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System measurement using pseudorandom filtered noise and music sequences is investi-
gated. A single-pass technique is used to evaluate simultaneously the transfer function and the
spectral-domain signal-to-distortion ratio that is applicable to amplifiers, signal processors,
digital-to-analog converters, loudspeakers, and perceptual coders. The technique is extended
to include a simplified Volterra model expressed as a power series and linear filter bank
where for compliant systems, nonlinear distortion can be estimated for an arbitrary excitation
without a need for remeasurement.

0 INTRODUCTION

This paper explores methods of determining a system’s
transfer function using pseudorandom noise applied in a
single-pass process and builds on earlier work by Borish
and Angell [1] and, later, Vanderkooy and Rife [2]. Both
linear and nonlinear distortion is considered, and a sim-
plified method of system identification is introduced that
models a class of system based on a Taylor series, but
where each power term in the series is filtered by a unique
transfer function. The nonlinear kernels of this model form
a subset of a full Volterra model and are extracted here
using concatenated finite noise sequences, a method that
may be considered the dual of the time-domain spectrom-
etry (TDS) approach of Farina [3]. Although this model is
not universal, it can be applied to a range of audio systems
and forms a bridge between input-specific measurements
and formal methods of identification [4]–[6].

As a further extension, techniques are presented using
comb-filtered pseudorandom noise, which allows the si-
multaneous estimation of both linear and nonlinear distor-
tion by determining the distortion residue falling within
the spectral nulls of the excitation. In addition to noise,
alternative audio signals can be substituted to enable the
relationship between signal and distortion to be explored.
Thus by extracting the distortion waveform and using clas-
sic block transform analysis the measurement technique
can be extended to include systems exhibiting dynamic

and perceptually motivated nonlinearity. Finally a graph
depicting both the magnitude transfer function and an es-
timate of the linear error function is presented that offers
a more holistic picture of linear system performance. This
graph preserves the small differences in frequency re-
sponse that are often lost because of limited display reso-
lution and system noise. It also expresses the linear dy-
namic range (LDR) based upon the target signal and
residue resulting from linear system error. Although there
are caveats to this approach, additional insight into system
behavior may be gained where, as an example, a high-
performance CD player is assessed.

The exploitation of noise signals has had a long history
in the field of system measurement [7], [8]. For example,
continuous Gaussian white noise has been used to evaluate
a system’s transfer function and has proved effective be-
cause of its persistent nature and improved measurement
signal-to-noise ratio (SNR). More recently maximum-
length binary sequences (MLSs) [1], [2] have been used
especially for loudspeaker and acoustic measurements. By
selecting a periodic MLS of appropriate length to mini-
mize time aliasing distortion [2], a system’s periodic im-
pulse response can be calculated directly by circular cross
correlation of the measured sequence and the excitation
sequence [1], [2]. An interesting observation when per-
forming MLS-based measurements on a nonlinear system
is that the resultant impulse response includes a broad
distribution of minor impulses [9]. Hence part of the mo-
tivation for the present work is to exploit this phenomenon
and to construct a simplified nonlinear Volterra model of
the system being measured, derived from data extracted
using noise sequences.

*Presented at the 114th Convention of the Audio Engineering
Society, Amsterdam, The Netherlands, 2003 March 22–25; re-
vised 2005 January 14 and February 9.

PAPERS

J. Audio Eng. Soc., Vol. 53, No. 4, 2005 April 275



The techniques described can achieve state-of-the art
measurements that compare favorably with MLS methods
and multitone methods. Indeed by suitable spectral
weighting of the excitation, some of the methods presented
here may be considered a generalization of multitone test-
ing. The principal limitations, as with most systems, lie
with the quality of the converters used; however, the core
processing easily exceeds the resolution of practical audio
equipment. The system was developed from a need to
explore the performance limits of high-performance CD
players, where the aim was to determine the limits of both
linear and nonlinear performance, preferably using a
single-pass measurement. In this application it was also
desirable to have a noise excitation with a uniform prob-
ability density function in order to fully exercise the con-
verters; thus binary MLS was rejected (although it is rec-
ognized that there are filtering techniques that can address
this limitation). Also, it was recognized that Fourier trans-
form techniques were just as effective as the Hadamard
transform often used with MLS. In addition, the methods
have also been used to assess algorithms in desktop audio
editors, such as sample rate converters, of which an ex-
ample is given in Section 4.3 of course in these applica-
tions there is no limitation imposed by converters. The
nature of the techniques applied here is that they are easily
adapted where, for example, the decision to include fine
frequency filtering together with broad-band excitation
was seen as pivotal. Such an approach can be configured
to push a system under test to its performance boundary so
that extremely complex patterns of distortion can be ex-
posed and where, to introduce greater reality, even music-
derived signals may be employed. The work also allowed
several research threads to be merged, including a long-
term personal interest in errors related to linear distortion
and to nonlinear modeling. For example, the measurement
system can be adapted both to excitation-specific system
measurements and to a simplified method of Volterra
identification, where it acts as a bridge between the two
approaches. It also became evident that once spectral-
domain filtering was incorporated to facilitate the segre-
gation of excitation and the resulting distortion, then the
problem of measuring both time-varying and non-time-
varying systems should be addressed. As a result, the pa-
per offers a contribution to both approaches, where by
translating the comb-filtering methodology into the z do-
main it becomes possible to construct a system using
short-term spectral analysis to track dynamic distortion as
encountered, for example, with perceptual codecs.

In the measurement procedures described in this study,
a rectangular windowed noise (or in some cases music)
segment constitutes a frame,1 with several frames then
concatenated to approximate a continuous sequence. An
individual frame may also be equalized to have constant-
magnitude spectrum but random phase over the length N
� 2K (2K − 1 for MLS). Here K is a positive integer for
compatibility with fast Fourier transform (FFT) proce-
dures. Thus most measurement advantages of MLS are

retained. Parallels can also be drawn with multi-sine-
wave testing [10], [11] since a repetitive noise sequence
constitutes a multitone signal, where the fundamental
frequency is the frame repetition rate with harmonics
forming the tones. Consequently if a noise frame is equal-
ized for a flat-magnitude spectrum, then the multiple
tones are of equal amplitude but with random phase
relationships.

All processing described in this paper was written in
Matlab2 running on a PC interfaced to high-quality convert-
ers. The paper therefore adopts Matlab notation to describe
vector operations. Also, to evaluate DVD/CD players (see
example measurement, Section 5), the test signals can be
burnt to CD/DVD, thus eliminating the need for dedicated
test equipment, with further benefits accrued in terms of
convenience as all tests employ a single-pass procedure.

The study commences by describing the noise sequence,
its equalization and transfer function derivation. Consid-
eration is also given to the formation of a composite test
sequence and factors pertaining to the selection of frame
length. In all measurement variants discussed it is assumed
that analog-to-digital converter (ADC) and digital-to-
analog converter (DAC) sampling rates are synchronized
as this is critical to proper transform analysis in relation to
frame size. Nonsynchronous operation is not considered in
this study since both incurred processing errors and reme-
dial windowing artifacts reduce measurement precision.
Where a CD/DVD player is used either as an excitation
source or for its evaluation, the ADC is slaved to the
player sampling rate via the standard Sony/Philips digital
interface (S/PDIF).

1 LINEAR SYSTEM IDENTIFICATION USING
PSEUDORANDOM NOISE

The core technique exploited this study to measure a
system’s transfer function is based on a repetitive equal-
ized noise sequence (that is, pseudorandom noise), where
a noise sequence must be generated with a duration greater
than the time over which a system’s impulse response
h(t) remains significant. The noise sequence is defined in
discrete time, where Nyquist sampling theory determines
the sampling rate as a function of bandwidth. Conse-
quently measurement accuracy is bounded by both time
[2] and frequency [12] aliasing distortion. The noise se-
quence is concatenated to form repetitive frames with no
interframe guard bands. It then follows that to extract
spectral information, only sampling-rate synchronization
is required; exact frame synchronization, although benefi-
cial, is not mandatory, provided the frame size is known,
as the transforms used are circular. Consequently a
sample-rate synchronized ADC captures the output re-
sponse of the system being tested and the frame detection
achieved both by counting the frames of 2K samples and
using a synchronization preamble embedded in the test
sequence.

Consider a noise vector noise(n) with rectangular prob-
ability density function, generated over N � 2K samples,

1A frame is defined here as a finite set of uniform samples
represented as a vector. 2Matlab is a trade name of Mathworks, Inc.
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where K is a positive integer and n is the vector [1:N].
Expressed in Matlab notation,

noise(n) � rand(1, N). (1)

The frequency-domain noise sequence noisef(n) is calcu-
lated using a one-dimensional FFT. Thus if fft(noise(n)) is
the length-N discrete Fourier transform of the sequence
noise(n), where N is the length of the sequence noise(n),
then

noisef(n) � fft(noise(n)). (2)

A time-domain excitation sequence test(n) with constant-
magnitude spectrum but random phase is then determined
using spectral normalization and the inverse Fourier trans-
form, where3

test(n) � real(ifft(noisef(n)./(� + abs(noisef(n))))). (3)

Although processing using the inverse Fourier transform
should in this application return only real numbers, com-
putational errors result in small but finite imaginary terms,
which is not the norm for time-domain sampled data and
is unacceptable when writing a wav file. Hence only the
real part of the transform is selected both here and in later
inverse transform operations. In addition, the real function
also halves the vector storage requirement as the small
nonzero imaginary elements are deleted. Also, a constant
� (say 10−12) is introduced to eliminate small-number di-
vision anomalies in the spectral normalization process.
Alternatively this potential problem can be avoided com-
pletely by using a complex exponential function testf(n)
with random phase to guarantee an exactly constant mag-
nitude spectrum,

testf(n) � exp(i*angle(fft(noise(n)))) (4)

that is, |testf(n)| � 1. The corresponding time-domain vec-
tor test(n) then follows as

test(n) � real(ifft(testf(n))). (5)

In practice, because the test sequences have to be gener-
ated only once, it is prudent to sift a number of computed
examples in order to seek a sequence with low crest factor
such that the measurement SNR can be enhanced. A com-
posite repetitive excitation pattern of test(n) is then con-
structed, as shown in Fig. 1, which includes both a zero
pulse preamble and an embedded synchronization se-
quence defined as [0 0 0 . . . 0 0 0 0 1 1 −1 −1 0 0 0 0].
Hence by using cross-correlation-based detection the com-
mencement of the recovered test sequence can be detected
to sample accuracy. Finally the composite sequence is
peak amplitude normalized, quantized to the required bit

depth, and converted to a two-channel linear pulse code
modulation (LPCM) wav file for subsequent outputting to
the system under test, typically via a 96-kHz, 24-bit DAC.

The measured data are captured using a sample syn-
chronized ADC, where following frame synchronization a
data frame output(n) is extracted. Taking testf(n) from Eq.
(4), the complex transfer function TF(n) of the system is
then calculated using element-by-element division,

TF(n) � fft(output(n))./testf(n). (6)

The magnitude response M(n) and the phase response P(n)
then follow as

M(n) � abs(TF(n)) and P(n) � angle(TF(n))
(7)

and the system impulse response h(n) as

h(n) � real(ifft(TF(n))). (8)

Alternatively, if excess phase information is not required,
then the magnitude response of the spectrum may be cal-
culated directly from output(n) since the excitation was
normalized to a constant-magnitude spectrum. The mini-
mum-phase impulse response hmin(n) then follows from
the Hilbert transform [13],

hmin(n)
� real(ifft(exp(conj(hilbert(log(abs(fft(output(n))))))))).

(9)

However, if frame synchronization is not achieved, then
because of circularity and repetitive noise frames, the true
impulse response can still be derived, but within an arbi-
trary time shift. A key factor in this process is for the noise
frame to exceed the duration of h(n). Otherwise the circu-
lar nature of the test procedure allows time aliasing dis-
tortion, which is a fundamental and irreversible measure-
ment distortion. With this proviso then, for a linear system,
this procedure creates an exact model within the con-
straints of measurement bandwidth and sampling rate. In
the next section the process is extended to include approxi-
mate nonlinear identification employing a simplified Vol-
terra model.

2 NONLINEAR SYSTEM IDENTIFICATION USING
PSEUDORANDOM NOISE

Farina [3] has reported a TDS-based scheme to identify
mildly nonlinear systems in terms of a simplified Volterra
model. An alternative measurement procedure is described
here using pseudorandom noise similar to that presented in
Section 1. The model is appropriate for stationary nonlin-
ear systems with memory where Volterra kernels ex-
pressed as impulse responses encapsulate higher order fre-
quency dependence. However, only powers of the input

3See Matlab glossary in Appendix A for a definition of
operator “.”

Fig. 1. Test signal structure with preamble and synchronization sequence.
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sequence are included whereas cross-product terms inher-
ent in the full Volterra model are ignored. As such the
method is positioned between input-specific measure-
ments and a fully populated Volterra model that can pre-
dict the output response to a generalized excitation [14]–
[16]. Also as a corollary, linearity can be tested as linear
and nonlinear responses are segregated.

2.1 Volterra Modeling
The general Volterra model linking input vector x(n)

to output vector y(n) is described by M-dimensional
convolution,

y�l�|
l=1

N

= �
r=1

M

�
r=1

N−1

· · · �
r=1

N−1

hr�i1, i2, . . . , ir�

� x�l − i1�x�l − i2� · · · x�l − ir� (10)
where N is the memory length of the filters. Consequently
the general Volterra model requires a large number of
coefficients to populate a multidimensional space as
unique impulse responses are associated with all the con-
volutional combinations of power and cross-product
terms. However, in the simplified representation the only
convolutions included are those associated with powers of
the input sequence.

Consider a nonlinearity where output vector y(n) is re-
lated to input vector x(n) by a power series of order M,

y�n� = a0 + a1x�n� + a2x�n�.^2 + · · · + ar x�n�.^r + · · ·

+ aMx�n�.^M

= �a0 a1 a2 . . . aM�.*�1 x�1� x�2�2 . . . x�n�r . . . x�n�M�

= �a�.*�1 x�1� x�2�2 . . . x�n�r . . . x�n�M�. (11)
To identify this memoryless system fully, only the M co-
efficients [a] need to be determined. However, for the
simplified Volterra model with memory the [a] coeffi-
cients associated with each term in the power series trans-
late to a set of M impulse responses [h(n)], reducing the
M-dimensional convolution4 in Eq. (10) to just

y�n� = h0 + h1�n� � x�n� + h2�n� � �x�n�.^2� + · · ·

+ hr�n� � �x�n�.^r� + · · ·

+ hM�n� � �x�n�.^M�. (12)
In Eq. (12) h0 is the dc term and h1(n) is the linear system
impulse response, while for r � 2, . . . , M, hr(n) describes
the respective impulse responses relating to the power
terms x(n).^r. Because the Volterra model described by
Eq. (12) contains M impulse responses, M independent
noise sequences are required in the identification proce-
dure, although vectors are transformed into the frequency
domain to allow simpler element-by-element multiplica-
tion rather than time-domain convolution.

2.1.1 Vector and Transform Notation
For an M-dimensional system xs

r(n) represents an input
vector r where each element is raised to the power s, yr(n)

is output vector r, and hr(n) is an impulse response r. The
corresponding Fourier transforms Yr , Xr,s, Hr are then
defined,

Yr = fft�yr�n��, Xr,s = fft�xr
s�n��, Hr = fft�hr�n��.

In the following analysis vectors are transformed between
time and frequency domains to transmute convolution to
element-by-element multiplication. Consider M Fourier-
transformed vectors Yr derived from M uncorrelated exci-
tation noise vectors Xr,1 and applied successively to Eq.
(12) to form M equations, that is,

Y1 = H0 + H1.*X1,1 + H2.*X1,2 + · · · + Hr .*X1,r + · · ·

+ HM.*X1,M

Y2 = H0 + H1.*X2,1 + H2.*X2,2 + · · · + Hr .*X2,r + · · ·

+ HM.*X2,M

···
YM = H0 + H1.*XM,1 + H2.*XM,2 + · · · + Hr .*XM,r + · · ·

+ HM.*XM,M.

Rewriting in matrix form,

�
Y1 − H0

Y2 − H0
···

YM − H0

�
= �

X1,1 X1,2 · · · X1,M

X2,1 X2,2 · · · X2,M
···

···
···

XM,1 XM,2 · · · XM,M

� .*�
H1

H2
···

HM

� (13)

that is,

[Y] � [X].*[H]. (14)

In Eq. (13) H0 is the output dc offset. It is measured when
the input signal is zero and the system quiescent. To de-
termine impulse responses [H], define [Z] � [X]−1 (see
Appendix B.1 for inversion), whereby the decoding matrix
equation expressed in terms of M measured output vectors
becomes

[H] � [X]−1.*[Y] � [Z].*[Y]. (15)

Eq. (15) describes an input-specific decoding key, where
[Z] is related uniquely to the set of M noise vectors and has
to be calculated only once. This simplifies computation,
since a typical [M, M, N] matrix for M � 8 and N � 214

contains 220 complex elements. To complete the analysis
the set of Volterra impulse responses [h] follow from the
inverse fast Fourier transform of matrix [H], where

[h] � real(ifft([H])). (16)

2.2 Test Sequence Generation
In performing a system measurement it is critical for

each of the M noise vectors to have the same relative level.
To facilitate this requirement, a composite signal is con-
structed where each noise vector is repeated four times to

4Although not a Matlab operator, the symbol � represents
circular convolution.
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form a subframe, then all M subframes are concatenated
into a single sequence. Subframes containing repeated se-
quences allow convergence to a pseudoperiodic output
signal and introduce a margin against subframe misalign-
ment within the decoder. Repeated frames also enable
noise averaging to be applied to improve SNR. A pre-
amble and synchronization sequence is then added similar
to that described in Section 1 to facilitate demultiplexing
of the M sequential system responses. Consequently all M
sequences are processed almost simultaneously in a single
measurement so differential gain errors are eliminated.

2.3 Volterra Modeling Validation
To validate the Volterra modeling scheme the compu-

tational process is divided into three routines (discussed in
Appendix B.2 and B.3) and then applied to two nonlinear
examples.

• An M-vector composite test sequence is generated and
the three-dimensional decoding matrix [X] inverted to
[Z] as a one-off calculation.

• Two example simulations are performed on a stationary
nonlinearity, with and without memory.

• Output data are analyzed and Volterra responses com-
puted using Eq. (15).

1) Nonlinearity without Memory. The first example
system employs just a power series as described by Eq.
(11), where the excitation is processed sequentially,
sample by sample. The coefficient matrix [a] of the series
is selected arbitrarily and the performance of the decoding
algorithm evaluated by comparing the amplitude of the
Volterra frequency-domain responses to [a]. For this
memoryless case each Volterra response has constant am-
plitude, assuming no measurement channel filtering. The
selected coefficient values for M � 8 are

[a] ≡ [0 1 0.001 0.05 0.0002 0.02 0.0005

0.05 0.001].

2) Nonlinearity with Memory. The second example, de-
picted in Fig. 2 for M � 8, adds a set of linear low-pass
output filters applied to each power term of the nonlinear
series described by Eq. (12). All eight filters have brick-
wall responses with respective cutoff frequencies of 16,
14, 12, 10, 8, 6, 4, and 2 kHz.

Volterra analysis was applied to each nonlinear system,
where N � 215. For the memoryless case the eight derived
Volterra frequency-domain responses are shown in Fig. 3,
those for the second example with memory are shown in
Fig. 4. Results correspond to theory within the bounds of
measurement noise where all responses match those pre-
selected, including correct identification of the eight brick-
wall filter responses.

3 NONLINEAR DISTORTION ESTIMATION
USING COMB-FILTERED NOISE SEQUENCES

It is known that nonlinear systems when excited by
broad-band signals produce complicated spectral patterns

of intermodulation distortion [9]. Section 2 exploited this
phenomenon in Volterra identification. In this section it is
shown that a combination of noise excitation and comb
filtering enable distortion and signal to be partially sepa-
rated, thus allowing simultaneous estimates of both linear
and nonlinear distortion. The proposed spectral interleave
technique takes inspiration from both Belcher [17] and
techniques of multitone testing [10], [11].

3.1 Evaluation of Spectral Interleave
Measurement System

The measurement procedure developed in Section 1 is
extended to include frequency-domain comb filtering by
introducing an interleave-mask function intf0(n). The
mask forces regions of zero spectral energy in the excita-
tion sequence and is also used in measurement analysis to
segregate signal and distortion. Applying the frequency-
domain vector testf(n) with constant magnitude and ran-
dom phase from Eq. (4), the frequency-normalized and
comb-filtered test sequence testint(n) becomes

testint(n) � real(ifft(intf0(n).*testf(n))). (17)

Two interleave-mask options were incorporated for fre-
quency domain filtering:

1) Alternating binary sequence . . . 010101 . . . to create
a regular pattern of active and zero frequency bins.

2) MLS to create a random pattern of active and zero
spectral bins.

To construct a frequency-domain mask that takes proper
account of the sampled-data format of the excitation, ap-
propriate spectral symmetry is required about the half-
sampling frequency, where if N is the number of samples
in the noise sequence,

intf0(1:N) � [0 intf0(1:N/2 − 1) 0 intf0(N/2 − 1:−1:1)].
(18)

Hence if mdata(n) is measured data windowed precisely to
match the excitation sequence, then applying testf(n) from
Eq. (4), the system frequency response GF(n) is extracted as

GF(n) � intf0(n).*[fft(mdata(n))./testf(n)] (19)

Fig. 2. Simplified Volterra model based on Eq. (12).
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while the distortion spectrum DF(n) is obtained using the
complementary mask, where

DF(n) � [ones(1,N) − intf0(n)].*[fft(mdata(n))./testf(n)].

(20)

In practice vector lengths up to N � 220 have been used
successfully without experiencing computational prob-
lems in the Matlab FFT. This represents an excitation
repetition period of approximately 23.77 second at a sam-
pling rate of 44.1 kHz, corresponding to a frequency-bin

Fig. 3. Volterra frequency-domain responses for nonlinear system without memory.
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spacing of 0.042 Hz. Because of the fine frequency reso-
lution achievable, precise sampling rate synchronization is
mandatory; otherwise spectral leakage into adjacent bins
introduces false estimates of distortion.

3.2 Noise Averaging and Full Spectral
Resolution Using Multiple Frames

Because excitation sequences are quasi repetitive, it is
straightforward to capture a number of consecutive frames
and perform noise averaging to improve the measure-
ment SNR, where the theoretical noise improvement
SNR(N)|imp for � averaged frames is

SNR(N)|imp � 10log10(�). (21)

However, once multiple frames are used, two sets of
frames can be constructed using complementary interleave
masks, where, for example, four frames are assigned a
normal interleave mask while a subsequent four frames are
assigned a complementary interleave mask. Hence a single
compound measurement sequence enables measured data
to be gathered where the respective frequency bins as-
signed to frequency response and distortion estimation are
interchanged. The two sets of data from successive groups
of frames can then be segregated temporally and subse-
quently merged to produce noninterleaved full-resolution
spectra for both the transfer function GFfull(n) and distor-
tion DFfull(n) as follows.

Let the transfer function and the distortion spectra de-
rived from the first set of measured sequences mdata1 be

GF1�n� = intf0�n�.*�fft�mdata1�n��.�testf�n�� (22)

DF1�n� = �ones�1,N� − intf0�n��.

*�fft�mdata1�n��.�testf�n�� (23)

and from the second set of measured sequences mdata2,

GF2�n� = �ones�1,N� − intf0�n��.

*�fft�mdata2�n��.�testf�n�� (24)

DF2�n� = intf0�n�.*�fft�mdata2�n��.�testf�n��. (25)

The full-resolution spectra GFfull(n) and DFfull(n) are then
calculated,

GFfull�n� = GF1�n� + GF2�n� (26)

DFfull�n� = DF1�n� + DF2�n�. (27)

The corresponding non-comb-filtered time-domain peri-
odic sequences outf(n) and distf(n) follow from the inverse
fast Fourier transform as

out f�n� = real�ifft�GFfull�n��� (28)

dist f�n� = real�ifft�DFfull�n���. (29)

To gain additional insight into this process, including in-
herent time smearing of both excitation and retrieved dis-
tortion sequences which results from comb filtering, Ap-
pendix B.4 presents a time-domain description of the
measurement process.

3.3 Examples Using Comb-Filter
Measurement Procedure

To evaluate the measurement system incorporating
comb filtering, three example systems were simulated. In
each of these tests the excitation sequence used 44.1-kHz
sampling with 16-bit resolution.

3.3.1 Linear Filter
A linear filter was simulated, where the frequency re-

sponse had two linear segments located above and below
1 kHz, with the attenuation peaking at 4.5 dB. Fig. 5 shows
the simulation results, where the correct amplitude response
has been obtained and where all “zero bins” contain only
quantization noise, thus confirming system linearity.

3.3.2 Nonlinearity, No Filtering
The second example used a memoryless nonlinearity

defined by

y(n) � x(n) + 0.01x2(n). (30)

Fig. 6(a) shows both the magnitude frequency response and
the intermodulation distortion, where the peak distortion is

Fig. 3. Continued
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about 40 dB below the input sequence. In this diagram the
frequency response appears almost as a straight line, al-
though with closer scrutiny Fig. 6(b) reveals the magnitude
spectrum to have noiselike deviation about unity created
by the noise excitation interacting with the nonlinearity.

3.3.3 Nonlinearity with Filtering
The third example employs the same nonlinearity as

used in Section 3.3.2, but with the inclusion of a sixth-
order Chebyshev low-pass filter with a 5-kHz bandwidth.

Fig. 4. Volterra frequency-domain responses for nonlinear system with memory.
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Three cases were simulated: 1) filter only without nonlin-
earity; 2) filter located before the nonlinearity; 3) filter
located after the nonlinearity.

Derived magnitude responses and distortion spectra for
these three cases are shown in Figs. 7–9. The results for
just the filter confirm accurate identification of the transfer
function, with low distortion levels and only mild levels of
noise shaping and progressive spectral corruption as the
filter gain approaches the measurement noise floor. When
the nonlinearity is positioned after the filter, Fig. 8 now
reveals frequency-shaped distortion that follows the at-
tenuation characteristic of the low-pass filter. Finally, Fig.
9 shows again the filter response, but here the filter pre-
dictably band-limits the broad-band distortion created by
the nonlinearity.

4 SYSTEM TESTING USING MUSIC SIGNALS

This section investigates three nonlinear system ex-
amples using a periodic music excitation combined with
the procedures described in Sections 1 and 3. The first is
a memoryless nonlinearity, the second an MP3 codec, and
the third a desktop editor sampling-rate converter. The
rationale for choosing music is that certain nonlinear audio
systems such as perceptual codecs produce excitation-
specific distortion critical to their operational philosophy.
Also, because system modeling is nonfeasible for many
classes of nonlinearity, the relationship between excitation
and distortion to auditory masking [18] establishes the
foundation for perceptually motivated objective analysis
(see Holler et al. [19], [20]). Two variations of the mea-

Fig. 5. Measured amplitude response and distortion spectrum of linear filter.

Fig. 4. Continued
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surement system are presented. The first, described in
Section 4.1, uses a full-frame music sequence combined
with comb filtering, with the spectral analysis applied
full frame, a technique better suited to non-time-varying
systems. In the second variation, presented in Section
4.2, the test sequence is modified so that signal excitation
and distortion generation become uniquely localized in
time. Also spectral analysis of both excitation and dis-
tortion is applied to overlapping data blocks of a duration
of typically 25 ms. These two expedients enable the mea-
surement system to be applied to time-varying systems
and thus include, for example, perceptual codecs. The

objective is to display how the short-term excitation
spectrum tracks the short-term signal distortion, thus fa-
cilitating the inclusion of more sophisticated masking
models to enable formal perceptually motivated analysis.
In the example presented in Section 4.2, a short zero sig-
nal segment is embedded in the input in order that a
corresponding null in the distortion spectrum can be ob-
served to validate correct temporal linkage between exci-
tation and distortion. Also, in order to gain greater insight
into how the comb filters are visualized in the time do-
main, Appendix B.4 presents a z-domain analysis of the
overall process, including signal generation, comb filter-

Fig. 6. (a) Distortion derived using memoryless nonlinearity. (b) Noiselike magnitude frequency response for memoryless nonlinearity.
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ing, and data analysis, whereas Appendix B.5 describes
the method of block-based Fourier analysis used to form
the three-dimensional spectral temporal-frequency output
displays.

4.1 Memoryless Nonlinearity Evaluated Using
Music Excitation

For comparison, the same nonlinearity as used in Sec-
tion 3 was tested with music [see Eq. (30)] and comb-filter

processing. However, the excitation consisted now of an N
� 220 sample sequence of music, requantized with dither5

from 16 to 24 bit to extend measurement resolution. Fig.
10 shows both full-frame signal and distortion spectra.
Interestingly here the distortion spectral envelope is re-
vealed to be similar to that of the music signal.

5Dither is set at the 16-bit level, generated to 32-bit resolution.

Fig. 7. Spectral results derived using full-resolution interleave procedure for low-pass filter.

Fig. 8. Spectral results derived using full-resolution interleave procedure for low-pass filter followed by memoryless nonlinearity.
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4.2 Perceptual Codec Evaluated Using
Music Excitation

Two illustrative measurements were performed on an
MP3 codec operating at 192 kbit/s. The first was based on
spectral interleave analysis, whereas the second adapted
the nonfiltered procedure of Section 1 to extract true dis-
tortion using a finely calibrated difference technique.

When applying spectral analysis across a whole music
frame, as in Section 4.1, although the magnitude response
is a faithful average assessment, the distortion spectrum is
unrealistic because with perceptually motivated coding the
error spectrum undergoes dynamic modulation in an at-
tempt to match the masking behavior of the human audi-
tory system. However, a more representative performance
evaluation can be solicited by applying short-term spectral

Fig. 9. Spectral results derived using full-resolution interleave procedure for low-pass filter preceded by memoryless nonlinearity.

Fig. 10. Music signal and distortion spectra for memoryless nonlinearity.
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analysis (see Appendix B.5) to the measurement time-
domain output sequences outf(n) and distf(n) derived from
Eqs. (28) and (29).

4.2.1 MP3 Codec Example Evaluation Using
Comb-Filter Analysis

For a measurement to have relevance in the context of
a perceptual codec, distortion and signal must be coherent
in time. In practice this condition is not met when spectral
interleaving and full-length test sequences are used as
comb filtering introduces circular time dispersion to both
the excitation and the subsequently recovered distortion
(see Appendix B.4). However, by applying a rectangular
window to force frame samples in the range N/2 to N to
zero in the music source, the following changes arise:

1) Eq. (47) forces test1(1:m/2) � test1(1 + m/2:m) with-
out time-aliasing distortion.

2) The codec now experiences the test sequence twice in
each analysis frame, but because of the stochastic pro-
cesses within a perceptual codec the distortion generated in
each repeated sequence should be similar in terms of its
spectral envelope but lacking coherence due to phase
noise; thus dist1(1:m/2) � dist1(1 + m/2:m).

3) In decoding distortion, although Eq. (50) implies
a zero result if the distortion waveform were repeated
precisely when the excitation is repeated, noncoherence
implies that a significant fraction of the distortion is
retrieved.

4) As a corollary, if Eq. (50) yields a low output in-
compatible with the expected level of distortion, this im-
plies coherence and actually reveals poor randomization of
coding artifacts.

By way of example, Fig. 11 shows spectral-domain re-
sults for output and distortion for an MP3 codec at 192
kbit/s. A short zero-level gap was included within the
music sequence to confirm the temporal coincidence of
signal and distortion. This zero signal segment is clearly
resolved in both spectral displays.

4.2.2 MP3 Codec Example Evaluation Using
Difference Test

To eliminate problems of time dispersion using comb
filters and to allow the full vector sequence to be used in
analysis, the system was adapted to enable the input–
output error to be determined. The measured signal vector
of length N was recovered as described in Section 1, and
both excitation and measured vectors were normalized to
have identical standard deviation. Circular correlation to-
gether with circular data shifting was then used to achieve
precise time alignment and to correct for time delay in
the codec, allowing true distortion to be calculated by
subtraction.

The measured data and derived distortion are finally
processed to produce a dynamic spectrum using the same
block analysis as in Section 4.2.1 (see Appendix B.5). The
spectral-domain result for the distortion (using the same
music segment with a zero gap to facilitate comparison) is
shown in Fig. 12(a) whereas Fig. 12(b) presents the cor-
responding plot of signal spectrum minus distortion spec-
trum [see Eq. (60)]. Although the details of the distortion

spectra derived using the two techniques differ, a similar
form is evident.

4.3 Desktop Audio Editor
Sample-Rate Conversion

As an example of the use of the comb-filter-based mea-
surement system to evaluate algorithms within a desktop
audio editor, the procedure was applied to both integer and
noninteger sample-rate conversion. The exploration had
two stages of sample-rate conversion and converted audio
data initially at 44.1 kHz in two directions, such that the
output file sampling rate returned the same rate as the
input file. The input frame length had 220 samples and thus
gave a frequency resolution of about 0.042 Hz. The results
are shown in Fig. 13. It can be seen that for integer
sample-rate conversion there is virtually no distortion evi-
dent whereas for the noninteger conversion, apparent high-
level distortion has been generated. In fact the distortion
remained low in both cases, but the algorithm introduced
small block-based frequency shifting errors during con-
version due to the noninteger conversion ratio. Thus signal
frequency-dependent spillage into the adjacent null bands
was resolved, as shown in Fig. 13(b).

5 GRAPHICAL DISPLAY OF SMALL
RESPONSE ERRORS

To conclude the discussion on system measurement,
this section describes a means of representing small fre-
quency-response deviations more accurately. As an illus-
tration, consider a discrete echo of time delay �echo and
relative amplitude �echo, where the discrete frequency-
domain transfer function G(n) of the system is

G(n) � 1 + �echo * exp (−i2�nf0�echo) (31)

with f0 being the block repetition frequency of the excita-
tion sequence and n � 1:N. The magnitude response
shows periodic frequency variation, where the peak-to-
peak response variation DevdB about the target response is

DevdB � 20 * log10 ((1 + �echo)/(1 − �echo)). (32)

Table 1 expresses DevdB as a function of �echo. If pre-
sented graphically, as �echo << 0 dB, it becomes progres-
sively more difficult to discern DevdB and therefore to
extract the true character of the error, implying that fine
detail may be lost and measurement data misrepresented.
To improve the representation of small response devia-
tions, an error function E(n) is defined in terms of the
measured transfer function G(n) and the target function
T(n),

G(n) � T(n).*(1 + E(n)). (33)

Fig. 14 shows a representation of Eq. (33), where the error
function can be referred to either the input or the output of
the system. In practice, to impart more performance infor-
mation, both amplitude response and error function can be
plotted on the same graph, where the distance between
traces forms a measure of LDR. As an example, Fig. 15
shows a three-dimensional plot of the frequency response
and the error response resulting from the single echo. It
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can be seen that although frequency response deviations
become harder to discern as the echo level is reduced, the
error information is retained in the error function plot.

To use the LDR display when the target system is un-
known requires frequency response estimation. It is as-
sumed that the target response, although not necessarily
flat, is characterized by a smooth curve allowing, for ex-
ample, spline interpolation to form a smooth curve fit to a
frequency subsampled (typically a factor in the range 32 to
256) version of the measured amplitude response. To cir-
cumvent phase problems, a magnitude-based error spec-
trum referred either to the input or to the output may be

defined in terms of the actual measured spectrum and
smoothed spectrum as follows:

magnitude error spectrum|dB,input

= 20 *log10�10−10 + abs�abs�G�n�� − abs�T�n���� (34)

magnitude error spectrum|dB,output

= 20 *log10�10−10 + abs�abs�G�n��.� abs�T�n�� − 1��.
(35)

As a final evaluation example, a CD player with integral
upsampling was measured [21] using the test procedures
described in Section 1. Fig. 16 shows both the magnitude

Fig. 11. MP3 codec performance at 192 kbit/s derived using interleave filter. (a) Codec output spectrum. (b) Codec distortion spectrum.
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frequency response (top trace) and the error function
(lower trace) presented on a common graph, where the
target response was estimated using spline interpolation.
The space between the two traces defines the LDR of the
CD player. Response errors result from both quantization
artifacts and frequency ripple within the interpolation fil-
ters used within the DAC. Fig. 17 shows the actual input
minus output spectral error, confirming that ripple close to
the noise floor is resolved and also demonstrating the ac-
curacy achieved by the measurement system. (Note that
some spectral lines below 2 kHz are believed to be low-
level interference and not related to the system under test.)

6 CONCLUSIONS

A PC-based measurement system has been described
that exploits either pseudorandom noise or music and
where measurement accuracy is bounded mainly by exter-
nal converter performance. In addition to transfer function
and distortion measurements, the scheme included a sim-
plified Volterra model as a method of nonlinear modeling
where, although not universal, it forms a compromise be-
tween full system identification and measurement-specific
assessment techniques. The procedures were examined us-
ing a number of linear and nonlinear examples, where

Fig. 12. MP3 codec performance at 192 kbit/s derived using true difference test. (a) Codec distortion spectrum. (b) Codec signal
spectrum minus distortion spectrum.
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resolution and accuracy were confirmed and insight was
gained into the way the distortion was spectrally shaped
according to excitation spectrum and nonlinearity.

The testing regime was extended to include comb filters
in both signal generation and data analysis. This allows
signal and distortion to be separated within the frequency
domain, enabling estimates of frequency response and dis-
tortion to be made with a single-pass measurement. Also,
by including complementary comb filters and excitation
virtually full measurement resolution is achieved with
minimal filtering artifacts present in the recovered output
signal. The use of a single-pass test signal is important, not
only to save time, but to minimize effects of gain drift that
otherwise contribute to measurement error.

Methods were also reported using music sequences for
system evaluation, and two example applications were
presented. In particular, the opportunity to evaluate time-
varying systems such as perceptual-based codecs was de-
scribed, where standard block-based analysis was included

to enable time-varying spectral distortion and signal-to-
distortion information to be displayed.

In applying these techniques there are three principal
caveats to be observed.

Caveat 1 As with MLS measurement systems, the
analysis is based on circular transforms, and it is critical
for the excitation sequences to have a duration that ex-

Fig. 13. Error spectra derived using music signal excitation and
interleave processing for sampling-rate conversion. (a) Integer-
ratio sampling-rate conversion. (b) Non-integer-ratio sampling-
rate conversion.

Fig. 14. Transfer function with error referred to both output and
input.

Table 1. Peak-to-peak (dB) deviation as a function of
echo amplitude.

Echo (Error) Level
(dB)

Peak-to-peak
Frequency
Response

Variation DevdB

−10 5.6884
−20 1.7430
−30 0.5495
−40 0.1737
−50 0.0549
−60 0.0174
−70 0.0055
−80 0.0017
−90 5.4934e-004

−100 1.7372e-004
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ceeds the time over which the measured system’s impulse
response remains significant. Because of time-aliasing dis-
tortion it is not possible to reduce the excitation period and
then apply window functions as the source is repetitive.
However, the recorded measurements do capture the full
impulse response and as such do not show windowing
artifacts. Of course, if a loudspeaker system is measured,
then the standard practice of windowing the derived total
impulse response to eliminate reflections can be applied.
However, the duration of the test sequence must exceed
not only the loudspeaker impulse response but also the
effect of room reflections and subsequent reverberation.

Caveat 2 A second factor is the requirement for exact
sampling-rate synchronization of the test source and the
ADC used to capture the measured response. This is es-

pecially critical when comb filters are incorporated as
otherwise spectral spillage degrades the separation of dis-
tortion and transfer function data. All analyses and discus-
sions presented have assumed sampling-rate synchroniza-
tion. However, the need for precise frame alignment is less
important as multiple sequences are output and transform
circularity applies. Thus framing error just adds uncertain
delay to measured impulse responses but has no effect on
magnitude transfer functions.

Caveat 3 The process of comb filtering allows the
separation of some of the intermodulation distortion. How-
ever, the filters viewed in the time domain introduce cir-
cular time dispersion where the excitation is effectively
repeated twice and also overlaid with the existing se-
quence. This is not a problem when just making an input-

Fig. 15. LDR spectral plot for system with single echo path.

Fig. 16. Frequency response and magnitude error function for CD player.
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specific distortion estimate. However, where time coher-
ence is important, as with perceptual coding, this approach
must be used with caution. This aspect was discussed in
detail, and an absolute difference method was included for
precise distortion analysis.

Finally, to complement the measurement schemes, two meth-
ods of enhanced data display were discussed. For linear distor-
tion, a graph combining both frequency response and error func-
tion was proposed. In Section 5 this was shown especially
suitable for cases where small response deviations occur,
whereas for systems such as loudspeakers it is less suitable as
the error function is relatively large. A classic three-dimensional
spectral display was also included because of its relevance to
perceptual codecs.

Using the system in a number of applications, the tech-
nique has proved to be an accurate and sensitive instru-
ment to extract performance parameters. Also, it has en-
abled insight to be gained about the relationship between
excitation and distortion spectra for a range of nonlineari-
ties. For example, when a nonlinear system is tested using
noise, then small frequency-response irregularities appear
because the distortion is noiselike. When these small de-
viations are analyzed using the error function and LDR
display described in Section 5, then the assessment of
transfer function and distortion compares favorably with
that derived using the comb-filter process in Section 3.
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APPENDIX A
COMMON MATLAB NOTATION
AND OPERATORS

a + ib, complex number, where i = �−1

x�n� = �x�1� x�2� . . . x�r� . . . x�N��,

vector definition

1:N = �1 2 . . . r . . . N�,

vector with simple arithmetic progression

Element-by-Element Processing
The following three functions use the dot operator to

describe an element-by-element process as distinct from

conventional matrix operators. The definitions define the
operations:

x�n�.*y�n� = �x�1� y�1� x�2� y�2� . . . x�r� y�r�

. . . x�N� y�N��, element-by-element

multiplication of vectors x�n� and y�n�

x�n�.�y�n� = �x�1��y�1� x�2��y�2� . . . x�r��y�r�

. . . x�N��y�N��, element-by-element

division of vectors

x�n�.^M = �x�1�M x�2�M . . . x�r�M . . . x�N�M�,

each element in x�n� is raised to the power

of M

fft�x�n��, fast Fourier transform of vector x�n�

ifft�x�n��, inverse fast Fourier transform of vector x�n�

real�a + i*b� = a, real part of a complex number

abs�x�n�� = �|x�1�| |x�2�| . . . |x�r�| . . . x�N�|�,
magnitude value of each element

rand�1,N�, vector, N random elements 0 to 1,

rectangular probability distribution

function

ones(1,N), vector of length N with unit elements

zeros(1,N), vector of length N with zero elements

APPENDIX B

B.1 Three-Dimensional Matrix [X] Inversion
Because [X] is a three-dimensional complex matrix

(with, for example, 8*8*215 coefficients), inversion is per-
formed individually for each discrete frequency in the
Fourier transforms. This sequential process is relatively
time consuming. However, it is undertaken only once for
a given set of M noise vectors. The inversion is required
for decoding by Eq. (15). Recalling that the inverse M × M
matrix [X]−1 is [Z], then for frequency-domain bin x, [Z(x)]
follows,

�Z�x�� = �X�x��−1

= inv�
X1,1�x� X1,2�x� · · · X1,s�x� · · · X1,M�x�

X2,1�x� X2,2�x� · · · X2,s�x� · · · X2,M�x�
···

···
· · · ···

· · · ···
Xr,1�x� Xr,2�x� · · · Xr,s�x� · · · Xr,M�x�

···
···

· · · ···
· · · ···

XM,1�x� XM,2�x� · · · XM,s�x� · · · XM,M�x�

�.

(36)

The inverse described in Eq. (36) is repeated for each
frequency bin x over the range 1 to N (where N is the
frequency vector length) and elements are concatenated to
form vectors Zr,s that make up matrix [Z]. The input-
specific inverted matrix [Z] is then available for decoding.
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B.2 Volterra Test Sequence Formation
Initially the noise sequence generator program creates a

preamble consisting of 210 zero elements followed by a
synchronization bit pattern that are used for frame locking
following a measurement. They are defined by the vectors
preambley and preamblex , where

preambley = zeros�1,2^10� (37)

preamblex = �preambley �0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

−1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0��. (38)

The M uncorrelated excitation noise vectors (each of
length N) used for identification are calculated [see also
Section 1, Eqs. (4) and (5)] using complex exponentials,
each with individual random phase, to form a set of time-
domain vectors with constant-magnitude frequency re-
sponses. The individual vectors xr(n) are derived as fol-
lows. Let

NFr(n) � exp(i*angle(fft(rand(1,N)))) (39)

where transforming to the time domain,

xr(n)|Mr�1 � real(ifft(NFr(n))) (40)

and forcing the mean of the vector to zero, gives the set of
vectors as

xr(n)|mr�1 � xr(n) − mean(xr(n)). (41)

The ensemble of M noise sequences is then amplitude
normalized by the peak absolute value of the whole en-
semble such that when the composite sequence is formed,
signal excursion is bounded within the range −1 to 1. Also,
normalization is combined with amplitude quantization
and appropriate dither to set vector resolution (typically 24
bit). M subframes are then assembled using each noise
vector repeated four times. Finally the test sequence gen
is formed by concatenating the M subframes and the
preamble,

gen = �preamblex �x1�n� x1�n� x1�n� x1�n���x2�n� x2�n� x2�n� x2�n��

· · · �xr�n� xr�n� xr�n� xr�n��

· · · �xM�n� xM�n� xM�n� xM�n�� preambley��. (42)

The stereo wavfile of gen with the sampling rate fsam and
resolution bit is realized in Matlab as

wavwrite([gen, gen], fsam,bit,�file name�).

B.3 Decoding and Analysis of
Measurement Data

Following data acquisition using a sample-rate synchro-
nized ADC, M measured data sequences designated y1(n),
y2(n), . . . , yM(n) are extracted by sample counting and
transformed to the frequency domain. The frequency-
domain vector Yr corresponding to excitation r is

Yr�M

r�1
� fft(yr(n))/N. (43)

The Volterra frequency-domain responses [H] are deter-
mined by applying Eq. (15). Noting that Zr,s is the vector
(r, s) of matrix [Z], then the rth row of [H] is calculated as

Hr�r=1

M
= Zr,1.*Y1 + Zr,2.*Y2 + · · · + Zr,3.*Yr + · · ·

+ Zr,4.*YM (44)

where both Yr and Zr,s are frequency-domain vectors of
length N. The set of M vectors forming H are subsequently
transformed using Eq. (16) to determine the Volterra time-
domain impulse-response matrix [h]. To correct for gain
error between test sequence and redigitized measured data,
[h] is normalized to set the peak absolute value of the
linear time-domain impulse response to unity.

B.4 z-Domain Description of Interleave Filtering
In this appendix time dispersion resulting from comb

filtering is analyzed to give additional insight into the
measurement procedure and also to inform how the system
can be modified to cope with measurements of systems
such as perceptual coders. The use of frequency interleav-
ing as described in Section 3 offers a method to segregate
signal and distortion and where by using two test segments
with complementary interleave functions, full frequency
resolution is obtainable. However, the employment of in-
terleave filtering has consequences in the time domain in
terms of both signal excitation and subsequent processing
used to extract signal and distortion. In practice comb
filtering introduces time dispersion, which modifies both
excitation and recovery of distortion such that they are no
longer time coherent, which can invalidate the results for
nonstationary systems. For example, if a full-frame music
signal is used, then a time-delayed version is overlaid, thus
corrupting the excitation. Postprocess filtering also smears
the resulting distortion such that signal and distortion are
no longer linked correctly in time. For a perceptual codec
evaluation this linkage is critical.

The even and odd frequency raised-cosine comb filters
can be defined in the z-domain by finite impulse response
filters (FIRs), where the respective filter functions Ceven(z)
and Codd(z) are

Ceven�z� = 0.25Z
0.5N + 0.5 + 0.25z−0.5N → 0.5�1 + cos��fT��

Codd�z� = 0.25Z
0.5N + 0.5 − 0.25z−0.5N → 0.5�1 − cos��fT��.

However, circularity implies over period N that z0.5N ≡
z−0.5N, whereby

Ceven�z� = 0.5�1 + z−0.5N� (45)

Codd�z� = 0.5�1 − z−0.5N�. (46)

The measurement process uses up to two sequential data
sets (that is, h � 1, h � 2) using complementary comb
filters, where source(z), testh(z), disth(z), and mdatah(z) are
respective samples of source sequence (noise or music),
test sequence, distortion, and captured data, and
decodeh1(z), decodeh2(z) are data decoded by the respec-
tive comb filters. All samples form elements within frames
of length N.
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The following z-domain system functions describe the
measurement process with frame sequential, complemen-
tary comb filtering, h � 1, 2,

• Test sequence:

test1�z� = Ceven�z�source�z�

test2�z� = Codd�z�source�z�

• Measured response:

mdata1�z� = test1�z� + dist1�z�

mdata2�z� = test2�z� + dist2�z�

• Decoded response 1:

decode11�z� = mdata1�z�Ceven�z�

decode21�z� = mdata2�z�Codd�z�

• Decoded response 2:

decode12�z� = mdata1�z�Codd�z�

decode22�z� = mdata2�z�Ceven�z�.

Rearranging and substituting Ceven(z) and Codd(z) from
Eqs. (45) and (46),

decode11�z� = 0.25�1 + z−0.5N�2source�z�

+ 0.5�1 + z−0.5N�dist1�z�

decode12�z� = 0.25�1 + z−0.5N��1 − z−0.5N�source�z�

+ 0.5�1 − z−0.5N�dist1�z�

decode21�z� = 0.25�1 − z−0.5N�2source�z�

+ 0.5�1 − z−0.5N�dist2�z�

decode22�z� = 0.25�1 − z−0.5N��1 + z−0.5N�source�z�

+ 0.5�1 + z−0.5N�dist2�z�.

Observing circularity over N, where z−N ≡ 1,

�1 + z−0.5N�2 = 1 + 2z−0.5N + z−N ≡ 2�1 + z−0.5N�

�1 − z−0.5N�2 = �1 − 2z−0.5N + z−N� ≡ 2�1 − z−0.5N�

�1 + z−0.5N� �1 − z−0.5N� = �1 − z−N�2 ≡ 0

and the equations simplify to

test1�z� = 0.5�1 + z−0.5N�source�z� (47)

test2�z� = 0.5�1 − z−0.5N�source�z� (48)

decode11�z� = 0.5�1 + z−0.5N�source�z�

+ 0.5�1 + z−0.5N�dist1�z� (49)

decode12�z� = 0.5�1 − z−0.5N�dist1�z� (50)

decode21�z� = 0.5�1 − z−0.5N�source�z�

+ 0.5�1 − z−0.5N�dist2�z� (51)

decode22�z� = 0.5�1 + z−0.5N�dist2�z�. (52)

Combining the two complementary filtered sets of mea-
surement, we make the following observations.

T�z� = �
h=1

2

testh�z�.

From Eqs. (47) and (48),

T�z� = test1�z� + test2�z� = source�z�. (53)

DEC1�z� = �
h=1

2

decodeh1�z�.

From Eqs. (49) and (51),

DEC1�z� = decode11�z� + decode21�z�

= source�z� + 0.5�1 + z−0.5N�dist1�z�

+ 0.5�1 − z−0.5N�dist2�z�. (54)

DEC2�z� = �
h=1

2

decodeh2�z�.

From Eqs. (50) and (52),

DEC2�z� = decode12�z� + decode22�z�

= 0.5�1 − z−0.5N�dist1�z� + 0.5�1 + z−0.5N�dist2�z�.
(55)

Eqs. (47)–(52) show how time dispersion affects both the
test signal and the extracted distortion, where in all cases
filtering superimposes a copy of the specific sequence, but
with a half-frame circular delay. These results show that
both the excitation and the recovered distortion exhibit
time dispersion based on half-frame circular repetition.
Finally, Eq. (53)–(55) describe the z-domain process ap-
plied over two sets of frames with complementary comb
filtering. It is shown in Section 4 that by knowing the
time-domain structure, the test sequences can be modified
so that, for example, music signals remain intact (though
of shorter duration), thus allowing proper analysis of per-
ceptual codecs. This is verified by introducing a short gap
in the music so that a corresponding gap in the distortion
can he confirmed.

B.5 Block Analysis to Derive Spectral Envelope
as a Function of Time

To display spectral distortion as a function of time,
Fourier analysis is applied to a windowed segment of mea-
sured data. A raised-cosine window is used with 50%
block overlap and a block length of approximately 25 ms
to match the data structure common to perceptual codecs.
Data are then displayed on a three-dimensional graph with
respective axes of spectral amplitude, frequency, and
block number (corresponding to half-block time incre-
ments of 12.5 ms). The postprocessing analysis is de-
scribed for vector length N as follows.
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For compatibility with the FFT, the block length is 2W,
where W is a positive integer. Thus if the measurement
sampling rate is fs Hz, we have 2W/fs ≈ 25 ms, where w is
calculated as

w � 2^round(log2(0.025 fs)). (56)

The raised-cosine window function winc for samples 1:w
is defined as

winc(1:w) � 0.5(1 − cos(2�((1:w) − 0.5)/w)). (57)

Data blocks of length w and spaced at w/2 sample incre-
ments are extracted sequentially from both out f (n) and
distf(n) then weighted by winc(1:w). For each weighted
block, Fourier transformation is performed and a matrix
compiled to represent the spectral surface as a function of
discrete frequency and block number. Hence for analysis

block b, the respective transforms OUTbk(b,1:w) and
DISTbk(b,1:w) for signal and distortion are

OUTbk�b,1:w� = fft�out f �b*w�2:b*w�2 + w − 1�.*winc�1:w��
(58)

DISTbk�b,1:w� = fft�dist f�b*w�2:b*w�2 + w − 1�.*winc�1:w��.
(59)

The difference spectrum DIFFbk(b,1:w) can be calculated
on a logarithmic basis between signal and distortion spec-
tral surfaces, and forms a measure of the dynamic signal-
to-distortion ratio,

DIFFbk�b,1:w� = 20 log10� abs�OUTbk�b,1:w�� + �

abs�DISTbk�b,1:w�� + ��
(60)

where � bounds the display range. Hence surfaces can be
plotted that represent the dynamic spectral behavior as a
function of time for the codec output signal, distortion, and
the difference between signal and distortion.
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