure 5.11  Synthesis of one pitch-synchronous speech frame using the HAP model.
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The RMS logarithmic spectral measure was used to compare the smoothed spectra of original
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Statistical values for the 9th, 17th, and 25th order AR using standard autocorrelation method

(HAP1) with concatenation of pitch-synchronous frames are shown in Tables 5.3 to 5.5.

Results with the new method described in Section 5.2.1.4 (HAP2) using concatenated

synthesis are shown Tables 5.6 to 5.8. Comparison of the three orders for all the voiced

sounds, i.e. 5 vowels and 2 nasals, is represented in Figure 5.12. It can be seen that the mean

value of the RMS log spectral measure slightly decreases with increasing AR order for both

the analysis methods. However, the mean values for the method with prior spectral envelope

(HAP2) are about 0.6 dB lower than that for the standard autocorrelation method (HAP1). The

difference between the standard method and the new method is more evident for higher AR

orders (9th order: 0.54 dB, 17th order: 0.63 dB, 25th order: 0.64 dB). For the HAP1 the

standard deviation gives almost the same values; for the HAP2 it is slightly higher.

Results for the synthesis performed by OLA of pairs of frames (5.31) weighted by the

asymmetric Hanning window (5.33) are given in Tables 5.9 to 5.11 for the HAP1, and in

Tables 5.12 to 5.14 for the HAP2. Averaged results for voiced frames are shown in

Figure 5.13. Here we can see that for the HAP1, the mean value of the RMS log spectral

measure and its standard deviation exhibit the same trend as that for the HAP1 with frame

concatenation (compare HAP1 in Figures 5.12 and 5.13). However, the mean value is about

0.1 dB lower, and the standard deviation is about 0.2 dB lower for the OLA synthesis.

Comparing the HAP1 and HAP2 with OLA in Figure  5.13 the same trend is seen as for

concatenated synthesis: the mean RMS log spectral measure is about 0.6 dB lower than for the

standard method. The difference between the standard method and the new method is even

more evident for higher AR orders (9th order: 0.52 dB, 17th order: 0.66 dB, 25th order:

0.76 dB). Comparing HAP2 in Figures 5.12 and 5.13, it can be concluded that OLA gives

better results. The difference between the mean RMS log spectral measure for concatenation

and OLA is not so evident as for the standard autocorrelation method (9th order: 0.09 dB, 17th

order: 0.15 dB, 25th order: 0.2 dB). However, the difference between the standard deviation

for concatenation and OLA is more important (9th order: 0.35 dB, 17th order: 0.37 dB, 25th

order: 0.45 dB).
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RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 2.32 5.42 3.80 0.79
E/60 2.17 6.10 3.86 0.92
I/60 1.91 7.00 4.13 1.05
O/69 1.91 6.66 3.94 0.91
U/60 2.35 7.13 3.87 1.07
M/44 2.33 7.38 3.98 0.89
N/69 3.20 6.89 4.55 0.88
S/10 2.64 6.68 4.70 1.21

Table 5.3  RMS log spectral measure between the original and concatenated synthetic speech
for the HAP with the 9th order AR using the standard autocorrelation method (HAP1).

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 1.97 5.87 3.56 0.86
E/60 1.73 8.42 3.68 1.04
I/60 1.63 7.14 3.67 1.06
O/69 2.35 6.19 3.64 0.79
U/60 2.49 8.10 4.02 1.14
M/44 2.01 4.89 3.37 0.65
N/69 2.12 7.59 3.68 0.87
S/10 2.97 7.42 4.67 1.27

Table 5.4  RMS log spectral measure between the original and concatenated synthetic speech
for the HAP with the 17th order AR using the standard autocorrelation method (HAP1).

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 2.05 6.10 3.50 0.83
E/60 1.74 5.17 3.50 0.81
I/60 1.84 6.07 3.56 0.98
O/69 2.05 6.07 3.58 0.70
U/60 2.64 10.69 3.94 1.40
M/44 1.85 4.97 3.21 0.69
N/69 1.47 8.11 3.44 0.92
S/10 3.49 5.82 4.50 0.70

Table 5.5  RMS log spectral measure between the original and concatenated synthetic speech
for the HAP with the 25th order AR using the standard autocorrelation method (HAP1).
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RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 1.58 4.51 2.54 0.65
E/60 1.12 6.08 2.65 0.92
I/60 1.45 7.23 3.33 1.34
O/69 1.75 7.40 3.40 1.02
U/60 1.80 8.41 3.80 1.40
M/44 2.54 11.21 3.93 1.37
N/69 3.04 7.87 4.72 1.19
S/10 3.22 9.25 5.10 1.67

Table 5.6  RMS log spectral measure between the original and concatenated synthetic speech
for the HAP with the 9th order AR using the inverse Fourier transform of the spectral envelope
(HAP2).

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 1.35 4.31 2.37 0.53
E/60 1.23 5.08 2.46 0.72
I/60 1.25 5.95 2.92 1.00
O/69 1.49 6.97 3.04 1.02
U/60 1.61 9.63 3.88 1.66
M/44 1.94 4.71 3.10 0.70
N/69 1.78 7.70 3.43 1.10
S/10 3.10 6.92 4.89 1.40

Table 5.7  RMS log spectral measure between the original and concatenated synthetic speech
for the HAP with the 17th order AR using the inverse Fourier transform of the spectral
envelope (HAP2).

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 1.13 3.86 2.29 0.53
E/60 1.14 5.47 2.40 0.80
I/60 1.18 6.40 2.84 0.97
O/69 1.45 6.80 2.87 0.94
U/60 1.24 11.05 3.84 1.86
M/44 1.78 4.90 2.85 0.69
N/69 1.67 8.80 3.15 1.12
S/10 3.46 6.57 4.73 0.90

Table 5.8  RMS log spectral measure between the original and concatenated synthetic speech
for the HAP with the 25th order AR using the inverse Fourier transform of the spectral
envelope (HAP2).



61

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 2.47 5.45 3.79 0.77
E/60 2.15 5.95 3.86 0.84
I/60 2.17 5.52 3.87 0.71
O/69 2.83 5.24 3.89 0.60
U/60 2.39 5.86 3.59 0.67
M/44 1.74 5.47 3.84 0.70
N/69 3.15 6.30 4.50 0.72
S/10 4.41 7.01 5.45 0.89

Table 5.9  RMS log spectral measure between the original and OLA synthetic speech for the
HAP with the 9th order AR using the standard autocorrelation method (HAP1).

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 2.02 5.95 3.58 0.79
E/60 1.96 5.47 3.63 0.83
I/60 2.04 5.38 3.51 0.81
O/69 2.16 4.78 3.59 0.59
U/60 2.35 5.15 3.43 0.60
M/44 1.71 5.09 3.42 0.66
N/69 2.34 5.05 3.65 0.67
S/10 3.71 7.24 5.35 1.12

Table 5.10  RMS log spectral measure between the original and OLA synthetic speech for the
HAP with the 17th order AR using the standard autocorrelation method (HAP1).

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 2.13 6.41 3.58 0.82
E/60 1.57 5.61 3.62 0.84
I/60 2.00 5.44 3.38 0.83
O/69 1.84 4.85 3.52 0.63
U/60 2.13 4.89 3.37 0.60
M/44 1.52 5.13 3.26 0.69
N/69 1.93 6.19 3.40 0.77
S/10 3.74 6.77 5.34 1.05

Table 5.11  RMS log spectral measure between the original and OLA synthetic speech for the
HAP with the 25th order AR using the standard autocorrelation method (HAP1).



62

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 1.55 5.04 2.67 0.52
E/60 1.31 4.30 2.71 0.56
I/60 1.51 5.80 3.20 0.88
O/69 1.80 5.10 3.31 0.73
U/60 1.82 6.86 3.50 0.96
M/44 2.54 5.68 3.68 0.71
N/69 3.06 6.75 4.65 0.84
S/10 3.75 6.14 4.87 0.82

Table 5.12  RMS log spectral measure between the original and OLA synthetic speech for the
HAP with the 9th order AR using the inverse Fourier transform of the spectral envelope
(HAP2).

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 1.48 4.65 2.50 0.52
E/60 1.23 3.50 2.49 0.50
I/60 1.46 5.71 2.70 0.78
O/69 1.82 4.77 2.87 0.68
U/60 1.62 6.07 3.19 0.86
M/44 2.15 4.73 3.06 0.54
N/69 1.96 5.73 3.36 0.79
S/10 3.73 6.78 5.00 1.10

Table 5.13  RMS log spectral measure between the original and OLA synthetic speech for the
HAP with the 17th order AR using the inverse Fourier transform of the spectral envelope
(HAP2).

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 1.27 4.02 2.36 0.50
E/60 1.22 3.45 2.38 0.48
I/60 1.40 4.71 2.54 0.65
O/69 1.56 4.58 2.63 0.63
U/60 1.50 5.88 3.09 0.90
M/44 2.02 4.42 2.81 0.51
N/69 1.75 5.89 3.01 0.78
S/10 2.89 7.15 4.72 1.27

Table 5.14  RMS log spectral measure between the original and OLA synthetic speech for the
HAP with the 25th order AR using the inverse Fourier transform of the spectral envelope
(HAP2).



63

Figure 5.12  RMS log spectral measure between the original and concatenated synthetic
voiced speech for the HAP with the 9th, 17th, and 25th order AR using standard autocorrelation
method (HAP1), and using the inverse Fourier transform of the spectral envelope (HAP2).

Figure 5.13  RMS log spectral measure between the original and OLA synthetic voiced
speech for the HAP with the 9th, 17th, and 25th order AR using standard autocorrelation
method (HAP1), and using the inverse Fourier transform of the spectral envelope (HAP2).

1 2
0

1

2

3

4

5

6

HAP with concatenation

M
ea

n 
sp

ec
tra

l m
ea

su
re

 [d
B

]

black: NA= 9,   grey: NA= 17,   white: NA= 25

1 2
0

0.5

1

1.5

2

HAP with concatenation

S
ta

nd
ar

d 
de

via
tio

n 
[d

B
] black: NA= 9,   grey: NA= 17,   white: NA= 25

1 2
0

1

2

3

4

5

6

HAP with OLA

M
ea

n 
sp

ec
tra

l m
ea

su
re

 [d
B

]

black: NA= 9,   grey: NA= 17,   white: NA= 25

1 2
0

0.5

1

1.5

2

HAP with OLA

S
ta

nd
ar

d 
de

via
tio

n 
[d

B
] black: NA= 9,   grey: NA= 17,   white: NA= 25



64

Computational complexity for individual blocks of the HAP1 analysis and the concatenated

synthesis is shown in Tables 5.15 to 5.17. The overall results are in Figure 5.14. The

computational complexity of the same HAP1 method with the OLA synthesis is given in

Tables 5.18 to 5.20, summarized in Figure 5.15. Computational complexity for individual

blocks of the HAP2 analysis and the concatenated synthesis is shown in Tables 5.21 to 5.23.

The overall results are in Figure 5.16. The computational complexity of the same HAP2

method with the OLA synthesis is given in Tables 5.24 to 5.26, summarized in Figure 5.17.

Inspecting Tables 5.15 to 5.26, the blocks A0 and A1 give always the same computational

complexity. However, the computational complexity of the block A0 depends on the duration

of the processed signal because the normalized window (5.30) is computed once for the whole

signal. Interesting might be comparison of the block A2 computational complexity for the

HAP1 (Tables 5.15 to 5.20), and the HAP2 (Tables 5.21 to 5.26). Its much lower value for the

HAP2 is due to using the magnitude spectrum for AR parameters determination. The same

magnitude spectrum may be used for the maximum voiced frequency determination lowering

thus its computational complexity.

Let us compare the computational complexity in Figures 5.14 to 5.17 with the RMS log

spectral measure in Figures 5.12 and 5.13. We can find approximately reverse proportion

between the mean RMS log spectral measure and the total computational complexity.

Although the HAP1 with concatenation gives the lowest computational complexity (see

Figure 5.14), it is not very useful because of the high mean RMS log spectral measure (see

Figure 5.12). The computational complexity of the HAP1 with OLA is somewhat higher (see

Figure 5.15), but the mean RMS log spectral measure is still rather high (see Figure 5.13). The

lowest values of the RMS log spectral measure as well as the lowest standard deviation are

manifested by the HAP2 with OLA, however at the expense of the highest computational

complexity.

The HAP2 of the 25th order AR with both the synthesis methods will be of interest also further

in this work for comparison with the harmonic model with cepstral parametrization using the

same number of parameters.
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block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 221/0
A3 AR parameters determination 62.4
Σ Α total analysis with AR parametrization (V/UV) 734.1/513.1
S1 AR to harmonic parameters transformation (V/UV) 920.1/266.3
S2 harmonic synthesis 204.5
Σ S total harmonic synthesis with AR parametrization (V/UV) 1124.6/470.9

Table 5.15  Computational complexity for the HAP with the 9th order AR using the standard
autocorrelation method (HAP1) with concatenated synthesis.

block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 221/0
A3 AR parameters determination 115.5
Σ Α total analysis with AR parametrization (V/UV) 787.2/566.2
S1 AR to harmonic parameters transformation (V/UV) 920.1/266.3
S2 harmonic synthesis 204.5
Σ S total harmonic synthesis with AR parametrization (V/UV) 1124.6/470.9

Table 5.16  Computational complexity for the HAP with the 17th order AR using the standard
autocorrelation method (HAP1) with concatenated synthesis.

block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 221/0
A3 AR parameters determination 171.2
Σ Α total analysis with AR parametrization (V/UV) 842.9/621.9
S1 AR to harmonic parameters transformation (V/UV) 920.1/266.3
S2 harmonic synthesis 204.5
Σ S total harmonic synthesis with AR parametrization (V/UV) 1124.6/470.9

Table 5.17  Computational complexity for the HAP with the 25th order AR using the standard
autocorrelation method (HAP1) with concatenated synthesis.
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block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 221/0
A3 AR parameters determination 62.4
Σ Α total analysis with AR parametrization (V/UV) 734.1/513.1
S1 AR to harmonic parameters transformation (V/UV) 922.3/268.6
S2 harmonic synthesis 540.2
Σ S total harmonic synthesis with AR parametrization (V/UV) 1462.5/808.8

Table 5.18  Computational complexity for the HAP with the 9th order AR using the standard
autocorrelation method (HAP1) with OLA synthesis.

block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 221/0
A3 AR parameters determination 115.5
Σ Α total analysis with AR parametrization (V/UV) 787.2/566.2
S1 AR to harmonic parameters transformation (V/UV) 922.6/268.8
S2 harmonic synthesis 540.2
Σ S total harmonic synthesis with AR parametrization (V/UV) 1462.8/809

Table 5.19  Computational complexity for the HAP with the 17th order AR using the standard
autocorrelation method (HAP1) with OLA synthesis.

block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 221/0
A3 AR parameters determination 171.2
Σ Α total analysis with AR parametrization (V/UV) 842.9/621.9
S1 AR to harmonic parameters transformation (V/UV) 922.8/269.1
S2 harmonic synthesis 540.2
Σ S total harmonic synthesis with AR parametrization (V/UV) 1463/809.2

Table 5.20  Computational complexity for the HAP with the 25th order AR using the standard
autocorrelation method (HAP1) with OLA synthesis.
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block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 50.3/0
A3 AR parameters determination 689
Σ Α total analysis with AR parametrization (V/UV) 1189.9/1139.6
S1 AR to harmonic parameters transformation (V/UV) 920.1/266.3
S2 harmonic synthesis 204.5
Σ S total harmonic synthesis with AR parametrization (V/UV) 1124.6/470.9

Table 5.21  Computational complexity for the HAP with 9th order AR using the inverse
Fourier transform of the spectral envelope (HAP2) with concatenated synthesis.

block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 50.3/0
A3 AR parameters determination 822
Σ Α total analysis with AR parametrization (V/UV) 1323/1272.7
S1 AR to harmonic parameters transformation (V/UV) 920.1/266.3
S2 harmonic synthesis 204.5
Σ S total harmonic synthesis with AR parametrization (V/UV) 1124.6/470.9

Table 5.22  Computational complexity for the HAP with 17th order AR using the inverse
Fourier transform of the spectral envelope (HAP2) with concatenated synthesis.

block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 50.3/0
A3 AR parameters determination 957.7
Σ Α total analysis with AR parametrization (V/UV) 1458.7/1408.4
S1 AR to harmonic parameters transformation (V/UV) 920.1/266.3
S2 harmonic synthesis 204.5
Σ S total harmonic synthesis with AR parametrization (V/UV) 1124.6/470.9

Table 5.23  Computational complexity for the HAP with 25th order AR using the inverse
Fourier transform of the spectral envelope (HAP2) with concatenated synthesis.
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block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 50.3/0
A3 AR parameters determination 691.6
Σ Α total analysis with AR parametrization (V/UV) 1192.6/1142.2
S1 AR to harmonic parameters transformation (V/UV) 922.3/268.6
S2 harmonic synthesis 540.2
Σ S total harmonic synthesis with AR parametrization (V/UV) 1462.5/808.8

Table 5.24  Computational complexity for the HAP with 9th order AR using the inverse
Fourier transform of the spectral envelope (HAP2) with OLA synthesis.

block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 50.3/0
A3 AR parameters determination 824.6
Σ Α total analysis with AR parametrization (V/UV) 1325.6/1275.3
S1 AR to harmonic parameters transformation (V/UV) 922.6/268.8
S2 harmonic synthesis 540.2
Σ S total harmonic synthesis with AR parametrization (V/UV) 1462.8/809

Table 5.25  Computational complexity for the HAP with 17th order AR using the inverse
Fourier transform of the spectral envelope (HAP2) with OLA synthesis.

block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 8.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 50.3/0
A3 AR parameters determination 960.3
Σ Α total analysis with AR parametrization (V/UV) 1461.3/1411
S1 AR to harmonic parameters transformation (V/UV) 922.8/269.1
S2 harmonic synthesis 540.2
Σ S total harmonic synthesis with AR parametrization (V/UV) 1463/809.2

Table 5.26  Computational complexity for the HAP with 25th order AR using the inverse
Fourier transform of the spectral envelope (HAP2) with OLA synthesis.
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Figure 5.14  Computational complexity for the HAP with the 9th, 17th, and 25th order AR
using the standard autocorrelation method (HAP1) with concatenated synthesis.

Figure 5.15  Computational complexity for the HAP with the 9th, 17th, and 25th order AR
using the standard autocorrelation method (HAP1) with OLA synthesis.
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Figure 5.16  Computational complexity for the HAP with the 9th, 17th, and 25th order AR
using the inverse Fourier transform of the spectral envelope (HAP2) with concatenated
synthesis.

Figure 5.17  Computational complexity for the HAP with the 9th, 17th, and 25th order AR
using the inverse Fourier transform of the spectral envelope (HAP2) with OLA synthesis.
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5.2.1.7 An Experiment with Childish Voice Analysis and Synthesis

The advantage of the new AR parameters determination method for HAP is more evident for

childish voice. Figure 5.18 presents a 9th order AR model frequency response determined by

the standard autocorrelation method from a 10-ms speech frame of a childish voice sampled at

8 kHz. Its mean pitch frequency is about 300 Hz, and it was recorded in a domestic

environment using a 16-bit SoundBlaster and a capacitor microphone. We can see that this

model does not represent real spectral envelope for such a high pitch as can be found for

example in a childish voice. The formant frequencies are biased toward pitch harmonics and

formant bandwidth is underestimated. It is because the AR model frequency response shows

tendency to follow the fine structure of the speech spectrum for high-pitch speakers. Problems

would occur if this model were used in the TTS system, where prosodic modifications are

necessary. It is evident that after sampling this frequency response at harmonics of modified

pitch the original formant structure might be destroyed. The staircase envelope, and the

smoothed staircase envelope is shown in Figure 5.19.

Figure 5.18  Original spectrum and AR magnitude frequency response determined by the
standard autocorrelation method for a 10-ms frame of a vowel �I� spoken by the childish
voice.
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Figure 5.19  Original spectrum, staircase envelope, and smoothed staircase envelope for a 10-
ms frame of a vowel �I� spoken by the childish voice.

The analysis of the childish voice was performed in the frame intervals of 5 ms with the frame

length of 10 ms, i.e. in 10-ms overlapping frames. Here, no mixed voicing was used, so the

block diagram of the analysis may be simplified as in Figure 5.20. Frames were either voiced

or unvoiced, so the block diagram of the speech synthesis in a pitch-synchronous frame can be

performed as in Figure 5.21. The AR magnitude frequency response of the vocal tract model

corresponding to the new method is shown in Figure 5.22. This magnitude frequency response

is sampled at frequencies {fm} to get the amplitudes {Am}. For voiced frames (L ≠ 0) the

Hilbert transform of the logarithmic AR magnitude frequency response of the vocal tract

model determines the phases {ϕm}. For unvoiced frames (L = 0) the phases {ϕm} are

randomized in the interval < -π ,  π >. OLA using (5.31) weighted by (5.33) was used for

synthesis.
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Figure 5.20  Analysis of one equidistant speech frame for the childish voice.
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Figure 5.21  Synthesis of one pitch-synchronous speech frame for the childish voice.

The RMS log spectral measure was used to compare the smoothed spectra of original and

resynthesized speech and both the methods were compared. The speech material consisted of

1687 stationary parts of vowels and nasals spoken by a childish voice with the mean pitch

frequency of about 300  Hz. Comparison was made for 10-ms speech frames sampled at

8 kHz. The method using the spectral envelope computation described here was compared

with the standard autocorrelation method of AR parameters determination from the windowed

speech signal. The standard autocorrelation method was performed according to Figure 5.20

when leaving out the block drawn in the dashed rectangle. The results are shown in

Table 5.27.

RMS log spectral measure [dB]method
minimum maximum mean standard deviation

AR1 0.29 13.12 4.46 1.66
AR2 0.53 9.45 3.18 1.28

Table 5.27  Statistical values of the RMS log spectral measure for the standard
autocorrelation method (AR1), and the autocorrelation method using the inverse Fourier
transform of the spectral envelope (AR2) for the childish voice.
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Figure 5.22  Original spectrum and AR magnitude frequency response determined by the
autocorrelation method applied to the time-domain signal corresponding to the spectral
envelope instead of the original speech signal for a 10-ms frame of a vowel �I� spoken by the
childish voice.

Here, the standard method is denoted by AR1; the method with the inverse Fourier transform

of the spectral envelope is denoted by AR2. The mean value of the RMS log spectral measure

for AR2 is lower by 1.28 dB than that for AR1; the standard deviation of the RMS log spectral

measure for AR2 is lower by 0.38 dB than that for AR1.

5.2.2 Cepstral Parametrization of the Harmonic Model

The harmonic model with cepstral parametrization (HCP) uses description similar to (5.19) to

code the frequency response of the vocal tract model determining the amplitudes and phases

of the composite sine waves. First, the logarithmic speech spectrum described by the real

cepstrum { cn}  using (5.16) is rewritten using the cosine expansion in the following form

( ) ∑
∞

=

⋅⋅+=
1

0 cos2ln
n

n
j ncceS ωω .          (5.45)

Then, the logarithmic frequency response of the vocal tract model can be given by truncation

of the real cepstrum to NC cepstral coefficients as follows
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( ) ∑
−

=

⋅⋅+=
1

1
0 cos2ln

CN

n
n

j ncceP ωω .          (5.46)

5.2.2.1 Cepstral Parameters Determination of the HCP

The HCP may use the cepstral parameters determination simply by the truncated cepstrum.

The logarithmic spectrum computed from the truncated cepstrum should form the speech

spectral envelope and its samples at pitch harmonics should model the spectral peaks. In

Figure 5.23 we can see that it has the shape of the logarithmic envelope but it is vertically

shifted towards lower amplitude values. Two solutions of this problem are compared in [122].

The first one is the cepstral coefficients determination with gain correction inspired by gain

matching in the cepstral speech model [30], however, using different procedures. The method

will be described in Section 5.2.2.4. The second solution uses the prior spectral envelope

determination and the truncated cepstrum is computed from this spectral envelope instead of

the original speech spectrum. The method will be described in Section 5.2.2.5. It was inspired

by [39], [40], but different approach to the spectral envelope estimation is used here. The

same spectral envelope determination was used in the harmonic speech model with AR

parametrization [78] described in Section 5.2.1.4.

Figure 5.23  Speech spectrum from truncated cepstrum for a 24-ms frame of a vowel �I�
spoken by the male voice.
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5.2.2.2 Harmonic Parameters Determination of the HCP

If the magnitude frequency response of the vocal tract model is represented by NC coefficients

of the real cepstrum (5.46), then the amplitudes { Am}  and phases { ϕm
min}  of the minimum-

phase spectrum of the original signal are given by







+= ∑

−

=

1

1
0 cos2exp

CN

n
mnm nccA ω ,          (5.47)

∑
−

=

−=
1

1

min sin2
CN

n
mnm nc ωϕ ,          (5.48)

where

L
m

m
⋅= πω 2 ,          (5.49)

is the normalized angular frequency at the m-th pitch harmonic for

1 ≤ m ≤ [  L / 2 ].          (5.50)

According to the algorithm (5.25), for each pitch-synchronous speech frame the synthesized

speech will be given by

( ) ( )∑
=

+=
]2/[

1

2cos2
L

m
mmmy lfAls ϕπ , for L odd,          (5.51)

( ) ( ) ( )2/2/2/

12/

1

2cos2cos2 LLL

L

m
mmmy lfAlfAls ϕπϕπ +++= ∑

−

=

, for L even,          (5.52)

where 10 −≤≤ Ll .

5.2.2.3 Number of Parameters for the HCP

As the cepstral speech model, described in Section 5.1.2, uses no preemphasis, the number of

cepstral coefficients for HCP may be the same as it has been stated in Section 5.1.2.2, i.e. 26

cepstral coefficients for 8-kHz sampling and 51 cepstral coefficients for 16-kHz sampling.

The real number of the HCP parameters is given by the pitch period as stated in the beginning

of Section 5.2 and in the algorithm (5.25).
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5.2.2.4 Cepstral Parameters Determination with Gain Correction

Gain correction of the vocal tract model transfer function in logarithmic scale means its

vertical shift so that it represents the spectral envelope more properly than in Figure 5.23. The

block diagram of the cepstral parameters determination using the gain correction (HCP1) is

shown in Figure 5.24. The logarithmic spectrum computed using the NF-point FFT of the

speech frame is brought to the cepstral domain giving NF cepstral coefficients. A truncated

cepstrum of first NC coefficients and a cepstrum of the residual signal are determined from

this real cepstrum. The cepstrum of the residual signal is transformed back to the spectrum in

logarithmic scale and then to the spectrum in linear scale. Peak picking is used to find all the

local maxima of the spectrum of the residual signal. It means that all the frequencies at which

the spectral slope changes from positive to negative are chosen. Amplitudes at these

frequencies are averaged to get the correction gain. Its logarithm is summed with the first

cepstral coefficient to get the modified first cepstral coefficient. The remaining (NC −1)

cepstral coefficients are left unchanged. Number of points of FFT NF  equals 512; number of

cepstral coefficients NC  equals 26.

To illustrate more the described method we can see Figure 5.25. The upper figure shows the

original logarithmic spectrum and the logarithmic spectrum computed from the truncated

cepstrum. In the middle we can see the spectrum of the residual signal computed from the

cepstrum of the residual signal. A dotted horizontal line represents the mean value of all the

local maxima corresponding to the gain correction. The value of one corresponds to no gain

correction representing the logarithmic spectrum from the truncated cepstrum of the upper

figure. The lower figure represents the logarithmic spectrum from the truncated cepstrum with

the first cepstral coefficient modified according to the gain correction. It really represents the

speech spectral envelope better than that in upper figure.
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Figure 5.24  Cepstral coefficients determination with gain correction (HCP1).
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Figure 5.25  Spectrum from truncated cepstrum with gain correction (HCP1).

5.2.2.5 Cepstral Parameters Determination with Prior Spectral Envelope

The block diagram of the cepstral parameters determination using prior spectral envelope

(HCP2) is shown in Figure 5.26. Similarly as in the method described in Section 5.2.2.4, the

logarithmic spectrum is computed using the NF-point FFT of the speech frame. Then its

staircase envelope is computed and smoothed by Blackman filter in the same way as in

Section 5.2.1.4 (see algorithm (5.44) and Figure 5.10). However, here the smoothed spectral

envelope is used to compute a real cepstrum of NF cepstral coefficients and a truncated

cepstrum of NC cepstral coefficients.

In illustration of this method Figure 5.27 depicts the logarithmic spectrum and its staircase

envelope (upper figure). Its filtering using the Blackman window gives the smoothed spectral

envelope in the middle figure. We can see that it really corresponds to the speech spectral

envelope. After representing it by the truncated cepstrum we get the vocal tract model

frequency response shown in the lower figure.
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Figure 5.26  Cepstral coefficients determination from log spectral envelope (HCP2).

If we compare the lower figure of Figure 5.25 (HCP1) and the lower figure of Figure 5.27

(HCP2), it is evident that they are fairly similar.

The analysis of one pitch-synchronous frame for both HCP methods can be drawn in

Figure 5.28 similarly as HAP in Figure 5.10. The block �cepstral coefficients determination�

in Figure 5.28 corresponds either to the algorithm HCP1 (Figure 5.24) or the algorithm HCP2

(Figure 5.26).
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Figure 5.27  Spectrum from truncated cepstrum using prior spectral envelope (HCP2).

Figure 5.28  Analysis of one equidistant speech frame with determination of the maximum
voiced frequency for the HCP model.
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5.2.2.6 Speech Synthesis Using the HCP

The block diagram of the synthesis is shown in Figure 5.29. The phases at frequencies lower

than fmax are computed from the cepstral coefficients using (5.48). Then, the phases at

frequencies higher than fmax are randomized in the same way as the phases of unvoiced frames.

Summing the sine waves with frequencies {fm}, amplitudes {Am}, and phases {ϕm} gives the

synthetic speech during one pitch-synchronous synthesis frame by (5.51) and (5.52).

Figure 5.29  Synthesis of one pitch-synchronous speech frame using the HCP model.
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Section 5.2.2.5) can be regarded as almost identical in their results if OLA synthesis of pitch-

synchronous frames is used.

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 0.89 3.68 2.33 0.59
E/60 1.31 4.72 2.34 0.61
I/60 1.28 4.85 2.57 0.71
O/69 1.33 7.04 2.81 1.06
U/60 1.75 8.01 3.44 1.34
M/44 1.72 7.85 2.98 1.03
N/69 1.65 5.60 2.87 0.86
S/10 3.39 6.09 4.81 0.96

Table 5.28  RMS log spectral measure between the original and concatenated synthetic
speech for the HCP with 26 cepstral coefficients with gain correction (HCP1).

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 1.47 3.90 2.45 0.56
E/60 1.23 4.05 2.48 0.61
I/60 1.22 3.69 2.65 0.60
O/69 1.35 6.48 2.84 0.85
U/60 1.82 6.67 3.39 1.09
M/44 1.78 4.73 2.79 0.73
N/69 1.65 5.24 2.87 0.69
S/10 3.54 5.46 4.47 0.69

Table 5.29  RMS log spectral measure between the original and concatenated synthetic
speech for the HCP with 26 cepstral coefficients with prior spectral envelope (HCP2).

RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 1.17 3.76 2.50 0.48
E/60 1.50 3.51 2.46 0.49
I/60 1.12 4.62 2.56 0.68
O/69 1.55 5.73 2.68 0.66
U/60 1.63 6.19 3.12 0.96
M/44 1.89 4.50 2.75 0.56
N/69 1.82 4.79 2.84 0.61
S/10 3.81 5.39 4.62 0.52

Table 5.30  RMS log spectral measure between the original and OLA synthetic speech for the
HCP with 26 cepstral coefficients with gain correction (HCP1).
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RMS log spectral measure [dB]sound/
number of frames minimum maximum mean standard deviation

A/81 1.78 4.07 2.67 0.50
E/60 1.59 3.81 2.58 0.52
I/60 1.56 5.60 2.72 0.74
O/69 1.71 4.54 2.73 0.55
U/60 1.90 5.82 3.21 0.84
M/44 1.59 4.38 2.83 0.59
N/69 1.54 4.79 2.89 0.64
S/10 4.02 6.90 5.23 0.88

Table 5.31  RMS log spectral measure between the original and OLA synthetic speech for the
HCP with 26 cepstral coefficients with prior spectral envelope (HCP2).

Figure 5.30  RMS log spectral measure between the original and synthetic voiced speech
(concatenated and OLA) for the HCP with 26 cepstral coefficients with gain correction
(HCP1), and the HCP with prior spectral envelope (HCP2).
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The synthesis using OLA has about twice the computational complexity of the synthesis using

concatenation.

block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 50.3/0
A3 cepstral parameters determination 523.4
Σ Α total analysis with cepstral parametrization (V/UV) 1024.4/974.1
S1 cepstral to harmonic parameters transformation (V/UV) 129.4/70.3
S2 harmonic synthesis 204.5
Σ S total harmon. synthesis with cepstral parametrization (V/UV) 334/274.8

Table 5.32  Computational complexity for the HCP with 26 cepstral coefficients with gain
correction (HCP1) with concatenated synthesis.

block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 50.3/0
A3 cepstral parameters determination 523.8
Σ Α total analysis with cepstral parametrization (V/UV) 1024.8/974.5
S1 cepstral to harmonic parameters transformation (V/UV) 129.4/70.3
S2 harmonic synthesis 204.5
Σ S total harmon. synthesis with cepstral parametrization (V/UV) 334/274.8

Table 5.33  Computational complexity for the HCP with 26 cepstral coefficients with prior
spectral envelope (HCP2) with concatenated synthesis.

block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 50.3/0
A3 cepstral parameters determination 523.4
Σ Α total analysis with cepstral parametrization (V/UV) 1024.4/974.1
S1 cepstral to harmonic parameters transformation (V/UV) 130.5/63.1
S2 harmonic synthesis 540.2
Σ S total harmon. synthesis with cepstral parametrization (V/UV) 670.7/603.3

Table 5.34  Computational complexity for the HCP with 26 cepstral coefficients with gain
correction (HCP1) with OLA synthesis.
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block corresponding operations complexity
[flops/sample]

A0 segmentation, windowing 2.3
A1 pitch detection 448.3
A2 maximum voiced frequency determination (V/UV) 50.3/0
A3 cepstral parameters determination 523.8
Σ Α total analysis with cepstral parametrization (V/UV) 1024.8/974.5
S1 cepstral to harmonic parameters transformation (V/UV) 130.5/63.1
S2 harmonic synthesis 540.2
Σ S total harmon. synthesis with cepstral parametrization (V/UV) 670.7/603.3

Table 5.35  Computational complexity for the HCP with 26 cepstral coefficients with prior
spectral envelope (HCP2) with OLA synthesis.

Figure 5.31  Computational complexity for the HCP with 26 cepstral coefficients with gain
correction (HCP1), and the HCP with prior spectral envelope (HCP2) using concatenated
synthesis.
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Figure 5.32  Computational complexity for the HCP with 26 cepstral coefficients with gain
correction (HCP1), and the HCP with prior spectral envelope (HCP2) using OLA synthesis.
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means that if the same spectral envelope is used to compute AR or cepstral parameters there is

no advantage of HCP against HAP.

Figure 5.33  RMS log spectral measure between the original and synthetic speech
(concatenated and OLA) for the HAP with the 25th order AR computed from the time signal
corresponding to the spectral envelope (HAP2), and the HCP with 26 cepstral coefficients
computed from the spectral envelope (HCP2).

Comparison of the speech spectra obtained from the AR and cepstral parameters is shown in

Figures 5.34 and 5.35. Figure 5.34 shows the spectra computed from 26 parameters by the

methods used in the models HAP2 and HCP2. We can see that sampling the spectrum

corresponding to the HAP2 approximates the original spectral peaks more properly than

sampling the spectrum corresponding to the HCP2. However, increasing the model order

gives the spectra of the HAP2 and HCP2 models rather similar. It can be seen in Figure 5.35

for 42 parameters, i.e. 41st order AR model and 42 cepstral parameters.
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Figure 5.34  Comparison of the spectra obtained from 26 parameters of the AR and cepstral
model with prior spectral envelope for a 24-ms frame of a vowel �U� spoken by the male
voice.

Figure 5.35  Comparison of the spectra obtained from 42 parameters of the AR and cepstral
model with prior spectral envelope for a 24-ms frame of a vowel �U� spoken by the male
voice.
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Listening tests were performed in order to compare four combinations of the methods:

HAP2+concatenation, HAP2+OLA, HCP2+concatenation, HCP2+OLA. Twenty words

synthesized by these methods were grouped into pairs of the same word synthesized by two

methods. The words of the pairs were grouped in the random order and listeners had to choose

the word with better resemblance to the original. Scores given by the listeners are summarized

in Table 5.36.

HAP2 HCP2 concatenation OLAlistener
concatenation vs. OLA concatenation vs. OLA HAP2 vs. HCP2 HAP2 vs. HCP2

AM1 2 : 18 1.5 : 18.5 6 : 14 9 : 11
AM2 2 : 18 3.5 : 16.5 2.5 : 17.5 10 : 10
AM3 5 : 15 9 : 11 5.5 : 14.5 13 : 7
JP1 9 : 11 10 : 10 9.5 : 10.5 12.5 : 7.5
JP2 6 : 14 11.5 : 8.5 10.5 : 9.5 14.5 : 5.5
JP3 8 : 12 9.5 : 10.5 9.5 : 10.5 12 : 8
JPu 12 : 8 9.5 : 10.5 11 : 9 11.5 : 8.5
PK 6.5 : 13.5 10.5 : 9.5 6.5 : 13.5 9 : 11

mean 6.07 : 13.93 7.93 : 12.07 7.36 : 12.64 11.36 : 8.64

Table 5.36  Preferences for the synthesis methods according to the listening tests of 20 words.

The listening tests were also evaluated for every word through all the listeners, and for every

listener through all the words. Results are shown in Table 5.37. Here, new abbreviations were

used:

AC = HAP2 + concatenation

AO = HAP2 + OLA

CC = HCP2 + concatenation

CO = HCP2 + OLA

The word �all� means that the listener regarded all four pairs of the same word as having the

same quality. The question mark �?� means that there was some disagreement in the listener�s

evaluation, e.g. AO and CO were regarded of the same quality, AC and CC were regarded of

the same quality, AO was regarded as better than AC, but CC was regarded as better than CO.

Table shows that the highest score is given to the HAP2 method with OLA. It is in accordance

with the results of Figure 5.33.
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the best method according to the listener
word

AM1 AM2 AM3 JP1 JP2 JP3 JPu PK
highest
score

aféra AO AO,CO ? AC AO CO AC AC AC,AO

fórum CO CC,CO CC,CO CC,CO AO AO CC CC CC

gramo CO CO AO,CO AO AO AO AO,CO AO,CO AO

kobra AO,CO AO,CO ? ? ? CC all ? AO,CO

liga AO ? ? CO CO CO ? ? CO

mařka AO AO,CO AO AC CC CC AC AC AC,AO

naďa CO AO AO,CO AO AO AO AC AO AO

náradiu CO AO,CO ? ? ? ? ? ? CO

neguj CO CO CC AC,AO ? ? AC,CO CC,CO CO

niekto CO AO,CO ? AC,CC AC AC AO,CO,CC ? AC,CO

obor AO AO AO ? AO AO ? ? AO

očko AO AO AO,CC CC AC AC ? ? AO

ovca ? AO AO ? CC CC ? ? AO,CC

pauza AO,CO AO,CO,CC AO,CO CO AO AO CC CC AO

racek ? ? ? AC AC AC ? AC.CC AC

�ifra AC CC AC, CC AO AO AO ? AO AO

spev CO AO AO AO,CC CC CC all AO,CO AO

stĺp AO,CO CO AO,CO AC,CC AC AC ? ? AC,CO

ufo AO,CO AO,CO AO AO AC,AO ? ? AO,CO AO

ulietať AO,CO AO,CO AO,CO,CC CO CO CO ? AO,CO,CC CO

highest
score CO AO AO AC,AO AO AO AC AO AO

Table 5.37  Evaluation of the listening tests for every word through all the listeners, and for
every listener through all the words.

The computational complexity of the same methods (HAP2, and HCP2) using 26 parameters

(Figures 5.16, 5.17, 5.31, and 5.32) are resumed in Figures 5.36 and 5.37. The total

computational complexity of the HAP2 is about twice that of the HCP2 for both the synthesis

methods (concatenation, OLA). Although the HAP2 with OLA gives even slightly lower mean

RMS log spectral measure than the HCP2 with OLA, it is not very useful because of its high

computational complexity.
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Figure 5.36  Computational complexity for the HAP with the 25th order AR computed from
the time signal corresponding to the spectral envelope (HAP2), and the HCP with 26 cepstral
coefficients computed from the spectral envelope (HCP2) using concatenated synthesis.

Figure 5.37  Computational complexity for the HAP with the 25th order AR computed from
the time signal corresponding to the spectral envelope (HAP2), and the HCP with 26 cepstral
coefficients computed from the spectral envelope (HCP2) using OLA synthesis.
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5.2.4 Comparison of the Cepstral Model and the HCP

Here two approaches to speech modelling based on cepstral description will be compared: the

cepstral model of speech synthesis described in Section 5.1.2, and the harmonic model with

cepstral parametrization (HCP) described in Section 5.2.2. For the cepstral model the original

speech spectrum is used to determine cepstral coefficients, and synthesis is performed by

concatenation of pitch-synchronous frames. In order to make comparison with the same

conditions the HCP1 method with concatenation is used here as a counterpart of the cepstral

model. Both the compared models use 26 cepstral coefficients for 8-kHz sampling and 51

cepstral coefficients for 16-kHz sampling. Although the number of the cepstral coefficients is

the same for both the methods, their values are different as a consequence of different

normalization of the weighting window. In the cepstral model the Hamming window is

normalized using (5.23), while in the harmonic model it is normalized using (5.30). In

Figure 5.38 [108] we can see how to obtain parameters necessary for speech synthesis

according to both the models. Apart from the cepstral coefficients, it is a pitch period L

determined using a clipped autocorrelation function, and a parameter determining an extent of

emphasizing noise at higher frequencies for voiced speech. For the cepstral model, it is a

spectral flatness measure SF (see (5.24) in Section 5.1.2.1), for the harmonic model, it is a

maximum voiced frequency fmax (see Figure 5.28 and description at the end of

Section 5.2.1.4). Output parameters of the cepstral analysis block are used as the input

parameters of the synthesis blocks for both the models.

The cepstral synthesis is performed according to Figure 5.5 in Section 5.1.2. For voiced

speech the excitation pulses with the shape of the impulse response of the Hilbert transformer

are generated in the intervals of the pitch period. To preserve the same phase relations in the

HCP the minimum phases {ϕm
min} are modified using all-pass phase correction. The phase

response of the same Hilbert transformer is sampled at pitch harmonics and these phases are

superimposed to the minimum phases. In this way Figure 5.29 is redrawn and the resulting

block diagram of the HCP with all-pass phase modification is shown in Figure 5.39.
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Figure 5.38  Block diagram of the cepstral analysis.

Figure 5.39  Block diagram of the HCP for one pitch-synchronous synthesis frame using
excitation phase of the Hilbert transformer response.
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line represents the HCP. The logarithmic speech spectra of these three signals are drawn in

lower part of Figure 5.40. Table 5.38 shows mean values of the RMS log spectral measure for

several frames of speech sounds. It is evident that for every speech sound and for both

sampling frequencies, the RMS log spectral measure is higher for the cepstral synthesis than

for the HCP.

Figure 5.40   Input signal, smoothed spectra and RMS values for a 24-ms frame of a vowel
�A� spoken by the male voice.
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mean RMS log spectral measure [dB]
fs = 8 kHz fs = 16 kHz

sound/
number of

frames cepstral synthesis harmonic synthesis cepstral synthesis harmonic synthesis

A/4 3.65 2.49 4.74 2.05
E/4 3.91 2.27 4.44 2.20
I/4 4.51 3.02 4.44 3.18
O/4 4.44 2.78 4.41 3.01
U/4 3.54 2.96 4.00 2.30
M/8 5.39 3.38 6.57 4.03
N/9 4.08 2.64 4.43 2.45
S/9 4.03 3.91 4.16 3.97

Table 5.38  The mean RMS log spectral measure for the cepstral and HCP synthesis.

Figure 5.41  Block diagram for computational complexity of the cepstral model and the HCP.

NC

*)

S1h

segmentation

|FFT|

limitation

min. phase
approxim.

windowing

pitch�period
detection

maximum
voiced frequency

input speech

FS LIFFT

ln spect. flatness
measure

maxf

En

*)*) *✝ )✝ )

*)  input parameters for cepstral synthesis
✝ )  input parameters for harmonic synthesis

✝ )

cepstral synthesis

cepstr. to harm.
transformation

harmonic synthesis

synthesis
pitch-synchronization

output synthetic speechS2c S2h

A0

A1A2c A2h

A3c

A3h

voiced

unvoiced

{ }nc

gain

✝ )

res. energy

excitation
generator

S1c

voiced

unvoiced

NC

NC



98

Computational complexity as well as memory requirements were compared. The memory

requirements are important for practical implementation in another programming languages

(Assembler or C language for digital signal processors). The computational complexity has

influence especially on real time applications (speech coders and decoders, or TTS systems).

The input parameters for the cepstral and harmonic synthesis at 8 kHz and 16 kHz sampling

frequencies are summarized in Table 5.39. Here the first cepstral coefficient c0 is comprised in

En or G. However, it can be realized in opposite way: En or G comprised in c0, as was the

case of the HCP in Section 5.2.2.4.

input parameters necessary for one synthesis frame *)

type of synthesis
fs = 8 kHz Σ fs = 16 kHz Σ

cepstral { } LSsEn Fn ×××× 1 ,1 ,�25 ,1 28 { } LSsEn Fn ×××× 1 ,1 ,�50 ,1 53
HCP { } LfcG n ×××× 1 ,1 ,25 ,1 max 28 { } LfcG n ×××× 1 ,1 ,50 ,1 max 53

*) All the data are considered in the standard format Integer with the length of 2 bytes.

Table 5.39  Analysis to synthesis data transfer vector storage requirements for the cepstral
model and the HCP.

complexity [flops/sample]
block corresponding operations fs = 8 kHz fs = 16 kHz
A0 segmentation, windowing for cepstral model 34.1 34.1
A1 pitch-detection (V/UV) 452.3/452.6 477/477.1
A2c spectral flatness measure 8.1 8
A2h maximum voiced frequency (V/UV) 40.2/0 78.6/0
A3c parameters determination for cepstral model 533.5 570.5
A3h parameters determination for HCP 526.2 563
Σ Ac analysis for cepstral model (V/UV) 1028/1028.2 1089.6/1089.7
Σ Ah total analysis for harmonic model (V/UV) 1056.8/1016.9 1156.8/1078
S1c excitation for cepstral model (V/UV) 8.9/3.4 8.5/3.2
S1h ceps. to harm. parameters transformation (V/UV) 297.8/239.8 443.5/335.4
S2c cepstral synthesis 320 518
S2h harmonic synthesis (V/UV) 238.1/280.1 462.1/560.1
Σ Sc total cepstral synthesis (V/UV) 328.9/323.4 526.5/521.2
Σ Sh total harmonic synthesis (V/UV) 535.9/519.8 905.5/895.5

Table 5.40  Computational complexity at the points corresponding to Figure 5.41.
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Quantitative comparison of computational complexity is shown in Table 5.40. Here,

computational complexity was computed only for one speech frame and related to one sample.

For that reason the block A0 has rather high computational complexity also for the HCP

where the normalized Hamming window is computed only once per processed signal.

Computational complexity of the block A2h was slightly lowered by a simplified assumption

that the local maxima of the spectrum and the local maxima of the residual spectrum are the

same what is not true in general. Computation of the phase response of the Hilbert transformer

in the HCP increases the complexity of the block S1h. Results in Tables 5.39 and 5.40 show

that the storage requirements of both the methods are identical, the computational complexity

of the analysis is similar for both the methods, and the computational complexity of the

harmonic synthesis is about 1.5-times higher than that of the cepstral synthesis.

At present, further improvements and lowering computational complexity of both the methods

are having been worked at.
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6 Conclusion

The thesis deals with evaluation of some parametric methods of speech processing with the

emphasis on the sinusoidal model with harmonically related component sine waves. It

presents improvements of known methods and new algorithms in order to achieve higher

synthetic speech quality. Perhaps the major contribution of this work is a novel algorithm for

speech spectrum envelope determination and its implementation in harmonic modelling with

AR parametrization. Besides, a number of other contributions to different stages of speech

analysis and synthesis using the harmonic model with AR as well as cepstral parametrization

can be found in the thesis. The proposed methods are compared with respect to the spectral

measure, the perceived synthetic speech quality, and the computational complexity.

6.1 Contributions of the Thesis

Almost in all the parts of Chapters 4 and 5, some original contribution can be found, except

for Sections 5.1.1.1 a 5.1.2.

The most important scientific contributions of this thesis may be summarized as follows:

1. New algorithm of speech spectrum envelope determination using the staircase envelope

and considering the spectral behaviour for voiced as well as unvoiced speech frames.

The proposed method of spectral envelope determination can be used for AR as well as

cepstral parametrization. This method outperforms other methods as it is shown to yield

higher objective and subjective performance.

2. Use of the method determining AR parameters from the time-domain signal corresponding

to the spectral envelope instead of the original speech signal.

It has been shown that AR parametrization gives slightly better spectral measure than

cepstral parametrization with the same number of parameters, however, at the expense of

higher computational complexity. Results of the listening tests have justified use of the

RMS log spectral measure for determining perceptual similarity of two speech signals.

3. Use of asymmetric Hanning window during synthesis with overlap-and-adding (OLA)

pairs of consecutive speech frames.
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Comparison of OLA method and simple pitch-synchronous frame concatenation has

shown a considerable decrease in standard deviation of the spectral measure for all the

analysis methods.

4. Original contributions are also in derivation of relations between pitch period precision in

samples and pitch frequency precision in points of FFT, modification of pitch-

synchronization method, use of information theoretic criteria for AR model order

selection, AR model order determination without use of preemphasis, derivation of

number of parameters for the harmonic model and their amplitudes depending on pitch,

experiment with childish voice analysis and synthesis demonstrating considerable

improvement of synthesis using the proposed method of spectral envelope determination.

Contribution is also an approach to gain correction in cepstral parameters determination

directly from the spectrum of original speech signal, and comparison of the harmonic

model with the cepstral model, giving benefit of the harmonic model.

6.2 Future Research Directions

Although many efforts have been made to improve the speech analysis and synthesis methods

in this work as well as in many other authors, there is still room for further improvement and

enhancement. All the methods described in this work may be tested also for 16-kHz sampling.

In all the models perceptual frequency scale can be used. Pitch and time-scale modification

may be applied to a speech signal with further prosody transplantation. Voice conversion, i.e.

modification of a speech signal of one speaker so that it sounds as if spoken by a different

speaker, is also an interesting topic for further investigation. Interesting could also be

comparison of OLA synthesis with asymmetric triangular or trapezoidal window instead of

asymmetric Hanning window used in this work.
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