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Abstract—We present an information-theoretic measure for the 
amount of randomness or stochasticity that exists in a signal. This 
measure is formulated in terms of the rate of growth of multi-
information for every new signal sample of the signal that is 
observed over time. In case of a Gaussian statistics it is shown 
that this measure is equivalent to the well-known Spectral 
Flatness Measure that is commonly used in Audio processing. For 
non-Gaussian linear processes a Generalized Spectral Flatness 
Measure is developed, which estimates the excessive structure 
that is present in the signal due to the non-Gaussianity of the 
innovation process. An estimator for this measure is developed 
using Negentropy approximation to the non-Gaussian signal and 
the innovation process statistics. Applications of this new measure 
are demonstrated for the problem of voiced/unvoiced 
determination, showing an improved performance. 

Index Terms— Information Redundancy, Negentropy, Spectral 
Flatness Measure, Voiced / Unvoiced Determination, Musical 
Signals

I. INTRODUCTION

HE problem of determining the amount of randomness 
that is present in a signal is very fundamental to many 

problems in signal processing. For instance, one might wish to 
determine the amount of compression gain achievable for a 
signal in a communication application, determine the presence 
of a signal rather than noise in detection application or 
characterize the signal in terms of its inherent “stochasticity” 
for segmentation or retrieval and many more. A standard 
method to measure the amount of correlation structure that 
exists in a signal is by means of a Spectral Flatness Measure 
(SFM) [1,2,3]. Sometimes called also “tonality coefficient”, it 
is used to quantify how much tone-like a sound is, as opposed 
to being noise-like. The meaning of “tonal” in this context is in 
the sense of the amount of peaks or resonant structure in the 
power spectrum, as opposed to flat spectrum of a white noise. 
In this paper we consider an information-theoretic view of the 
SFM as the rate of growth of multi-information for every 
additional sample of the signal, which we call Marginal 
Information Redundancy, or Multi-Information Rate (MIR). It 
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is shown that this is equivalent asymptotically to the difference 
between marginal entropy of the signal and the entropy rate of 
the process. In other words, MIR represents the difference in 
entropy or uncertainly, or a difference in compression lower 
bounds, between a memory-less, independent and identically 
distributed (i.i.d.) sequence of random variables that have 
same marginal probability distribution equivalent as the signal, 
and the limiting entropy of the process after taking into 
account the statistical dependencies between consecutive 
samples1. 

It is shown that MIR equals SFM for Gaussian processes, 
i.e. for signals that can be described as a Gaussian i.i.d. noise 
passing through a linear filter. Using estimation terminology 
we say that SFM is a maximum entropy estimate of MIR for 
the case of second order statistics and Gaussianity of the 
residual error, also called an innovation process. In such a case 
SFM measures the structure or lack of randomness in the 
process only due to the linear dependencies that exist between 
signal samples, as caused by the filter. It is known also that for 
continuous random variables, the Gaussian probability 
distribution function (pdf) has the maximal entropy among all 
processes with equal variance. 

In case when a non-Gaussian process “drives” a linear 
system, we would like to take into account the additional 
structure or the decrease in entropy of the innovation. We 
show that in this case a correction to SFM can be obtained and 
estimated from the Negentropy approximation to the 
differential entropy of the innovation process. We call this 
measure a Generalized Spectral Flatness Measure (GSFM).  
Testing GSFM on voiced/unvoiced speech signals we show 
that this results in a more precise detection of the transition 
points between the random (unvoiced) and structure (voiced) 
parts of the signal, as compared to standard SFM. 

II. MATHEMATICAL PRELIMINARIES

A. Definitions

Given a random variable x, with probability density f(x), the 
entropy of the distribution is defined as [4]

∫−= dxxfxfxH )(log)()( (1) 

 
1 The entropy rate can be considered as the average amount of bits per 

sample resulting from compression of an asymptotically long block of signal 
samples
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For the joint distribution of two variables 21 , xx , the joint 

entropy is defined as

∫−= 21212121 ),(log),(),( dxdxxxfxxfxxH (2) 

The average amount of information that the variable 1x  carries 

about 2x  is quantified by the mutual information 

),()()(),( 212121 xxHxHxHxxI −+= (3) 

Let us denote by 1 1 2( , ,..., )n
nx x x x=  a vector on n samples. 

Generalization of the mutual information for n variables
(called also multi-information) is given by

1 1
1

( ) ( ) ( )
n

n n
i

i

I x H x H x
=

= −∑ (4) 

This function measures the average amount of common 

information contained in 1
nx . Using the mutual information we 

define marginal information redundancy to be the difference 
between the common information contained in the variables 

1
nx  and the set 1

1
nx − , i.e. the additional amount of information 

that is added when one more variable is observed. 

1
1 1 1( ) ( ) ( )n n nx I x I xρ −= − (5) 

 
Since in our application we are considering time ordered 
samples, this redundancy measure corresponds to the rate of 
growth of the common information as a function of time. It can 
be shown that the following relation exists between 
redundancy and entropy

1
1 1( ) ( ) ( | )n n

n nx H x H x xρ −= − (6) 

 
This shows that redundancy is the difference between the 

entropy (or uncertainly) of an isolated sample nx  and the 

reduced uncertainty of nx  knowing its past.  In the case of a 

stationary process, the first term on the right side of the 
equation is independent of n, while the second term depends 
only on the length of the "context", i.e. the size of the vector 
that contains previous samples of the process. In information 
theoretic terms, this measure equals, asymptotically, the 
difference between the entropy of the marginal distribution of 
the process x and its entropy rate, equally for all n. 

B. Derivation of the Gaussian MIR Estimator

The estimation of MIR is performed by separate estimation of 
marginal entropy and entropy rate of the signal x(t). Assuming 
a Gaussian signal, one can show [5] that the marginal entropy 
of the process is equal to 

2

1 1
( ) ln( ( ) ) log 2

2 2
H x S d e

π

π
ω ω ππ −

= +∫ (7) 

where )(ωS is the power spectral density of x(t). The entropy 

rate of Gaussian process, also called Sinai-Kolmogorov 
Entropy,  is given by 

2

1
( ) ln ( ) log 2

4rH x S d e
π

π
ω ω ππ −

= +∫ (8). 

MIR is calculated then as the difference

)()( xHxH r−=ρ (9). 

 
Considering a related quantity

2

1
exp( ln ( ) )

2

1
( )

2

S d

e

S d

π

ρ π
π

π

ω ωπ
ω ωπ

− −

−

=
∫
∫

(10), 

this expression is known as Spectral Flatness Measure (SFM) 
[1]. SFM is a well-known and accepted method for evaluation 
of the “compressibility” of a process. Using this equality we 
estimate the MIR from the spectral flatness measure as the log 
(SFM).

C. Properties of SFM for Linear Processes

It can be shown that 0<SFM<1, which also follows from the 
non-negativity of MIR. SFM=0 corresponds to structured or 
non-random process, i.e. a process where a large difference 
exists between the marginal entropy and the “true” entropy of 
the process that is characterized by its entropy rate. SFM=1 
corresponds to a random signal in the sense that no extra 
information can be obtained by looking at longer blocks of 
signal samples, i.e. having no additional structure when 
considering these measurements as a “process”.  

Moreover, a close relation exists between MIR and 
likelihood ratio test of white noise vs. Auto Regressive (AR) 
signal model hypotheses. For Gaussian independent identically 

distributed (i.i.d.) random variables with variance 2
xσ , the 

minus of asymptotic mean log-likelihood approaches the 

marginal entropy, i.e. 1

1
log ( ) ( )np x H x

n
− →  assuming a 

sufficiently long block of signal measurement. This relation 
can be proved directly from the definitions of entropy and 
using the i.i.d. property, which in this particular case also 
equals the entropy rate. 

In the case of a Gaussian AR process of a finite order p, 
long correlations are introduced into the output signal due to 
the regression relations (filtering operation). Even though 
these correlations are possibly very long, it is still possible to 
evaluate the conditional probability of the next measurement 
given its past, using only a limited number of past 
observations. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) 
<

3

Let us denote byε  the innovation process and by nε  the 

innovation variable at time n, 
1

p

n n i n ii
x a xε −=

= −∑ .

Knowing p past values of the process x and the vector of AR 

coefficients a
ρ

, the conditional probability of nx  equals the 

probability of the corresponding innovation 

variable 1( | ,..., , ) ( )n n n p np x x x a p ε− − =r
. Since the 

innovation process is i.i.d., the log-likelihood for a block of n
signal samples becomes

1 2

1 2
1

log ( ... | )

log ( ... ) log ( )

{log ( )} ( )

n

n

n i
i

P x x x AR Hypothesis

P p

nE p nH

ε ε ε ε
ε ε

=

= =

≈ = −
∑

(11)

Note that in this derivation we assumed that AR hypothesis 
includes also the knowledge of the p initial conditions of AR 
filter. The left part of the equation, for a sufficiently long block 
of measurements, approaches minus n-times the entropy rate 
[4], giving the relation

( ) ( )rH x H ε= (12). 

This results in asymptotic expression for likelihood ratio

1 2

1 2

( ... | . . . )
log

( ... | )

( ( ) ( )) ,

n

n

r

P x x x i i d Hypothesis

P x x x AR Hypothesis

n H x H x nρ≈ − − = −
(13)

where the nominator depends on the variance of the signal x
(marginal entropy assuming an i.i.d. process), and the 
denominator is estimated using the variance of the innovation 
process ε . This example demonstrates the relation between 
MIR and likelihood ratio test and shows that it can be obtained 
from estimates of the marginal entropy of the innovationε  and 
the marginal entropy of signal x. 

In case that AR model is known, the innovation process can 
be obtained by applying an inverse filter to the original 
sequence x. In case when the AR model is unknown, the 
innovation process can be estimated from residual error 
resulting from various AR estimation methods such as Linear 
Prediction (LP) or Burg algorithms. It is important to note that 
the above derivations become exact only asymptotically, i.e. 
when increasing the estimation block size for a finite order AR 
process. Having the processε at our disposal, we get for the 
Gaussian case 

2

2 2

1
( ) ( ) log ( )

2
x

rH x H x
ε

σρ σ= − = (14)

In the case when the processε  corresponds to a prediction 
error or difference signal of a predictor, this expression has 
also a close resemblance to prediction gain 

2

10 2
10 log x

pG
ε

σ
σ= , a quantity that is often used to 

characterize the performance of a predictor function [6]. One 
should note, though, that in the case that some predictor, such 
as linear predictor that is derived based on Minimal Square 
Error criterion, estimates the innovation, the relations of 
equation (12) do not necessarily hold anymore. It can be 
shown that only in case that the prediction error is independent 
of the predicted sample, these relations remain valid. For 
instance, in the case of a linear prediction, the prediction error 
is orthogonal but not necessarily independent of the predicted 
sample.

In analogous manner to the relations between of MIR and 
SFM that were established in equation (10), we shall 
generalize the SFM for processes other than Gaussian AR. 
This will be done using MIR estimates for non-Gaussian 
processes. The basic idea is to use the marginal entropy of the 
non-Gaussian innovation as the estimate for the entropy rate of 
the original process. The distribution of the innovation can be 
estimated by using various approximations to non-Gaussian 
pdf.

III. GENERALIZATION OF SFM

A. MIR evaluation by Negentropy 

Negentropy [6] measures the distance of a random variable 
(r.v.) from Gaussian distribution.

( ) ( ) ( )GaussJ x H x H x= − (15)

where Gaussx  means Gaussian r.v. with same covariance matrix 

as x, 
Gaussx xR R= . We shall denote the entropy of Gaussx  by 

( )GH x . Since in the following we will be estimating 

negentropy for i.i.d. processes, we will need the variance only, 
rather than a complete covariance matrix.

In terms of information, this function measures how much 
information is “left” after taking into account 2nd order 
statistics. Moreover, it can be shown [4] that Gaussian 
distribution has the maximal entropy among all distributions of 
the same variance (cross correlation). This proves that 
negentropy ≥  0.

Writing the multi-information of a vector 1
nx , we get

1 1
1

1 1
1

1 1
1

1 1
1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ( ) ( ))

( ) ( ) ( )

n
n n

i
i

n
n n

G i
i

n
n n

G G i i
i

n
n n

i G
i

I x H x H x

J x H x H x

J x H x H x J x

J x J x I x

=

=

=

=

= −

= − +

= − + −

= − +

∑
∑
∑

∑

(16)
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with 1 1( ) ( ) ( )n n
G G G iI x H x H x= − +∑  denoting Gaussian 

multi-information. Using the above relations, we write

1
1 1 1 1( ) ( ) ( ) ( ) ( ) ( )n n n n

n n Gx I x I x J J x xρ ε ρ−= − = − + (17)

where we used the relation

1
1 1

1 1
1 1 1 1

1 1
1 1

( ) ( )

{ ( ) ( )} { ( ) ( )}

( | ) ( | )

( ) ( ) ( ) ,

n n

n n n n
G G

n n
G n n

G n n n

J x J x

H x H x H x H x

H x x H x x

H H Jε ε ε

−

− −

− −

−
= − − −
= −
= − =

(18)

with ( ), ( )G n nH Hε ε denoting the Gaussian and true 

marginal entropies respectively, of the innovation/residual 
signals. We also introduced a new term 

1
1 1 1( ) ( ) ( )n n n

G G Gx I x I xρ −= −  to denote the MIR of a 

Gaussian process, which can be calculated from standard SFM 
using equations (10) and (14). 

B. Generalized SFM Definition

From equation (17) one can see that non-Gaussian 
information appears as a correction factor 

( ) ( )WNG n nJ J xρ ε= −  to the Gaussian MIR, thus 

accounting for the non-Gaussian properties of the white 
residual signal. Writing MIR for the non-Gaussian case as

1 1( ) ( ) ( )n n
G WNG nx x xρ ρ ρ= + (19), 

 
the Generalized SFM (GSFM) is defined as

12 ( )
1( )

nxnGSFM x e ρ−= (20)

To sum up, for the non-Gaussian case, GSFM results in a 

combination of two factors: 1) part that depends on Gρ that 

captures the “structure” due to linear Gaussian part and 2) 

WNGρ that contains the excessive structure due to the white 

non-Gaussian innovation / residual signal. 
In the limit n→∞ , GSFM of the process x can be 

expressed as

2( ( ) ( ))( ) ( ) J J xGSFM x SFM x e ε− −= ⋅ (21), 

 
where we discard the time indexes from both the SFM and the 
two negentropy functions of the original and the innovation 
signals. GSFM in equation (21) must be understood under the 
convention that SFM is measured based on spectrum or 
correlations estimates using asymptotically growing blocks of 

signal measurements, while the negentropies ( ), ( )J J xε are 

calculated using marginal entropies.  The expression in 
equation (21) can also be given a precise statistical meaning as 
a function of limit mean values of the relevant statistics for 
stationary processes and assuming that we use consistent 
estimators. 

C. GSFM Estimation

In order to calculate GSFM, we need to estimate the 
innovation process and calculate the Negentropy. Several 
approximations exist for estimation of the Negentropy [7]. The 
classical method is using higher-order moments

{ }23 21 1
( ) ( )

12 48
J x E x kurt x≈ + (22), 

 
where the kurtosis is defined by

{ } { }24 2( ) 3kurt x E x E x= − (23). 

 
This estimate was used for the voiced/unvoiced experiments 
presented in the next section. Our experience seems to indicate 
that the MIR estimate is rather insensitive to the particular 
method of Negentropy estimation, probably due to the fact that 
we are using differences of Negentropies rather than their 
absolute values. 

The complexity of the GSFM estimate is only marginally 
higher then the original SFM. This estimate amounts to one 
additional filtering operation, using an inverse filter that was 
obtained in the SFM estimation step. The calculation of 
Negentropy requires three summation operations and raising 
the signal to powers of 2,3 and 4. One should note, though, 
that other algorithms are available for SFM estimation that do 
not require estimation of an AR filter (such as direct estimation 
using Periodogram methods), and are less computationally 
demanding.

IV. EXAMPLES

A. Upper bound to MIR for a known input pdf

In the case when the input pdf to a finite order AR system is 

known, we can analytically evaluate ( )H ε  and thus ( )rH x . 

Calculation of MIR requires also the knowledge of the 
marginal distribution of x for the calculation of ( )H x .  The 

knowledge of this marginal distribution might be difficult to 
obtain, but we can evaluate an upper bound to MIR by using a 
Gaussian estimate for the entropy of the marginal distribution 
of x instead of its true marginal entropy, since it is known that 

( ) ( )GH x H x≥ . This gives an upper bound 
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( ) ( )

( ) ( ) ( ) ( )

1
ln( ) ( )

2

G r

G G G

H x H x

H x H H H

SFM J

ρ
ε ε ε

ε

≤ −
= − + −
= − +

(24)

Using analytical expressions of the entropy of different 
memoryless input sources, we provide in table 1 an upper 
bound to MIR.

Pdf ( )H ε Upper bound to 
MIR

Uniform
2

2 12log εσ 2

1
log

2 6
1

ln( )
2

e

SFM

π

−

Gaussian
2

2 2log εσπe
2

2 2

1
ln( )

2
1

log
2

x

SFM

ε

σ
σ

−

=

Laplacian
22

2 2log εσe 2

1
log

2
1

ln( )
2

e

SFM

π

−

Gamma
4log 21

2 εσπ Ce − 2

1 3
log ( )

2 2
ln( )

Ce

SFM−
where C is the Euler constant = 0.5772 .

It should be noted that this bound on the correction factor has 
values between 0.1 and  0.7, which might be significant 
compared to the values of ln( )SFM− that are approximately 

of the same order of magnitude (the inverse of SFM is 
typically 3 and 16 for long term psd’s of speech and video, 
respectively, [1] p.57). 

B. Voicing Determination in Speech

GSFM was applied to the problem of voicing determination 
in speech signals.  For this experiment we have used speech 
recordings from the Keele speech database [8]. This database 
contains simultaneously recorded speech and Laryngograph 
signals. The Laryngograph signal is used as the reference 
signal describing the true vocal cord activity.

In our application we have used the Burg Maximum 
Entropy method order 16. This choice of filter order is 
common to speech processing, while further increasing the 
order is not desirable since it might capture pitch correlations. 
Since the system filter is stable minimal phase, it is invertible. 

The innovation process ε  was obtained by filtering x with the 
inverse filter. 

Figure 1 shows the result of the voicing experiment that was 
done using the SFM and GSFM measures. The signal is 
sampled at 20Khz sampling rate. The estimates were done on 
signal frames of 512 samples, with overlap of 312 samples 
between the frames. This overlap corresponded to the voicing 
estimation of the Laryngograph, provided in the database. 

One can see that SFM tends to have high values in some 
cases when a vocal cord activity is present. GSFM provides a 
more precise indication of the vocal cord activity. It is 
interesting to note that start points are detected equally well by 
both methods. This might be due to the fact that the beginning 
portions of speech phonemes have a strong transient spectral 
behavior that is detected sufficiently well by the standard 
SFM. Additionally, both measures indicate that structure exists 
in some points where no vocal excitation happens. This can 
occur due to plosive or whistling fricative sounds that may 
appear in these segments, having a significant structure even 
without being actually “voiced”.
Fig. 1: Speech Voicing and Marginal Information 
Redundancy based Spectral Flatness Measures. See text for 
more details.
Table 1: Upper bound to MIR for various input pdfs.
B. Characterization of Musical Signals

In this experiment we evaluated Gρ and WNGρ  of different 

musical instruments in the sustained portion of their sound, 
i.e. the analyzed signals were middle segments of single 
notes played by different instruments, not containing the 
transient and the last decaying part of the sound. All 
instruments were playing the same note (middle C). Such 
an analysis is common for obtaining descriptors of musical 
sounds [3] and has also applications in instrumental 
acoustics [9]. The motivation for this experiment was to 

investigate the MIR correction factor WNGρ  as a possible 

additional feature for instrument description. The spectral 
envelope of musical signals that roughly corresponds to the 
resonant properties of the instrument body does not capture 
all of the characteristics of a musical sound.  In figure 2 we 
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show the results of Gρ  and WNGρ estimation for five 

different instruments: Trumpet (Tpt), French Horn (FrH), 
Flute, Bassoon and the Cello. The results correspond to 
analysis of sound segments of a length of approximately 
six pitch periods and filter of order 50. Sensitivity analysis 
was done, varying the filter order to as low as 10. The 
results for most instruments are insensitive to variations in 
the analysis parameters, except for increased variance of 

WNGρ estimates, for the case of the Trumpet at lower order 

filters. 

It is interesting to note that WNGρ  for the Trumpet and the 

French Horn are negative, thus indicating that the original 
signal is far from Gaussianity, while the estimated innovation 
signal, resulting from inverse LP filtering operation that 
“mixes” the original signal, is closer to being Gaussian. 
Considering separately the negentropy J(x) of these signals 
shows indeed that Trumpet and French Horn are far from 
Gaussianity, while the other instruments are not. In terms of 
compression gain [4], these results suggest that using LP 
model for prediction of signals such as the Trumpet or 
French Horn may result in a reduced compression gain than 
what is predicted by SFM alone. 

V. CONCLUSION

In this paper we presented a generalization of the standard 
spectral flatness measure using an information theoretic 
formulation of randomness, as a marginal information 
redundancy. It was shown that the new measure captures 
additional information about signal statistics and can be 
applied to improve voicing determination in speech signals, or 
possibly provide an additional characteristic for analysis of 
musical sounds. It is interesting to explore additional signal 
representations, such as signal transform or sub-band coding 
methods, for signal information redundancy processing. We 

are currently considering the use of optimal transform methods 
and other signal representation for improved estimation of 
information redundancy.  The utility of the principle of 
information redundancy for additional signal processing 
applications, such as compression or retrieval, will be 
considered in the future. 
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Fig. 2: Gρ and WNGρ  analysis of different musical 

instruments in the sustained portions of the sound. 


	INTRODUCTION
	Mathematical Preliminaries
	Definitions
	Derivation of the Gaussian MIR Estimator
	Properties of SFM for Linear Processes

	Generalization of SFM
	MIR evaluation by Negentropy
	Generalized SFM Definition
	GSFM Estimation

	Examples
	Upper bound to MIR for a known input pdf
	B. Voicing Determination in Speech
	Characterization of Musical Signals

	Conclusion

