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Abstract
In calculating the auditory masking threshold (AMT), it is nec-
essary to adjust the excitation pattern of the clean signal to
account for the asymmetry of masking between tone-like and
noise-like signals. One approach that estimates the asymme-
try of masking is the signal’s tonality. The tonality assump-
tions were originally formulated for use in MPEG-4 audio cod-
ing. Consequently, they may not be appropriate for speech and
hearing aid applications. There is some justification in using
tonality-offset with voiced signals due to their formant struc-
ture. In this study, we differentially process the signal given
a priori knowledge of its acoustic/phonetic characteristics (i.e.
voiced, unvoiced and silence). Objective quality measures (e.g.
segmental SNR and Itakura-Saito distortion measures) were
used as yardsticks to compare schemes that include tonality-
offset with those that do not. The segmental SNR shows an
overall improvement of 1.1 dB for the tonality-offset scheme.
Subjective quality measures based on an established rating scale
were obtained from six listeners with normal hearing. Prelim-
inary results indicate that schemes without tonality-offset are
preferable to those with tonality-offset. One noted exception,
though, is with the background noise attribute, where there is
more than a 20% improvement in the tonality-offset scheme
relative to other conditions. We present possible areas of im-
provement for implementing tonality-offset calculations in the
future.

1. Introduction
A chief goal in designing hearing aids is to minimize the dele-
terious effects of competing noise on a desired signal. A ma-
jority of these noise suppression schemes use mathematically-
based criteria (e.g. signal-to-noise estimates). However, their
correlation with perceptual properties of the auditory system is
limited. Recently, an enhancement scheme based on the mask-
ing properties of the auditory system was evaluated in listen-
ers with normal hearing [1] and subsequently tested in listeners
with hearing loss [2]. For both groups of listeners, auditory
masked threshold-based noise suppression (AMT-NS) resulted
in improvements in intelligibility and quality for some, but not
all conditions. This paper serves as a follow-up to recent in-
vestigations in our laboratory and considers how components
of the AMT-NS algorithm can be refined. Specifically, we con-
sider the validity of adjusting the masked threshold based on the
tonal characteristics of the speech signal.

It has been well-established that noise masks tones more
effectively than tones mask noise [3]. Researchers have sug-
gested that the bandwidth and temporal characteristics of the
target and masker contribute to this asymmetry. Excitation pat-
terns (EP), which represent the output of the auditory filters,
are intrinsically associated with auditory masking [4]; if the

excitation pattern (EP) of a target signal falls below that of a
masker, the target stimuli is no longer audible. Coding appli-
cations have used these properties to compress audio and sup-
press noise [5]. Specifically, the EP is calculated by convolving
the basilar membrane spreading function with the critical band
densities. The EP is adjusted in accordance with the notion that
tones and noise are asymmetrical maskers. This adjustment is
the ”offset” term. For a tone masking a noise, the EP is reduced
by a factor of 14.5+i dB where i is the critical band number.
For the converse condition (noise masking a tone), the EP is re-
duced by factor of 5.5 dB across critical bands. These values
are based on results from [6] and [3] respectively. Both cal-
culations are scaled, based on the degree to which a signal is
noise-like versus tone-like (tonality), by computing a spectral
flatness measure (SFM). The SFM is the ratio of the geomet-
ric mean of the power spectrum to the arithmetic mean of the
power spectrum. A SFM approaching 1 indicates that the signal
is tone-like; a SFM approaching 0 indicates that the signal is
noise-like.

Traditionally, asymmetry of masking has been investigated
between pure tones and noise ([3], [7], [6]). Gockel et al. (2002)
[8], parametrically investigated the asymmetry of masking be-
tween complex tones and noise, given that complex tones are
more common in speech and music. Even with identical excita-
tion patterns, there were large differences in the extent to which
complex tones and noise were ”mutual maskers”. These differ-
ences varied with both overall level and phase of the constituent
harmonics. Based on their results, Gockel and colleagues con-
cluded that differences in masking efficiency between complex
tones and noise varies as a function of level. Audio coders of-
ten do not incorporate level dependencies in their asymmetry
of masking calculations and may underestimate the offset term,
thereby overestimating the AMT. Certainly, Gockel et al.’s re-
search, indicates that level dependency should be taken into
consideration in future applications of the AMT.

Speech has both voiced and unvoiced segments. The for-
mant structure of most voiced speech resembles the harmonic
structure of a tonal signal. This is a key rationale for calcu-
lating tonality and offset terms for voiced segments and modi-
fying these terms for unvoiced segments. In the current study,
we evaluated whether AMT-NS schemes that employed tonality
and offset calculations are morefavorable than schemes which
did not incorporate these calculations.

2. Algorithm Development
The flow chart of the algorithm is shown in Fig. 2. The noisy
speech is broken down into frames and shaped using a Ham-
ming window and a time-to-frequency transformation is applied
using an FFT. An estimate of the clean spectrum is found using
the GMMSE [9] algorithm. The Auditory Masking Threshold
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Figure 1: Flow chart of the enhancement algorithm

(AMT) is found from the clean spectrum. Calculation of the
AMT can be broken down into 4 steps

1. Do sub-band processing with the center of each band
equal to the center frequency of each auditory filter. Au-
ditory filters are represented using their equivalent rect-
angular bandwidth (ERB).

2. Calculation the excitation pattern for each sub-band us-
ing the Moore-Glasberg spreading function [10].

3. Calculate the offset term, based on the tonality of the
speechwaveform for each sub-band.

4. Subtract the offset from the excitation pattern and com-
pare with the absolute threshold of hearing.

Next, the noisy power spectrum is compared with the AMT.
If the noisy power spectrum is greater than the AMT, the signal
is enhanced using an Wiener filtering operation [1].

2.1. Tonality Calculation

Fig. 2 illustrates the tonality for 1) a pure tone, 2) a noise, 3) the
vowel /EY/, 4) the consonant /SH/ and 5) the vowel/diphthong
pair /W-EY/. The tonality (ton) is measured using the ratio of
the geometric mean (GM) of the signal and the arithmetic mean
(AM) of signal, known as the spectral flatness measure (SFM).
The equations for calculating tonality are shown below:

SFM(i)(dB) = 10 log10(
GM

AM
) (1)

ton(i) = min(
SFM

−60
, 1) (2)

where i is the sub-band number. From Fig. 2, it can be seen that
the tonality of a pure tone is 1 and is close to 0 for noise-like sig-
nal. The tonality of the consonant is around 0.2 and around 0.4
for the vowel. We found interesting results when comparing the
tonality of the vowel /EY/ with the that of the vowel-diphthong
combination /W-EY/. It can be seen that the tonality of /W-EY/
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Figure 2: Tonality for different speech segments

varies between maximum of 0.65 and a minimum of 0.2. One
would assume that the tonality measure for a vowel-diphthong
combination would be less than that of a pure vowel. However,
the SFM weighs the tonality of the present frame with the frame
immediately preceding it and/or immediately succeeding it. If
a vowel is preceded by a silence frame, the geometric mean
of the signal in the transition frame decreases and the tonality
of the transition frame increases. Another interesting finding,
is that the tonality of vowels is rather low even though vowels
have a formant structure that resembles the harmonic structure
of a tonal signal. Due to these ambiguities in tonality measure-
ments, we pre-set the tonality of the signal given a-priori knowl-
edge of the speech file. Using the transcriptions of 10 TIMIT
speech files, we set the tonality of voiced sections to 0.6, un-
voiced/consonant sections to 0.2 and for silence frames we set
the tonality to 0.

2.2. Offset Calculation

Johnston [5] used a linear equation for calculating the offset
term in voiced frames. For this evaluation, we set the offset
term to a flat value of 18 dB up to the first formant and linearly
increased the term for frequencies above the first formant.

Ob(i) = ton(i)(18) + (1 − ton(i))6dB. (3)

up-to the first formant and

Ob(i) = ton(i)(18 + i) + (1 − ton(i))6dB. (4)

for all frequencies greater than the first formant, where ton(i) is
equal 0.6

The constants in the equation are based on recent work by
the Advanced Audio Coding group [11]. This sets the masking
value of the vowel highest at the first formant location. This
was not the case in either [6] or [5].

Consonants have low energy in the higher frequencies and
are more noise-like at lower frequencies. To incorporate this
idea, we set the offset term for consonants to a flat value of 6



dB for all frequencies up to 1.5 kHz and used a linear term like
that in Eqn. 4, with ton(i) equal to 0.2, for all frequencies in the
range of 1.5 kHz to 4 kHz.

We set the offset term for noisy frames to a flat value of 6
dB. This is same as that in Eqn. 4 with the ton(i) set to 0.

2.3. Frame Averaging

After calculating the AMT and performing noise suppression,
we took a five-frame average of noisy frames and a three-frame
average of voiced frames. This eliminates any irregularities and
tonal structures in isolated frames. We performed the enhance-
ment for 10 files given prior knowledge of the speech. In real-
time applications, we can automate the voiced, unvoiced and
silence frame detection by comparing the total energy in each
frame with both low and high frequency energy.

3. Algorithm Evaluations
Ten single sentences from the TIMIT database were selected
(5 male & 5 female). Each sentence was degraded with both
communication (FLN) and large crowd room noise (LCR). The
signal-to-noise ratio (SNR) was set at 5dB. The spectrograms
of the noise types are shown in figure 3.
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Figure 3: Time versus frequency spectrograms for different
noise types: (a) Flat Channel Noise (FLN); (b) Large Crowd
Noise (LCR)

Plots of clean speech, degraded speech and enhanced
speech using both the no-offset (NOF) scheme and the offset
scheme (OFF) are shown in Fig. 4. The plots are for the sen-
tence,”In wage negotiations the industry bargains as a unit
with a single union”. The shapes of the noise power spec-
trum, clean power spectrum as well as audible masked thresh-
olds for NOF and OFF schemes for the unvoiced fricative /SH/
are shown in Fig. 5.

3.1. Objective Qualitative Measure

The results comparing the segmental SNR and Itakura-Saito
(IS) distortion measure between 10 (about 4300 frames) de-
graded files (DEG), 10 enhanced files with no offset (NOF) and
10 enhanced files with offset (OFF) are shown in Table 1. Both
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Figure 4: [Timewaveforms for a single speech file] (a) Clean
Spectrum (b) Degraded Communication Noise (FLN) at 5dB
SNR (c) Enhanced speechwaveform using no offset (NOF) (d)
Enhanced speechwaveform using an offset (OFF).
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Figure 5: AMT NOF,AMT OFF, Noisy Spectrum (NPS) and
Clean Spectrum (PS) of an unvoiced fricative /SH/.

enhancement schemes show significant improvements in SNR,
and intuitively, the scheme with offset shows a greater improve-
ment. However, the IS distortion measure in the OFF scheme is
extremely high. By including an offset, the AMT is set lower
and enhancement is higher. We also noted that enhancement is
done about 58% of the time with the NOF scheme and about
90% of the time with the OFF scheme. This is the average for
10 files over two iterations.



Table 1: Objective quality comparison between the DEG, NOF
and OFF schemes

Noise DEG→ NOF→ OFF DEG→ NOF→ OFF

SNR IS
FLN (5dB) -1.807→ 2.227→ 3.379 3.206→1.889→10+
LCR (5dB) -1.379→ 0.820→ 2.270 1.769→1.445→05+

3.2. Subjective Quality Ratings

This section introduces the testing protocol and compares the
results of the subjective quality ratings between the DEG, NOF
and OFF schemes. Six listeners with normal-hearing partici-
pated in this study. All listeners reported normal-hearing sensi-
tivity and no significant history of ear disease. Listeners were
tested individually in a double-walled sound booth. The test
session typically lasted 30 minutes. For stimuli presentation, the
digitally stored speech-in-noise stimuli went through a digital-
to-analog converter, a 4000 Hz anti-aliasing filter, an attenua-
tor and a headphone buffer. Finally, the stimuli were presented
monaurally to the right ear of each listener through a TDH-49
earphone. All stimuli were presented at an RMS-equalized level
of 65 dB SPL.

The categorical rating scales used for the quality ratings are
the same as those used by Neuman et al., [12] and are simi-
lar to those developed by Gabrielsson et al. [13]. A 10-point
scale was used to obtain ratings on five different stimulus at-
tributes: clarity, pleasantness, background noise, loudness and
overall impression. Listeners used a written response form to
record their ratings. For each condition, participants listened to
a block of 10 TIMIT sentences and rated each attribute using the
10-point scale. The order of the 10 sentences was randomized.

Table 2: Average quality ratings for DEG, NOF and OFF
schemes for both noise types

LCR FLN
DEG NOF OFF DEG NOF OFF

Clarity 5.5 5.78 4.2 3.94 4.33 4.0
Pleasantness 5 4.78 4.67 3.56 4.5 4.22

Background Noise 6.83 5.67 5.22 8.17 6.39 5.11
Loudness 4.89 5.33 4.67 4.67 4.94 3.83
Overall 5.0 5.33 4.22 3.67 4.06 3.97

The subjective quality rating are summarized in Table 2.
For the background noise attribute, higher values are lessfavor-
able. For both noise types, listeners rated the NOF and OFF
enhancement schemes significantly better than the degraded
scheme; the OFF scheme was rated morefavorably than the
NOF scheme. On the other attributes, NOF was the highest
ranked scheme, better than either OFF or DEG. The ranking of
OFF and DEG varied between attributes and noise types.

4. Conclusions & Future Work
Preliminary results indicate that the NOF scheme was more fa-
vorable than both the OFF and DEG schemes. These results
suggest that our initial offset measurements need fine-tuning.
One reason that listeners may prefer the NOF or DEG schemes
over the OFF scheme is due to the fact that inaccuracies in offset
predictions affect later stages of processing; noise suppression
algorithms also use AMT estimates when performing Wiener

filtering. Due to increased noise suppression, speech signals are
distorted in the OFF scheme. Consequently, listeners may be at-
tuned to these distortions and the potential benefits of adjusting
the masked threshold are negated.

A short-term follow-up study should evaluate intelligibil-
ity measures between the DEG, NOF and OFF schemes. These
results may influence how the OFF scheme is modified in fu-
ture studies. Detailed fine-tuning of the offset parameters must
be done and take into consideration the level dependencies in
masking as reported in [8]. Investigations into the theoretical
underpinnings of asymmetry of masking will likely influence
the estimations of the AMT. Certain schemes may be most ben-
eficial when implemented with particular types of background
noise. Future work should consider developing and evaluating
a codebook that classifies the effects of processing schemes on
different noise types.
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