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ABSTRACT
A highly optimized least squares method is proposed to com-
pute the amplitudes ofK sinusoidal components over a short-
time windowed signal of lengthN . It is shown that when an
analysis window is used with a bandlimited frequency response,
the computational complexity of this method can be reduced
fromO(K2N) toO(N log(N)) and the space complexity from
O(K2) toO(K). In addition, it is known that least squares am-
plitude estimation handles successfully overlapping frequency
responses which allows the use of very small analysis windows.
As a result, a significant improvement is obtained at the tran-
sients where fast variations in both frequency and amplitude oc-
cur. Successful simulations of recorded instruments are pre-
sented.

1. INTRODUCTION

Sinusoidal modelling of musical signals and speech is widely
recognized as a very powerful and flexible method. One of the
main reasons of its popularity is that it allows to vary pitch and
duration of the sound independently [1] allowing sound modifi-
cations of a very high quality. Early analysis methods estimate
the parameters on individual peaks using a parabolic interpola-
tion over the main lobe of the log frequency response [2]. This
requires quite large windows since the method cannot handle fre-
quency responses that are partially overlapping.
Most methods assume that the amplitudes and frequencies are
constant over the analysis window. For large windows however,
an interpolation is desired since small frequency differences be-
tween consecutive frames can lead to a phase mismatch at the
frame boundaries. In other words, when the assumption that the
frequencies and amplitudes are constant does not hold, an inter-
polation is required to guarantee the phase continuity. A popular
method to impose the phase continuity is the cubic phase inter-
polation method presented in [3]. In more recent work, improve-
ments were proposed such as the estimation of the slope of the
parameters [4] and the use of spline based trajectories [5].
On the other hand, when the windows are small enough, the con-
stant parameter assumption is more likely to hold and no phase
interpolation is required. As a result, a fast inverse FFT synthesis
method can be used with simple overlap-adding (OLA). In addi-
tion, the use of interpolation in combination with large windows
can introduce undesired artifacts at the transients. For example,
when the signal changes rapidly, the amplitudes and frequencies
over the consecutive window will differ largely and the interpo-
lation will introduce an unnatural transition which is perceived
as a ’click’. By using small analysis windows and no phase in-
terpolation, phase discontinuity is allowed which is desired at
the transients.

For the amplitude estimation of sinusoidal components in short
time signals, a least squares method is frequently used. A first
group of methods estimate the amplitude of each component iter-
atively [6, 7, 8]. These methods can be implemented efficiently
by using look-up tables for the frequency responses which re-
sults in a time complexityO(N log(N)). Their disadvantage
however, is that they cannot resolve close frequencies which
result in overlapping frequency responses. A second group of
methods estimate all amplitudes simultaneously [9, 10]. Their
advantage is that they can handle strongly overlapping frequency
responses which allows the use of very short analysis windows.
Their major drawback however is their significantly higher com-
putational complexity which isO(K2N) as will be shown later.
The scope of this paper is limited to amplitude estimation for
a given set of frequencies̄ω. The initial estimation and itera-
tive optimization of the frequencies is developed further in [11].
It is shown that the computational complexity of the amplitude
estimation can be reduced to the same complexity as the itera-
tive methods beingO(N log(N)). This is realized by choos-
ing a window with a bandlimited frequency response such as the
Blackmann-Harris window, and incorporating this window in the
least squares derivation.

2. SIGNAL MODEL AND WINDOW CHOICE

A windowed short-time signalxn is modelled by a signal model
x̃n consisting of a harmonic series of cosines that are multiples
of a fundamental frequencyω. Each partial has an amplitudeak

and a phaseφk.

x̃n = wn

K−1
∑

k=0

(

ak cos(2πkω
n

N
+ φk)

)

(1)

Note that the analysis windowwn is explicitly included in the
signal model. As stated before, a window with a band-limited
frequency response is chosen. A possible choice is the Blackmann-
Harris window given by

wn = a + b cos(2π
n − n0

N
) +

c cos(4π
n − n0

N
) + d cos(6π

n − n0

N
) (2)

with a = 0.35875, b = 0.48829, c = 0.14128 and d =
0.01168. The frequency response of the Blackmann-Harris win-
dow is shown in Fig. 1.
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Figure 1: Top: Frequency response of Blackmann-Harris win-
dow,Bottom: Frequency response of square Blackmann-Harris
window.

3. COMPLEX AMPLITUDE COMPUTATION

In this section, the least squares estimation technique is dis-
cussed which determines the complex amplitudes of the sinu-
soidal components for a given set of frequenciesω̄. It is assumed
implicitly that the amplitudes and frequencies are constant over
the analysis interval.

Eq. (1) is reformulated in terms of complex exponentials with
complex amplitudes denotedAk = ak exp(iφ). This can be
expressed as a sum of cosines and sines where the real part of
the complex amplitudeAk is denotedAr

k = ak cos φ and the
imaginary part asAi

k = ak sin φ. The signal model for the short
time signalx̃n can now be written as

x̃n = wn

1

2

K−1
∑

k=0

(

Ak exp(2πikω
n

N
) + A

∗

k exp(−2πikω
n

N
)
)

= wn

K−1
∑

k=0

(

A
r
k cos(2πkω

n

N
) − A

i
k sin(2πkω

n

N
)
)

(3)

The error functionχ(Ā; ω) expresses the square difference be-
tween the samples of the windowed signalxn and the signal
modelx̃n in function of the amplitudes̄A for a givenω.

χ(Ā; ω) =
∑

n

(xn − x̃n)2 (4)

The minimization of the error is realized by putting the partial
derivatives with respect to the unknowns to zero

∂χ(Ā; ω)

∂Ar
k

= 0,
∂χ(Ā; ω)

∂Ai
k

= 0 (5)

resulting respectively in

K−1
∑

k=0

A
r
k

(

N−1
∑

n=0

w
2
n cos(2πkω

n

N
) cos(2πlω

n

N
)

)

−

K−1
∑

k=0

A
i
k

(

N−1
∑

n=0

w
2
n sin(2πikω

n

N
) cos(2πlω

n

N
)

)

=

N−1
∑

n=0

xnwn cos(2πlω
n

N
) (6)

and

−

K−1
∑

k=0

A
r
k

(

N−1
∑

n=0

w
2
n cos(2πkω

n

N
) sin(2πlω

n

N
)

)

+

K−1
∑

k=0

A
i
k

(

N−1
∑

n=0

w
2
n sin(2πikω

n

N
) sin(2πlω

n

N
)

)

= −

N−1
∑

n=0

xnwn sin(2πlω
n

N
) (7)

These two sets ofK equations have2K unknown variables what
can be written in the following matrix form

[

B
1,1

B
1,2

B
2,1

B
2,2

] [

A
r

A
i

]

=

[

C
1

C
2

]

(8)

with

B
1,1

l,k =

N−1
∑

n=0

w
2
n cos(2πkω

n

N
) cos(2πlω

n

N
)

B
1,2

l,k = −

N−1
∑

n=0

w
2
n sin(2πkω

n

N
) cos(2πlω

n

N
)

B
2,1

l,k = −

N−1
∑

n=0

w
2
n cos(2πkω

n

N
) sin(2πlω

n

N
)

B
2,2

l,k =

N−1
∑

n=0

w
2
n sin(2πkω

n

N
) sin(2πlω

n

N
)

C
1
l =

N−1
∑

n=0

xnwn cos(2πlω
n

N
)

C
2
l = −

N−1
∑

n=0

xnwn sin(2πlω
n

N
)

The amplitudes are computed by solving this set of equations.
The analysis of computational complexity of this method in func-
tion of the number of samplesN and number of partialsK yields

• B is aK ×K matrix of which each element is computed
by a sum overN elements. This implies a complexity
O(K2N).

• C is a vector of sizeK of which each element is com-
puted by a sum overN elements. This implies a com-
plexityO(KN).

• The solution of the linear set of equation has a complexity
O(K3).



4. IMPROVEMENTS OF THE COMPUTATIONAL
COMPLEXITY

4.1. Efficient Computation ofB

The main computational burden comes from the construction of
the matrixB and solving the equations. Following derivation
shows that this can be improved considerably. We start by writ-
ing

B
1,1

l,k =

N−1
∑

n=0

w
2
n cos(2πkω

n

N
) cos(2πlω

n

N
)

=
1

2

N−1
∑

n=0

w
2
n

[

cos(2π(k + l)ω
n

N
) + cos(2π(k − l)ω

n

N
)
]

=
1

2
(ℜ(Y ((k + l)ω)) + ℜ(Y ((k − l)ω))) (9)

with

Y (m) =

N−1
∑

n=0

w
2
n(exp(2πim

n

N
)) (10)

which is the frequency response of the square window. As de-
picted in Fig. 1. the frequency response of the square window
is also bandlimited. This can be understood easily considering
that taking the square of the window is equivalent with a convo-
lution in the frequency domain. This implies however that the
bandwidth of the frequency response is doubled.
In an analogue manner one can derive

B
1,2

l,k = −
1

2
(ℑ(Y ((k + l)ω)) + ℑ(Y ((k − l)ω)))

B
2,1

l,k = −
1

2
(ℑ(Y ((k + l)ω)) −ℑ(Y ((k − l, ω)))

B
2,2

l,k = −
1

2
(ℜ(Y ((k + l)ω)) −ℜ(Y ((k − l)ω)))

Sincew2
n is real and symmetric,Y (m) is also real and symmet-

ric. As a result,B1,2 andB
2,1 contain only zeros. The matrices

B
1,1 andB2,2 are now written in terms of two matricesY+ and

Y
− containing the first and second term of Eq. (9) yielding

B
1,1 =

1

2
(Y+ + Y

−)

B
2,2 = −

1

2
(Y+ − Y

−) (11)

Since bothkω and lω lie between zero and1
2
, their difference

lies between− 1

2
and 1

2
. As can be observed from Fig. 1. only

values must be considered that lie within the bandwidth of the
frequency response meaning that

−β

N
≤ (k − l)ω ≤

β

N
(12)

with β = 8 for the square Blackmann-Harris window. As a
result only the valuesk − l must be taken into account between
⌈− β

Nω
⌉ and⌊ β

Nω
⌋. Note that sincek andl denote the row and

column index ofY−, k − l denotes the diagonal. This implies
that the matrix is band diagonal.
For Y+ a similar reasoning is applicable. In this case however
the values(k + l)ω lie between zero and one. The main lobe

of Y (m) is therefore divided over the left and right hand side
of the interval due to spectral replication. The smallest values
result in significant matrix elements in the upper left corner. The
largest values contribute to the lower right corner. As a result
bothB

1,1 andB
2,2 are band diagonal. As follows from Eq. 12,

only 2D + 1 diagonal bands must be considered with

D = ⌊
β

Nω
⌋ (13)

The number of diagonal bands is dependent on the bandwidthβ

of the frequency response, the number of samplesN and the fun-
damental frequencyω. For instance, when the window length is
chosen to be three periods,N = 3

ω
, and knowing thatβ = 8 for

the square Blackmann-Harris window, a value of 2 is obtained
for D. This means that only the main diagonal and the two first
upper and lower diagonals are relevant. Therefore these values
are stored in a shifted matrix

←−
B , defined as

←−
B l,k = Bl,l+k−D (14)

with size K × (2D + 1). An adapted gaussian elimination
method, denotedSOLV E, was developed which computes the
amplitudes directly from

←−
B andC in linear time

A
r = SOLV E(

←−−
B

1,1
,C

1)

A
i = SOLV E(

←−−
B

2,2
,C

2) (15)

The impact on the space and time complexity is the following:

• Since2D + 1 is significantly smaller than the number
of partialsK, the use of a shifted matrix

←−
B reduces the

space complexity fromO(K2) toO(K).

• By using an oversampled look-up table for the main lobe
of Y (m), each element of

←−
B can be computed in constant

time resulting in a complexityO(K).

• By solving the set of equations directly on
←−
B andC the

time complexity is reduced fromO(K3) toO(K)

4.2. Efficient Computation ofC

The results of the previous section move the bottleneck to the
computation ofC which has a complexityO(KN). We refor-
mulate

Cl =

N−1
∑

n=0

xnwn exp(2πilω
n

N
)

=

N−1
∑

n=0

1

N

[

N−1
∑

m=0

Xm exp(2πim
n

N
)

]

wn exp(2πilω
n

N
)

=
1

N

N−1
∑

m=0

XmW (m + lω) (16)

with

W (m) =

N−1
∑

n=0

wn(exp(2πim
n

N
)) (17)

and useC1 = ℜ(C) andC
2 = ℑ(C). From Fig. 1. and Eq.

(16) follows that onlym-values must be considered for which



−lω − 4 ≤ m ≤ −lω + 4. GivenXm, and using a look-up
table forW (m) the complexity for the computation would be
O(K). However, the computation of the FFT that is required to
computeXm has a complexityO(N log N) which is the final
complexity of the optimized amplitude estimation.

5. RESULTS

The optimized amplitude estimation technique over short time
windows was applied on a monophonic harmonic sound. The
window length was chosen to be three fundamental periods. Re-
sults are presented for a recording of a trumpet playing slurred
notes. This sound signal is shown in Fig. 2 and is particularly
difficult because of the many transients. However, the obtained
resynthesis is free of artifacts and undistinguishable from the
original signal by our listening experience1. Fig. 3 shows the
estimated amplitudes and frequencies over time.
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Figure 2:Left: Original Signal,Right: Resynthesis

6. CONCLUSIONS

In this paper, the computational complexity of the least squares
amplitude estimator is reduced fromO(K2N) toO(N log(N))
with N being the number of samples andK the number of par-
tials. The method was applied successfully on recordings of
acoustic instruments and was also successful in capturing fast
variations in the amplitudes and frequencies at the transients.
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