
A hardware MP3 decoder
with low precision floating
point intermediate storage

Andreas Ehliar, Johan Eilert

LiTH-ISY-EX-3446-2003

Linköping 2003

A hardware MP3 decoder
with low precision floating
point intermediate storage

Master’s Thesis

in Computer Engineering,
Dept. of Electrical Engineering

at Linköpings universitet

by Andreas Ehliar, Johan Eilert

Reg no: LiTH-ISY-EX-3446-2003

Supervisor: Mikael Olausson

Examiner: Dake Liu

Linköping, 2003

Abstract

The effects of using limited precision floating point for intermediate stor-
age in an embedded MP3 decoder are investigated in this thesis. The
advantages of using limited precision is that the values need shorter word
lengths and thus a smaller memory for storage.

The official reference decoder was modified so that the effects of different
word lengths and algorithms could be examined. Finally, a software and
hardware prototype was implemented that uses 16-bit wide memory for
intermediate storage. The prototype is classified as a limited accuracy
MP3 decoder. Only layer iii is supported. The decoder could easily be
extended to a full precision MP3 decoder if a corresponding increase in
memory usage was accepted.

vi Abstract

Contents

1 Introduction 1

1.1 Purpose of this work . 1

1.2 Report outline . 1

1.3 Acknowledgements . 2

2 Background 3

2.1 Perceptual audio coding 3

2.1.1 The masking effect 3

2.1.2 Critical bandwidth 4

2.1.3 Quality measurements 4

2.2 The MP3 standard . 5

2.2.1 Encoder . 5

2.2.2 Decoder . 7

2.2.3 The bitstream . 9

3 Floating point format 13

3.1 Precision . 13

3.2 Observations . 14

3.3 Optimized algorithms . 16

3.4 Required operations . 16

viii Contents

4 Hardware architecture 17

4.1 Overview . 17

4.2 General purpose registers 19

4.3 Special purpose registers 20

4.4 Fixed point data path 22

4.5 Floating point data path 22

4.6 Memory interfaces . 25

4.6.1 Program memory 25

4.6.2 Data memory . 25

4.6.3 Constant memory 25

4.7 Instruction set . 25

5 Tools 27

5.1 Instruction set simulator 27

5.2 Assembler . 30

5.3 Huffman table compiler 30

6 MP3 decoder implementation 33

6.1 Components . 33

6.1.1 Huffman decoder 33

6.1.2 Sample dequantization 34

6.1.3 IMDCT . 37

6.1.4 Subband Synthesis 38

6.2 Decoder verification . 43

6.3 Listening test . 43

7 Benchmarks and profiling 45

7.1 Clock frequency requirements 45

7.2 Memory usage . 47

7.3 Instruction usage statistics 49

Contents ix

8 RTL implementation 51

8.1 VHDL . 51

8.1.1 Development environment 51

8.1.2 Functional verification 51

8.2 FPGA prototype . 53

8.2.1 Resource usage 53

8.2.2 FPGA resource usage 54

9 Results 57

10 Future work 59

10.1 Improved software . 59

10.2 Improved hardware . 59

10.3 Improved development tools 60

10.4 Power measurements . 60

A Instruction set reference 61

B Instruction encoding 93

C Matlab code for the x4/3 function 95

D Matlab code for a fast IMDCT 99

E Matlab code for a fast DCT 105

References 107

x Contents

1
Introduction

1.1 Purpose of this work

Mpeg-1 layer iii is well understood, both on desktop systems and in em-
bedded systems. Embedded systems usually use fixed point arithmetics,
whereas decoders for desktop systems can be implemented using either
fixed point or ieee floating point arithmetics.

The purpose of this thesis project has been to evaluate if it is practical,
in terms of sound quality, to use a 16-bit wide data memory to store
the intermediate sample values and other data during the decoding pro-
cess. There are several reasons to minimize the word length of the data
memory. By reducing the size of the memory and the size of the multi-
plier hardware, power consumption and chip area is reduced. A floating
point format was used for achieving the required dynamic range with a
modest word length.

1.2 Report outline

General background information about perceptual audio coding and the
MP3 standard is given in chapter 2.

Chapter 3 contains results from the floating point precision prestudy.

The hardware architecture of the implemented MP3 decoder is described
in chapter 4.

2 Chapter 1. Introduction

The development tools that were implemented to facilitate programming
the hardware are described in chapter 5 and the decoder software is
described in chapter 6.

Decoder benchmarks and profiling statistics are found in chapter 7.

Chapter 8 summarizes the fpga prototype.

Chapter 9 contains a summary of the results and chapter 10 lists possible
future improvements.

1.3 Acknowledgements

We would like to thank our examiner Dake Liu and our supervisor Mikael
Olausson for the opportunity to work with this interesting and challen-
ging project.

We would also like to thank our opponents Johan Borg and Gernot Ziegler
for providing comments and feedback on our report and Maria Axelsson
for additional comments.

2
Background

This chapter gives a brief introduction to the basics of perceptual audio
coding, followed by an equally brief overview of the MP3 standard. A
much more in-depth introduction to perceptual audio coding and various
audio coding standards is given in Perceptual Coding of Digital Audio [1].

2.1 Perceptual audio coding

Perceptual audio coding is based on the fact that the human ear and
auditory system extracts and uses much less information from the heard
sound than is available. It is therefore often possible to remove or change
some components in a sound without any noticeable difference from the
original sound.

2.1.1 The masking effect

Research has resulted in psychoacoustic models that describe which parts
of a sound that are actually heard (by humans) and which parts that are
not discernible.

Apart from the well known fact that humans in general cannot hear fre-
quencies above 20 kHz, there are other interesting properties of the ear
known as simultaneous frequency masking and non-simultaneous tem-
poral masking.

Masking means that one sound has become inaudible because of the
presence of another sound (the masker). Frequency masking occurs when

4 Chapter 2. Background

frequency

amplitude tone

mask threshold

time

amplitude
tone

mask threshold

(inaudible)
masked tone

Figure 2.1: Frequency masking (top) and temporal masking (bottom).

a loud sound masks softer sounds that are close in frequency. Temporal
masking occurs when a loud sound begins to mask a soft sound before
the loud sound is heard. The temporal masking also continues a moment
after the loud sound has disappeared. Figure 2.1 gives a graphical view
of the masking.

2.1.2 Critical bandwidth

The nature of frequency masking makes it convenient to introduce the
concept of critical bandwidth. The critical bandwidth increases nonlin-
early with frequency and it determines the slope of the masking thresholds
introduced by tones and noise. The Bark unit corresponds to the distance
of one critical band.

2.1.3 Quality measurements

With perceptual audio coding, traditional sound quality measures such
as signal-to-noise ratio (snr) or signal frequency bandwidth are next

2.2 The MP3 standard 5

to useless. In practice, listening tests are the only reliable method to
compare the quality of perceptual audio coding algorithms.

2.2 The MP3 standard

The iso/iec 11172-3 (mpeg-1 audio) standard [2] describes a sound
format with one or two sound channels sampled at 32 kHz, 44.1 kHz
or 48 kHz, encoded at 32 kbit/s up to 320 kbit/s.

The standard describes layer i, ii and iii. They offer increasing com-
pression ratios, but also increasing complexity in terms of processing
requirements.

Layer iii is commonly referred to as “MP3” from the file extension it uses
and it has become extremely popular due to its high quality at low bit
rates.

With the MP3 format, a typical piece of music can be compressed down
to approximately 1 mb/minute and still sound virtually indistinguishable
from the 10 mb/minute original.

The following sections briefly describe the workings of an MP3 encoder
and decoder. There is also an overview of the bitstream.

2.2.1 Encoder

A block diagram of an MP3 encoder is shown in figure 2.2 and the encod-
ing procedure is explained briefly below. For more details, the interested
reader is referred to the MP3 standard [2].

The pcm input is divided into chunks of 576 samples called granules. For
two-channel inputs, a sample represents two values. In this case, each
granule will contain information about two channels, and the following
steps will be repeated for the second channel.

The samples are fed through a polyphase filter bank that splits the
576 samples into 32 subbands with 18 samples in each subband.

If a granule is initially silent but contains a sharp attack (a sudden loud
sound), the masking thresholds might be improper for the silent part
of the granule. This results in a brief burst of potentially audible noise

6 Chapter 2. Background

before the attack. This phenomenon is called pre-echo. The amount of
pre-echo is reduced by using three short time windows with six samples
per subband to increase the local time resolution. Three modified discrete
cosine transforms, mdcts, are applied on the resulting window values.

Otherwise, if a granule does not contain a sharp attack, one long time
window with 18 samples per subband is used and an mdct is applied on
the samples.

The combined output of all subbands now form either 576 frequency
samples or three time windows with 192 frequency samples. In the latter
case, frequency resolution has been traded for time resolution.

Two granules make up one frame in which the two granules share sample
storage space and some decoding information. The encoder runs a dis-
tortion control loop where it iteratively tries to find the best quantization
settings for the two granules so that both the psychoacoustic model is
satisfied and the bit rate requirement is met. The sample values are Huff-
man coded to reduce their space requirement. This forces the encoder to
spend most of its time calculating how many bits different combinations
of values will occupy in the bitstream. The Huffman tables are fixed and
known by both the encoder and the decoder.

Finally, when the bit rate is met, the frame is assembled. Apart from the
encoded sample data, a frame consists of a header and side information
such as quantization settings and Huffman table identifiers.

Window
type

PCM data

32 subbands
576 freq.

lines

Masking thresholds

Bit stream
Bit allocation

Distortion
control loop

encoder
Huffman

fo
rm

at
ti

ng
B

it
 s

tr
ea

m

Coding
of side
information

Psycho−
acoustic
model

MDCTbank
Filter

Figure 2.2: Block diagram of an MP3 encoder.

2.2 The MP3 standard 7

Read samples

Read scale factors

Read side information

Read header

Find header
Reorder samples

Alias cancellation

IMDCT

Frequency inversion

Subband synthesize

Output PCM
Dequantize samples

Figure 2.3: Flow chart of an MP3 decoder.

2.2.2 Decoder

The decoder basically applies the inverse transformations to restore the
pcm audio stream for playback. All frames are essentially processed in
the same way. Figure 2.3 shows a flow chart of the frame decoding process
and the steps are described in more detail below.

Find and read header: The first task of the decoder is to locate the
synchronization word that marks the beginning of a valid mpeg
audio frame.

The synchronization word is part of a header that contains inform-
ation about the layer number, the sample rate and the channel
configuration. These settings are not allowed to change for the
duration of the entire bit stream.

The header also contains information about the bit rate which tells
the decoder how large the present frame is and thus when to expect
the next synchronization word and the next header.

Read side information: The information that is needed by the de-
coder, apart from the data that eventually will be transformed

8 Chapter 2. Background

back into sample values, is called side information.

There is one side information block for each channel in each gran-
ule. This information contains various decoding and dequantization
parameters that will be used in the following steps.

Read scale factors: The frequency spectrum is divided into scale factor
bands. These bands are determined by the sample rate and they
correspond roughly to the critical bands of the human ear.

For each scale factor band, there is a scale factor which will be used
later to control the gain during sample dequantization.

Read samples: The 576 Huffman coded sample values are now read
and decoded using the Huffman tables indicated by the side in-
formation. The encoder may use several different Huffman tables
on different sample regions. The various Huffman tables have dif-
ferent number range and/or bit allocation.

The raw sample values are in the range [−8207 : 8207], but the
Huffman tables only represent pairs of values that are in the range
[0 : 15]. In order to code larger values, some tables use the value 15
as an escape code. If the Huffman decoder encounters the escape
code, it reads in a table dependent number of bits and adds this
value to 15. This number of bits is referred to as linbits. The
number of linbits varies between 1 and 13. Every non-zero sample
is also followed by a sign bit.

Sample dequantization: In this step, the samples from the bitstream
are dequantized and scaled to the proper values using the scale
factors and the granule gain value. Sample values are raised to the
power of 4/3 during the dequantization process.

Reorder samples: Samples in blocks that use the short time window
setting (short blocks) must now be reordered in order to be pro-
cessed by the following steps.

Alias cancellation: The decoder applies alias cancellation to blocks
that use the long time window setting (long blocks) to compensate
for the frequency overlap of the subband filter bank.

IMDCT: Each subband is now transformed back into the time domain.
For long blocks, a 36-point imdct calculates the 36 output samples

2.2 The MP3 standard 9

directly. For short blocks, the output from three 12-point imdcts
are combined into 36 output samples.

The first 18 output samples are added to the stored overlap values
from the previous granule. These values are the new output values.
The last 18 output samples are stored for overlap with the next
granule.

Frequency inversion: Every second sample in every second subband
is now multiplied by −1 to correct for the frequency inversion of
the subband filter bank.

Subband synthesize: Finally, the 32 subbands are combined into time
domain samples that cover the whole frequency spectrum. One
sample is taken from each subband and transformed using a trans-
form similar to dct. The result is written to the low end of a large
array after room has been made by shifting its previous contents
towards higher indices. The pcm samples are then calculated by
means of a windowing operation on the array.

According to [3], the quality of a decoder is tested by decoding a special
reference bitstream called compl.bit [4] and comparing the result to a
supplied reference signal. Assuming that the output pcm samples are
in the range [−1 : 1], to be qualified as a full precision decoder, the
root mean square, rms, of the difference signal must not be larger than
2−15/

√
12. In addition, the largest absolute difference of a single sample

must not be larger than 2−14.

Otherwise, if the rms of the difference is less than 2−11, the decoder is
qualified as a limited accuracy decoder, regardless of the largest absolute
difference of a single sample. If the output from the decoder does not
fulfill any of the requirements, it is not compliant.

2.2.3 The bitstream

The output of an MP3 encoder is a self-contained bitstream that contains
all information required by an MP3 decoder to restore the original sound.
The bit rate of the bitstream can be fixed and known in advance which
leads to fixed transmission rates and lower latency due to reduced need for
buffering at the receiver. This is of less importance in systems where the
entire bitstream is available for random access. For these applications,

10 Chapter 2. Background

the bit rate may be variable to improve audio quality or reduce the size
of the bitstream.

There is a header with a synchronization word at the beginning of each
frame. The header identifies the bitstream as an mpeg audio layer iii
stream and gives details about how to interpret the rest of the frame. The
header contains settings such as channel configuration and the sample
rate.

The headers are found at regular intervals in the bitstream, unless the
stream was encoded with a variable bit rate. In any case, the bit rate
indication given in each header is enough to know the position of the
next header.

It is possible to include almost arbitrary custom data in the bitstream.
Every compliant decoder will simply skip this extra data during the syn-
chronization phase as long as the data does not contain anything that
looks like a header. To reduce the possibility of decoding false headers,
there is an option to protect the header with a crc checksum.

Immediately following the header is the audio data part which contains
information needed during sample decoding and dequantization.

When the decoder has read the audio data, it must read the main data
part which contains scale factors and the actual sample data. A problem
is that the main data part does not necessarily begin after the audio data
part. Layer iii allows a frame to borrow data space from the previous
frame. This feature allows the encoder to build up a bit reservoir that
can be used for reducing the pressure on complex frames.

The audio data part includes a pointer to where the main data part be-
gins. See figure 2.4 for an example. The pointer can only refer backwards
in the stream, and the range is limited. In extreme cases, the previous
main data must be padded until current main data is in range for the
main data pointer.

2.2 The MP3 standard 11

Header and
Audio data

Main data
pointer

Main data

Distance determined by bit rate field in each header

The bitstream

H HH H H

H H H H H

Figure 2.4: The organization of the bitstream. Top: The header and
audio data part and the main data part are separated. Bot-
tom: The corresponding bit stream.

12 Chapter 2. Background

3
Floating point format

This chapter describes the tests that were conducted to determine if it
was feasible to implement an MP3 decoder using low precision floating
point arithmetics.

3.1 Precision

The reference MP3 decoder [5] was modified to use custom wrapper
functions around all relevant arithmetic operations. The width of the
mantissa and exponent could be changed from the command line. Fur-
thermore, the effects of having two different floating point formats was
investigated. This made it possible to study an architecture where the
floating point registers are wider than the floating point values stored in
memory. Since memory is expensive, both in terms of chip area and power
consumption, it was deemed desirable to have an architecture where the
intermediate values stored in ram would be no more than 16 bits wide.

The floating point format used by the wrapper uses an explicit “1.” and
it does not have any gradual underflow. An overflow was considered a
fatal error resulting in a program abort.

14 Chapter 3. Floating point format

7 8 9 10 11 12 13 14 15 16 17 18 19 20

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Internal mantissa size

Compliance results depending on the precision of the floating point arithmetics

E
xt

er
na

l m
an

tis
sa

 s
iz

e

Not compliant Limited accuracy Full precision

Figure 3.1: A comparison of the compliance result while having differ-
ent sizes of the internal (register) and external (memory)
mantissa.

3.2 Observations

Preliminary tests showed that the exponent had to be at least 6 bits in
order to accommodate the dynamic range needed by the algorithms in
the reference decoder.

However, experiments on various bitstreams showed that only the sample
dequantization used values larger than 24. These intermediate values
were never stored in memory. Experiments indicated that at least 5 bits
need to be stored in memory to get reasonable accuracy. The range of
the exponent when stored in memory was chosen as [4 : −27].

3.2 Observations 15

12
13

14
15

16
17

18
19

20

8
10

12
14

16
18

20

0

0.5

1

x 10
−4

Internal mantissa size

RMS of error depending on the precision of the floating point arithmetics

External mantissa size

R
M

S
 o

f e
rr

or
Limited accuracy

Full precision

Figure 3.2: A comparison of the rms error while having different sizes
of the internal (register) and external (memory) mantissa.
Only configurations conforming to iso/iec 11172-3 compli-
ance requirements are present in this figure.

It was subsequently found that it is possible to construct synthetic bit-
streams that would cause an overflow to occur. These bitstreams con-
tained as many large values as possible and the global gain was set to
the maximum level allowed by the bitstream.

Saturation on overflow would be a possible solution to this problem.
Further experiments are needed to determine if this occurs in normal
MP3 bitstreams.

Various mantissa configurations were investigated in order to determine
a suitable configuration. Figure 3.1 shows the various mantissa size con-
figurations and their corresponding compliance levels. Figure 3.2 shows
the rms error of the compliant decoders. As a comparison, a decoder
called mpg123, which uses double precision floating point arithmetics,
decodes compl.bit with an rms error of 1.3 · 10−6.

16 Chapter 3. Floating point format

3.3 Optimized algorithms

A profiling of the reference decoder showed that the dct in the subband
synthesis and the inverse mdct was responsible for a major part of the
floating point operations.

The dct was reduced from a 64-point dct to a 32-point dct [6] and was
replaced with a version based upon Lee’s algorithm [7]. This improved
performance from 2048 multiplications and additions to 80 multiplica-
tions and 209 additions.

The imdct was implemented with an optimized version [8]. This im-
proved performance from the original 648 multiplications and additions
down to 43 multiplications and 115 additions.

Using the faster algorithms did not change the rms noticeably. The
algorithms are available as matlab programs in appendix D and in ap-
pendix E.

3.4 Required operations

An analysis of the reference decoder was conducted to determine the
required floating point operations. Only floating point addition, subtrac-
tion and multiplication are required to implement an MP3 decoder.

The trigonometric functions can be replaced by tables of a reasonable size
and all divisions can be rewritten by using either tables or multiplications.

Calculating x4/3 as needed by the sample dequantization could be done
by using Newton-Raphson iteration to estimate x−1/3, then calculating
(x−1/3 · x)2 = x4/3. No divisions are necessary in that case. This method
was subsequently found to be ineffective and another solution was imple-
mented. The new approach is described in section 6.1.2.

4
Hardware architecture

This chapter describes the hardware architecture of the cpu.

4.1 Overview

The cpu is essentially a risc processor with signal processing extensions.
It features, among other things, separate program, data and constant
memories, fixed point and floating point arithmetics, 16 general purpose
registers and accelerated sequential bit-level access to the data memory
for bitstream decoding. Figure 4.1 gives an overview of the system.

Constant
memory

Data
memory

Sequential
bit access

Branch
unit

Fetch
unit

Program
memory

Registers

stack

Decode
instr.

Control
signals

Floating point arith. unit

Load & store unit

Fixed point arith. unit

Figure 4.1: Overview of the hardware architecture.

18 Chapter 4. Hardware architecture

result mux

Update register

Decode instruction

Fetch instruction

Read registers Load constant

Execute floating point

Execute fixed
point / load /
store / misc

Figure 4.2: The execution pipeline. There are two pipeline registers
inside the left execution box and five pipeline registers inside
the right execution box.

The primary design strategy was to keep the hardware as simple as pos-
sible by moving as much complexity as possible to the software. Our
experience from previous projects is that it is usually easier to verify and
adapt software to hardware limitations than vice versa.

The intention was to pipeline the hardware for speed under the presump-
tion that if it can be clocked at a very high frequency, it can also run with
a low core voltage (at a lower clock frequency) to get low power consump-
tion. Unfortunately, the relatively high number of pipeline steps require
non-trivial instruction scheduling in order to obtain maximum perform-
ance. The pipeline diagram is shown in figure 4.2. More details are shown
in figure 4.4, 4.5 and 4.6. These figure are discussed in sections 4.3, 4.4
and 4.5, respectively.

4.2 General purpose registers 19

Fixed point data type:

bit: 15 . . . 0
value

(2’s compl. or unsigned)

Internal floating point data type:

bit: 22 21 . . . 16 15 . . . 0
sign exponent mantissa

(2’s compl.) (unsigned)

exponent is [−32 : 31], mantissa is [0 : 65535].
The number x = (−1)sign · 2exponent−11 · (1 + mantissa

65536), except
for exponent = −32 which means x = ±0.

External floating point data type:

bit: 15 14 . . . 10 9 . . . 0
sign exponent mantissa

(2’s compl.) (unsigned)

exponent is [−16 : 15], mantissa is [0 : 1023].
The number x = (−1)sign · 2exponent−11 · (1 + mantissa

1024), except
for exponent = −16 which means x = ±0.

Figure 4.3: The main data types.

4.2 General purpose registers

There are 16 general purpose registers named r0 through r15. This num-
ber of registers was chosen in order to have a reasonably small register file
to reduce the width of the instruction words while still allowing certain
algorithms to keep all their temporary variables in registers.

The registers are 23 bits wide and the data type associated with these bits
depends on the executed instruction. Some instructions use the 16 least
significant bits of the register contents as a 16-bit fixed point number,
typically an integer or a memory pointer. In this case, the seven most
significant bits are ignored on reads and unaffected by writes. Other

20 Chapter 4. Hardware architecture

instructions use the register contents as a 23-bit floating point number.
Figure 4.3 gives a bit level description of the data types.

A third data type, a 16-bit floating point type, is used for storing floating
point values in memory. There are no instructions for manipulating data
with this type, except type conversion instructions.

The register file has two read ports and one write port. All arithmetic in-
structions that use registers can use any two registers as source operands
and any register as destination for the result.

4.3 Special purpose registers

Apart from the general purpose registers, there are several special pur-
pose registers. They have predetermined functions in the processor.

The contents of a special register can be copied to and from a general
purpose register. It may also be implicitly updated as the result of an-
other operation. An example of this could be a special register that is
used as a memory pointer. When the pointer has been dereferenced, it
is implicitly incremented to point to the next memory value.

The instruction encoding allows for 16 special purpose registers, sr0
through sr15, but only sr0–sr5 and sr12–sr15 are implemented. The result
of accessing an unimplemented special register is undefined.

sr0 is used in the bit reader for holding up to 16 bits before they are
read by the cpu. When all bits have been read, this register is
immediately updated with the next word from a prefetch register.
A few clock cycles later, a new word is read from the data memory
into the prefetch register ready to be used the next time sr0 is
empty.

sr1 is a 4-bit counter that counts how many bits there would be left in
sr0 after the next read. A read from sr0 when this register is zero
triggers the reload hardware.

sr2 is used as a data memory pointer by the bit reader and the fmac
and fmaci instructions. It is automatically incremented by the bit
reader and by fmaci.

4.3 Special purpose registers 21

general purpose output

next bit

from data memory read reg

to data memory address mux

sr12 sr13 sr14 sr15

1

15

16

4

16

16
sr3 +1

sr4

16 16 16 16

16
sr5

+1

constant
memory
interface

23

next <<1

sr1

sr0

−1

sr2

16

=?
16

read reg

address

Figure 4.4: The special registers.

sr3 contains the restart value for sr2. When sr2 is about to be incremen-
ted past the contents of sr4, it is instead set to the contents of sr3.
This register is write-only.

sr4 contains the end value for sr2. The registers sr3 and sr4 are typically
used for marking the beginning and the end of a circular buffer.
This register is write-only.

sr5 contains the constant memory pointer that is used by fmulc, fmac
and fmaci. It is automatically incremented each memory read. This
register is write-only.

sr12–sr15 are 64 general purpose inputs (on reads) and 64 general pur-
pose outputs (on writes). They are typically used for communicat-
ing with peripherals such as a sample fifo and a bitstream fifo.

Figure 4.4 gives a graphical representation of the special registers.

22 Chapter 4. Hardware architecture

4.4 Fixed point data path

The fixed point data path is shown in figure 4.5. All units operate on
16-bit data, except the shifter that implements the seth, ltoh and htol
instructions.

The arithmetic unit implements simple two’s complement arithmetics.
Overflow is handled by wrapping and the carry out is lost.

The origin of the next bit signal is shown in figure 4.4. The branch taken
and new pc signals go to the instruction fetch unit.

4.5 Floating point data path

The floating point data path is shown in figure 4.6 and it consists of
one floating point add/subtract pipeline and one floating point multiply
pipeline. The add pipeline is also used for the fpack and fint instructions
since they involve rounding which is similar to adding. In the multiplica-
tion pipeline, the mantissa multiplication step is divided into three steps
to reduce the combinational delay.

The data memory read register is found in figure 4.5 and the constant
memory read register is found in figure 4.4.

If overflow occurs during an operation, it is not handled and the result
is undefined. Underflow is handled by setting the result to zero.

4.5 Floating point data path 23

and,
or,
xor

add,
sub

operand A

operand B

logic unit

seth,
ltoh,
htol

operand A

shifter

nbitoperand A

shifter

operand A

operand B

arith. unit

operand A

operand B

write reg

read reg

next bit

to result mux

operand B

operand A new PC

branch taken

branch condition eval

immediate

register A

register B

operand A

operand B

address reg

data
memory
interface

fexpand

16/23

16/23

16

16

16

16

16

16

2323

16

16

16

16 16

1

1

16

23

sr2

ldf

ld

Figure 4.5: The fixed point data path. At the top is the operand mux
which selects operand A. Operand B is always taken from
the register file.

24 Chapter 4. Hardware architecture

16 1623 23

23 23 23 23

to result mux

Normalize (negate)
Saturate, Normalize

fadd,
fsub

round
Add/subtract/

Align
mantissas

Compare
magnitudes

Truncate,
(saturate)

fmulfintfpack

Multiply

reg Areg A

from constant memory read reg

reg B

constant for fint

reg B through fexpand

constant for fpack
from data memory read reg

Figure 4.6: The floating point data path. The multiplier is pipelined
with two pipeline registers.

4.6 Memory interfaces 25

4.6 Memory interfaces

There are three different memories in the system: the program memory,
the data memory and the floating point constant memory.

4.6.1 Program memory

Under normal conditions, the cpu fetches a new instruction from the
program memory every clock cycle. The program memory is 24 bits wide
and up to 64K words deep. It can only be accessed by the instruction
fetch unit, therefore it cannot easily be used for storing tables of constant
data for the program, although small tables can be implemented using
computed jumps.

4.6.2 Data memory

The data memory is used for storing run-time data, its contents are
undefined after a system reset. It is 16 bits wide and is used for storing
data in the fixed point format or the external floating point format. The
cpu can address up to 64K words of data memory.

4.6.3 Constant memory

The constant memory is a 23-bit wide rom used for storing floating point
constants such as window coefficients. It is addressed by a dedicated
pointer register and the read constant is always fed to the multiplier
pipeline. Since it has a dedicated pointer register, there is no hard limit
on the size of the constant memory.

4.7 Instruction set

The risc-like instruction set is very limited. For example, there are no
shift instructions and a very limited set of conditional branches. There
are some task-specific instructions, however. The instruction set is dis-
cussed in detail in appendix A and the instruction encoding is given in
appendix B.

26 Chapter 4. Hardware architecture

5
Tools

A set of tools was implemented to be used during the implementation and
verification of the cpu and the MP3 decoder. All tools were implemented
in gnu C.

5.1 Instruction set simulator

In order to test run program code, a clock cycle and pipeline accurate
cpu simulator was implemented. It also simulates the memories and
other devices connected to the cpu. The simulator is non-interactive, it
only displays a clock cycle counter and mips statistics when it runs.

Start

Read program memory
and constant memory

Reset registers

Execute one cycle

Update cycle counter

Figure 5.1: Flowchart of the instruction set simulator.

28 Chapter 5. Tools

Execute instruction N−3

Yes

No

NoYes

Yes

No

No

Yes

cycle
Execute one

Insert NOP NFetch instruction N

Abort instruction?

Fetching turned on?

Decode instruction N−1

Is N−1 a jump?

Read registers for N−2

Write profiling information

Exit

Was uninitialized
memory read?

Issue warning to operator

Turn off instruction fetching

Figure 5.2: Flowchart of how the instruction set simulator executes one
cycle.

The simulator begins by reading the input file that consists of a hexa-
decimal dump of the contents of the program memory and the constant
memory. The file also contains a symbol table. The simulation stops
when it encounters an abort instruction.

During execution, the simulator gathers execution profiling information.

5.1 Instruction set simulator 29

Notify operator of conflicting
register write

Yes Does N−8 and N−4
write to a register?

Does N−8 write
to a register?

Write N−8 value to RF

Execute instruction N−7

Execute instruction N−6

Execute instruction N−5

Does N−4 write
to a register?

Write N−4 value to RF

Is N−4 a jump?
No

Execute instruction N−4

Yes

Turn on instruction fetching

Update PC

No

No

Yes

No

Yes

Cycle
executed

Fatal
error

Figure 5.2: Flowchart of how the instruction set simulator executes one
cycle. (contd.)

Every program memory address has a fetch count associated with it and
every time an instruction is fetched, the corresponding fetch count for
that address is incremented. When the simulation is finished, a detailed
execution profiling report is generated from the fetch counts with help
of the symbol table. This report contains information about how much

30 Chapter 5. Tools

cpu time is spent in every function, instruction usage statistics and other
interesting data.

There are no real debugging facilities implemented in the simulator ex-
cept the option to produce a memory access log. This file contains one
line for every data memory read or write issued by the cpu. Each line
contains the address and data in question and the corresponding variable
name from the symbol table. The memory log file typically grows very
large very quickly and all the disk accesses slows down the simulator
considerably.

5.2 Assembler

The MP3 decoder was implemented entirely in assembly language and
an assembler was implemented to convert the assembly language into the
corresponding executable machine code.

Each function of the decoder is stored in a separate file. A top level
file, which is processed by cpp (the C language preprocessor), includes
all functions and data declarations into one huge file which is then read
by the assembler. This provided support for macros and conditional
assembling without any extra effort.

The assembler supports local labels to reduce the risk of name clashing
and to improve the profiling output from the instruction set simulator.
All instructions are supported along with several variants and conveni-
ence macros.

The assembler output contains machine code for the program memory,
the contents of the constant memory and the symbol table. The use of
cpp eliminates the need for a linker.

5.3 Huffman table compiler

The core of the Huffman decoding stage of the MP3 decoder was auto-
matically generated by a special Huffman table compiler that was imple-
mented for this purpose. The compiler was run on the Huffman tables
file from the reference decoder (huffdec) and the output was then copied
into the appropriate function in the decoder.

5.3 Huffman table compiler 31

dag representation:

B

FE

G H I J

0

0 1

0

10
0

1

0 11

10

1

A

C

D

Sequence representation:

A: if-0-go B ; get bit, branch if 0
if-1-go D ; get bit, branch if 1
if-0-go E
if-1-go H
go G

C: if-1-go J
go D

D: if-0-go F
if-1-go J
go I

B: return a,b ; leaf
E: return c,d ; leaf
...

...

Figure 5.3: Stage 3 (sequence extraction) of the Huffman table com-
piler.

The algorithm used by the Huffman table compiler is outlined below:

1. The input file is read and a binary tree representation of all Huff-
man trees is formed.

2. All identical nodes and leaves are merged. The internal represent-
ation is now a directed acyclic graph.

3. An intermediate representation similar to code is formed. It con-
sists of branch instructions and leaf instructions. The fall-through
paths of the branches are chosen to obtain the longest possible
sequences of instructions, see figure 5.3.

4. Real code for the cpu is now generated by interleaving branch se-
quences of matching length, see figure 5.4. If there are no sequences
with matching lengths, nop instructions are appended to make an
existing sequence longer.

32 Chapter 5. Tools

Instruction Seq.
A: if-0-go B A
C: if-1-go J C

if-1-go D A
go D C
if-0-go E A

D: if-0-go F D
if-1-go H A
if-1-go J D
go G A
go I D

Figure 5.4: Three interleaved sequences.

Interleaving makes sense because the conditional bit branch in-
structions force the cpu to fetch but not execute the following in-
struction. Interleaving is not strictly necessary, but it reduces the
code size since the alternative would be to put a nop instruction
after each conditional branch. This is a significant improvement in
the branch intensive Huffman decoder.

5. Peephole optimizations for common instruction sequences and jump
optimizations such as replacing a branch with its target are now
applied.

The patterns to look for were found by manually inspecting the
input to this stage.

6. Finally, the code is converted to an assembler-readable (human-
readable) textual representation and it is saved to disk.

The final size of the decoder core is 2223 instructions which compares
well to the 1379 leaves and 1378 inner nodes of the Huffman tables (not
counting identical tables). The code size before the peephole optimization
stage is 2882 instructions.

The decoder core does not handle linbits or sign bits, therefore wrapper
functions are needed for each table to make it usable in an MP3 decoder.

6
MP3 decoder implementation

This chapter describes the MP3 decoder that was implemented to run
on the previously described cpu.

6.1 Components

In order to understand the algorithms better, an MP3 decoder was first
implemented in C. This decoder was considerably smaller than the refer-
ence decoder, partly because only layer iii was supported. This decoder
served as a basis and reference for the assembly language implementation.

Most of the assembly language implementation was a straight forward
translation of the C implementation, but the performance critical parts
received more attention. These parts are described in this chapter.

6.1.1 Huffman decoder

The Huffman decoder was implemented as code where each Huffman tree
node was implemented as a conditional branch instruction. Table 6.1
contains a simple example that illustrates the technique. The obvious
solution to iterate over tables stored explicitly as constant data could
not be used since there is no suitable constant memory available. The
code solution is also faster, at the expense of memory usage.

A program was written to read the Huffman tables supplied with the
reference decoder and compile them into the corresponding program.
During the compilation, some optimizations were applied to reduce the

34 Chapter 6. MP3 decoder implementation

3,1

6,8

4,0 5,3

0 1

10

0 1

start Corresponding code:

start: bnbc got0 ; branch if bit is 0
(nop) ; bit was 1
bnbs got11 ; branch if bit is 1
(nop) ; bit was 0 (got 10)
bnbs got101
(nop) ; bit was 0 (got 100)

got100: set #4,r0 ; return 4 in r0
ret
set #0,r1 ; return 0 in r1

got0: set #3,r0 ; return 3 in r0
ret
set #1,r1 ; return 1 in r1

got101: set #5,r0 ; return 5 in r0
ret
set #3,r1 ; return 3 in r1

got11: set #6,r0 ; return 6 in r0
ret
set #8,r1 ; return 8 in r1

Table 6.1: Principle of Huffman table decoder.

size of the code. The compiler and the optimizations are described further
in section 5.3.

6.1.2 Sample dequantization

The performance critical part of the sample dequantization turned out to
be calculating |x|4/3 · sign(x) where x is an integer in the range [−8207 :
8207].

The trivial solution is a large table with precalculated values. This solu-
tion was implemented for comparison purposes only as it was too memory
inefficient to be used in practice. Several other algorithms were tried,
they are discussed below. These algorithms are summarized in table 6.2

6.1 Components 35

2000 4000 6000 8207
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3 Second order polynomial

2000 4000 6000 8207

−6

−4

−2

0

2

4

6

x 10
−5 Newton Raphson

2000 4000 6000 8207

−6

−4

−2

0

2

4

6

x 10
−5 Fifth order polynomial

2000 4000 6000 8207

−6

−4

−2

0

2

4

6

x 10
−5 Lookup table

Figure 6.1: The relative error of x4/3 for various algorithms.

Algorithm RMS of error
Lookup table 3.2 · 10−5

Newton-Raphson 3.2 · 10−5

Polynomial (2nd order) 4.0 · 10−5

Polynomial (5th order) 3.2 · 10−5

Table 6.2: Rms error while decoding compl.bit with different algorithms
for x4/3.

and figures 6.1 and 6.2. They show that numerical algorithms (that do
not rely on big tables) can be implemented with roughly the same preci-
sion as a table based approach.

The initial implementation used Newton-Raphson iteration. In order to
avoid the need for a floating point division, Newton-Raphson was used for
estimating x−1/3 which then was used for calculating x4/3 = (x−1/3 · x)2.

36 Chapter 6. MP3 decoder implementation

0 5 10 15 20 25 30

Table based

2nd order polynomial

5th order polynomial

Newton−Raphson

The performance of the algorithms used for calculating x4/3

MIPS

main
x4/3

Figure 6.2: A comparison of the performance of different algorithms
for calculating x4/3. The performance was measured on a
48 kHz bitstream designed to make the sample dequantiza-
tion as hard as possible for the decoder. The comparison is
not completely fair because the Newton-Raphson algorithm
lacks some optimizations for common special cases.

While the accuracy of this algorithm is good as long as enough iterations
were used, the performance is very poor. The algorithm operates on
a pair of samples to improve performance by parallel computations, as
does the other three algorithms.

The fastest practical algorithm used approximation by means of second
order polynomials. Different polynomials were used depending on the
exponent. The coefficients were selected using the least squares method.
The relative error was considerably worse than the other algorithms and
the rms of the error signal was noticeably worse with this algorithm.

Finally, an algorithm that uses a fifth order polynomial approximation
was implemented. This algorithm is slightly slower than the second order

6.1 Components 37

polynomial but the precision was once again almost as good as the table
based approach. This algorithm was used in the final decoder and a
matlab version can be found in appendix C.

6.1.3 IMDCT

The inverse modified discrete cosine transform, imdct, used in MP3
decoding is shown in equation 6.1. This 36-point imdct is valid for long
blocks. Short blocks use a 12-point imdct.

xi =
17∑

k=0

Xk cos
(π

72
· (2 · i + 19) · (2 · k + 1)

)
i ∈ 0, . . . , 35 (6.1)

Input
Scale

Input
Butterfly

Input
Butterfly

Scale
Input

Fast

SDCT−IV

18−point DCT−IV
18−point SDCT−IV

9−point

SDCT−IV

Fast Scale
Output

Output
Accumulate

Output
Accumulate

Reorder and
Duplicate

36−point IMDCT

9−point

Figure 6.3: Overview of the imdct optimization.

The 36-point imdct was implemented with an algorithm proposed by
Szu-Wei Lee [8]. The algorithm divides the imdct into two 9-point scaled
dcts as shown in figure 6.3. The 9-point SDCT-II was implemented
using only 8 multiplications and 36 additions. A matlab implementation
of this algorithm can be found in appendix D.

The algorithm relies on an accumulation stage that is troublesome on
architectures with long pipelines. The windowing operation was done in
parallel with the accumulation, thereby making use of otherwise empty
pipeline slots.

There are other ways to implement the imdct. An algorithm proposed
by Britanak and Rao [9] does not depend upon a long accumulation
stage. The downside is that this algorithm need more operations. It

38 Chapter 6. MP3 decoder implementation

would not improve performance unless a change in the instruction set
made it possible to optimize the windowing operation.

The 12-point imdct that is used in short blocks can be optimized in a
similar way by reducing it to two 3-point scaled dcts. The current imple-
mentation does not do this. The 12-point imdct is reduced to a 6-point
dct-IV which is calculated by a straight-forward matrix multiplication
implemented with the fmac and fmaci instructions.

6.1.4 Subband Synthesis

The subband synthesis consists of two parts, a dct operation and a
windowing operation. The reference decoder uses a 64-point dct on
32 subband samples as illustrated in equation 6.2. x is fetched from the
output of the frequency inversion step of the decoder.

Xi =
31∑

k=0

xk cos

((
π · i
64

+
π

4

)
· (2k + 1)

)
i ∈ 0, . . . , 63 (6.2)

A 1024-entry large array V contains the result of the dct operation. The
contents of V is shifted and the result of the dct operation is inserted
(equation 6.3). A total of 16 dct operations are stored in V .

V ′
i = Vi−64 i ∈ 1023, . . . , 64

V ′
i = Xi i ∈ 63, . . . , 0 (6.3)

Finally, the pcm samples are calculated as described by equation 6.4.
D contains the coefficients of the synthesis window described in annex B
of the MP3 standard.

Samplej =
7∑

i=0

V128·i+j ·D64·i+j + V128·i+j+96 ·D64·i+j+32

j ∈ 0, . . . , 31 (6.4)

6.1 Components 39

It is easy to reduce the 64-point dct to a 32-point dct by duplicating
some results and changing the sign as appropriate [6]. The resulting dct
is shown in equation 6.5. The relation between X ′ and X is outlined in
equation 6.6.

X ′
i =

31∑
k=0

xk cos
(π

2 · 32
· (2 · k + 1) · i

)
i ∈ 0, . . . , 31 (6.5)

Xi = X ′
i+16

X16 = 0
Xi+17 = −X ′

31−i

Xi+33 = −X ′
15−i

Xi+48 = −X ′
i

i ∈ 0, . . . , 15 (6.6)

The 32-point dct was implemented using Lee’s algorithm [7]. It is pos-
sible to divide an N -point dct into two N/2-point dcts. If N is a power
of 2, a dct can be recursively divided in an optimal way. Figure 6.4
illustrates this. A matlab implementation of this algorithm can be found
in appendix E.

By investigating the array indices in equation 6.4, it is clear that only half

N/2Scaling

DCT

DCT

N/2Input
Butterfly

Butterfly
Output

N−point DCT

Input
Butterfly

N/4
DCT

Scaling N/4
DCT Butterfly

Output

N/2−point DCT

Figure 6.4: How to recursively divide a dct into smaller dcts using
Lee’s algorithm.

40 Chapter 6. MP3 decoder implementation

of the array is accessed at a time. The addressed elements are shown in
equation 6.7. The shift operation in equation 6.3 ensures that all values
are used at some point.

0, . . . , 31

128 · i + 96, . . . , 128 · i + 159 i ∈ 0, . . . , 6

992, . . . , 1023 (6.7)

V can thus logically be divided into two arrays, V odd and V even. One
array that is used every even windowing operation and one array that is
used for every odd windowing operation.

Further optimizations can be made by not duplicating values as seen in
equation 6.6. V could be reduced to 512 words in this way. Unfortunately
one value appear in both the even and odd part of V (X ′

16 = X0 = −X32).
This makes it hard to divide V into an even and an odd array of 256 words
each. Thus, V even and V odd are 272 words each.

The final layout of V even and V odd is shown in table 6.3. The modi-
fied subband synthesis windowing is shown in equation 6.8. The other
samples are calculated in a similar manner. This allows the fmac and
fmaci instructions to be utilized. (These instructions are explained in
appendix A.) The pipeline penalty of the fpu is mitigated by calculat-
ing several samples in parallel. The modulo addressing mode of these
instructions were utilized to eliminate the copying operation of equa-
tion 6.3. W ′ is the new window. It contains the same values as W but
the values are rearranged and some values have been negated in order to
do the conversion of equation 6.6.

6.1 Components 41

Sample0 =
15∑
i=0

V even
i·4+0 ·W ′

i·7+0

Sample1 =
15∑
i=0

V even
i·4+1 ·W ′

i·7+1

Sample31 =
15∑
i=0

V even
i·4+1 ·W ′

i·7+2

Sample2 =
15∑
i=0

V even
i·4+2 ·W ′

i·7+3

Sample30 =
15∑
i=0

V even
i·4+2 ·W ′

i·7+4

Sample3 =
15∑
i=0

V even
i·4+3 ·W ′

i·7+5

Sample29 =
15∑
i=0

V even
i·4+3 ·W ′

i·7+6 (6.8)

42 Chapter 6. MP3 decoder implementation

V even
0,...,63 V odd

0,...,63 DCT32 output age
DCT32 output index DCT32 output index

16, . . . , 19 16, . . . , 13 0
16, . . . , 13 16, . . . , 19 1
16, . . . , 19 16, . . . , 13 2

...
...

...
16, . . . , 13 16, . . . , 19 15

Resulting samples: Sample0, . . . ,Sample3,Sample31, . . . ,Sample29

V even
64,...,127 V odd

64,...,127 DCT32 output age
DCT32 output index DCT32 output index

20, . . . , 23 12, . . . , 9 0
12, . . . , 9 20, . . . , 23 1
20, . . . , 23 12, . . . , 9 2

...
...

...
12, . . . , 9 20, . . . , 23 15

Resulting samples: Sample4, . . . ,Sample7,Sample28, . . . ,Sample25

V even
128,...,191 V odd

128,...,191 DCT32 output age
DCT32 output index DCT32 output index

24, . . . , 27 8, . . . , 5 0
8, . . . , 5 24, . . . , 27 1

24, . . . , 27 8, . . . , 5 2
...

...
...

8, . . . , 5 24, . . . , 27 15
Resulting samples: Sample8, . . . ,Sample11,Sample24, . . . ,Sample21

V even
192,...,271 V odd

192,...,271 DCT32 output age
DCT32 output index DCT32 output index

28, . . . , 31, zero 4, . . . , 0 0
4, . . . , 0 28, . . . , 31, zero 1

28, . . . , 31, zero 4, . . . , 0 2
...

...
...

4, . . . , 0 28, . . . , 31, zero 15
Resulting samples: Sample12, . . . ,Sample16,Sample20, . . . ,Sample17

Table 6.3: The final layout of V . Note that zero is the value 0, not the
index 0.

6.2 Decoder verification 43

6.2 Decoder verification

There are several test bitstreams available to verify that a decoder is
compliant [4] to the MP3 standard. The accuracy of the decoder was
verified by decoding compl.bit. The output of the decoder was found
to comply with the requirements of a limited accuracy mpeg-1 layer iii
decoder. The rms error compared to the reference output was 3.2 · 10−5.
This is similar to the accuracy predicted by the initial experiments shown
in figure 3.1.

The other test bitstreams were used for verifying that the decoder could
handle all kinds of bitstream parameters. For example, there are test
bitstreams that contain all kinds of header bits, all kind of bit rates, the
different stereo modes, different flags and all Huffman codes.

The assembly language implementation was debugged by dumping all
memory accesses to a file. These values were compared with the cor-
responding value in the C implementation. This was relatively straight
forward as the assembly language implementation is very similar to the
C implementation.

Core algorithms like the imdct and the subband synthesis were debugged
by linking the simulator with dedicated test code. This test code com-
pared the values of the assembly language implementation to values cal-
culated by C models using double precision floating point arithmetics.

6.3 Listening test

A listening test was performed where various samples were encoded with
lame. The source material was gathered from the Sound quality assess-
ment material — sqam [10], various test files from the lame project [11]
and finally some samples were gathered from CDs.

The sqam samples include sounds from several different instruments and
speech in German, English and French.

The lame test files are samples that have caused problems for lame.
These represent a wide variety of music genres and other sounds.

44 Chapter 6. MP3 decoder implementation

The samples from CDs were gathered from a Roxette album, a Secret
Garden album and finally from an album with Brahms’ Piano Concerto
No. 2.

Only one of the 200 files examined could be distinguished from a version
decoded by a floating point decoder. This file was encoded at 32 kbit/s
and it did not sound very good in the first place.

7
Benchmarks and profiling

This chapter contains information about the performance of the imple-
mented decoder.

7.1 Clock frequency requirements

Custom test bitstreams were created to benchmark the decoder. The
worst case performance is obtained with 48 kHz sample rate, a bit rate
of 320 kbit/s, joint-stereo, only short blocks and values optimized to make
the sample dequantization difficult by avoiding values that are handled
by fast special cases. The decoder is able to decode such a bitstream in
real-time if the clock frequency is 20 MHz. A few other combinations are
listed in table 7.1.

Test bitstream MIPS MIPS
(Worst case) (Average)

48 kHz, 320 kbit/s, 20 18
joint-stereo
44.1 kHz, 128 kbit/s, 15 14
joint-stereo
44.1 kHz, 64 kbit/s, 7 7
mono

Table 7.1: The worst case and average case performance of the decoder.
The mips value assumes that the external sample fifo is
large enough to mitigate the impact of a large bit reservoir.

46 Chapter 7. Benchmarks and profiling

0 2 4 6 8 10 12 14 16 18 20

64

96

128

192

320

Profiling the decoder at various bit rates (44.1 kHz, joint stereo)

MIPS

B
it

ra
te

 [k
bi

t/s
]

Subband synthesis
IMDCT
Reorder samples
Misc
Stereo calculation
Dequantization
Huffman decoding
Bitstream parsing

Figure 7.1: Performance of the decoder while decoding joint-stereo
streams with different bit rates.

It is not necessary to take the bit reservoir into account when calculating
the absolute worst case performance since the MP3 standard does not
allow the usage of a bit reservoir at 320 kbit/s.

The performance of the different components of the decoder while decod-
ing a joint-stereo file is listed in figure 7.1. The mips usage is reduced by
about 50% if a mono file is decoded as seen in figure 7.2. This is expected
since the decoder only has to run the imdct and subband synthesis stage
for one channel. These figures are created for a worst case bitstream at
the specific bit rate and sampling frequency.

7.2 Memory usage 47

0 1 2 3 4 5 6 7 8

32

64

96

128

Profiling the decoder at various bit rates (44.1 kHz, mono)

MIPS

B
it

ra
te

 [k
bi

t/s
]

Subband synthesis
IMDCT
Reorder samples
Misc
Dequantization
Huffman decoding
Bitstream parsing

Figure 7.2: Performance of the decoder while decoding mono streams
with different bit rates.

The figures also illustrates that the time consumption of some parts of
the decoder is static provided that only the bit rate varies. The only
parts that are dynamic in this case are the Huffman decoding, the bit
stream parsing and the dequantization.

7.2 Memory usage

The total data memory usage of the decoder is shown in table 7.2 and
the total program memory usage is shown in table 7.3. The main reason
for the large program memory is that most performance critical loops are
unrolled. The Huffman decoder is also responsible for a significant part
of the program memory.

48 Chapter 7. Benchmarks and profiling

The constant memory is mainly used for coefficients for various trans-
forms and windowing operations. Table 7.4 shows the usage of the con-
stant memory. In addition, an external sample fifo has to be added.
The size of that fifo is determined by how fast the cpu can fill it, that
is, it depends on the clock frequency. It should contain at least 576 stereo
samples if the decoder is clocked at 20 MHz. A higher clock speed will
reduce the necessary storage space.

Part Words (16-bit)
Bitstream buffer 1024
IMDCT overlap buffers 3456
Subband synthesis 1088
PCM buffer 64
Temporary variables, 397
bitstream parameters, etc

Total 6029

Table 7.2: Allocation of data memory.

Part Words (24-bit)
Huffman decoding 2954
Subband synthesis 1029
Bitstream parsing 908
IMDCT 709
Misc 454
Stereo calculation 392
Dequantization 342
Total 6788

Table 7.3: Allocation of program memory.

Part Words (23-bit)
Sample dequantization 74
IMDCT filter bank 212
Subband Synthesis 576
Misc 46
Total 908

Table 7.4: Allocation of constant memory.

7.3 Instruction usage statistics 49

7.3 Instruction usage statistics

The instruction usage is shown in table 7.5. The profiling data was
gathered while decoding compl.bit. The immediate form of add is the
most common instruction because the add instructions are used for up-
dating pointers and loop counters. A loop instruction and a ld and st
instruction with post increment could therefore improve performance by
about 10%.

The fmac and fmaci instructions use the floating point adder, multiplier
and the memory. As fmac does not increment the address pointer, the
content of that address could be buffered as long as fmac follows fmac or
fmaci. This is almost always the case. A fair approximation is that while
fmaci accesses memory, fmac does not.

The memory utilization is about 23.4%, the fpu usage is 32.1%.

FPU operations Cycles
fadd, fsub 9.7%
fmul, fmulc 5.1%
fint, fpack 4.1%

Total 19%

ALU operations Cycles
addi 13.6%
add, sub, subi 2.7%
and, or, xor, 2.2%
andi, ori, xori
Total 19%

MAC operations Cycles
fmac 6.2%
fmaci 7.0%
Total 13%

Load & store Cycles
ld, ldi, ldf 8.5%
st, sti 7.9%
Total 16%

Branches Cycles
bnez, beqz 11.1%
calli, call, ret 6.7%
bra, jmp
bnbc, bnbs 1.5%

Total 19%

Misc Cycles
set, seth 3.6%
rdsr, wrsr, setsr 2.6%
ltoh, htol 0.8%
nbit 0.4%
nop 6.6%
(Pipeline delay)
Total 14%

Table 7.5: Cycle usage of various instructions.

50 Chapter 7. Benchmarks and profiling

8
RTL implementation

This chapter describes the rtl implementation and the fpga prototype.

8.1 VHDL

A register transfer level, rtl, model of the cpu was written in vhdl.
The architecture of the processor was easy to implement in vhdl. No
real effort was made to optimize the design.

8.1.1 Development environment

The development environment was FPGA Advantage from Mentor Graph-
ics. Emacs was used as a vhdl editor. Xilinx’ place & route was used
for synthesizing the design.

8.1.2 Functional verification

To verify that the vhdl implementation was correct a variety of test
cases were written. A separate hdl level test case verified the fpu func-
tionality. Only corner cases and a selection of random input values were
tested as it would take a huge amount of time to test all possible input
combinations.

52 Chapter 8. RTL implementation

Develop instruction
set simulator

Develop assembly
language test suite

Does the test
suite work?

No

Develop assembler code
for the MP3 decoder

Is the decoder
compliant?

No

Yes

Develop VHDL code
for the CPU

Yes

Simulate the test suite
and MP3 decoder

Is the output
correct?

No

Yes

Develop synthesizeable
VHDL code for prototype

Is the prototype
working?

No

Yes

Verification
flow

Verification
finished

Figure 8.1: The system verification flow.

An instruction level test suite was written as well. All instructions are
tested, but not all operand values. New test cases were added as bugs
were found and corrected in the vhdl code.

Finally, the MP3 decoder was run on the compliance test bitstream and
the output was compared to the output of the instruction set simulator.

The overall system verification flow is shown in figure 8.1.

8.2 FPGA prototype 53

8.2 FPGA prototype

The vhdl implementation was tested on a prototype board called xsv-300.
The board is developed by Xess and is based on a Virtex-300 fpga. (Xess
has discontinued the production of this board.) The board has two sram
banks with 16-bit data busses. Each bank store 8 megabits. An on-board
stereo audio codec is available as well. In addition, the board features
a large amount of other peripheral devices. The block schematics of the
board is shown in figure 8.2.

 Out
StereoStereo

 In

E
xp

an
si

on
C

on
ne

ct
or

X
C

he
ck

er

C
ab

le
A

T
X

 P
ow

er
 C

on
ne

ct
or

9VDC
 Jack Port

 Parallel
 Port
Serial Video

 In

E
xpansion

C
onnector

VGA
 Out RJ45

Ethernet

Ethernet
 PHY

Xilinx
Virtex 300

Codec
Audio

Flash
2Mx8

Decoder
Video

RAMDAC

512Kx8 RAM

512Kx8 RAM

XC9500

512Kx8 RAM

512Kx8 RAM

 USB PS/2

Figure 8.2: Block diagram of the xsv-300.

8.2.1 Resource usage

The Virtex-300 fpga has 64 Kbit ram available internally, divided into
16 dual port blocks. Since this is not enough for the MP3 decoder, ex-
ternal sram was also used. One external sram bank was dedicated to
the program memory. Data was read on both clock edges in order to

54 Chapter 8. RTL implementation

Figure 8.3: The xsv-300 prototype card.

get a 24-bit instruction on every cycle. (The remaining 8 bits were not
used.) The other sram bank was used as the data memory of the de-
coder. The MP3 bitstream was stored in this ram as well. The constant
memory used 6 block rams of the Virtex-300. Finally, a sample fifo
was implemented using 8 block rams.

8.2.2 FPGA resource usage

The fpga usage was about 30%. The prototype was clocked at 20 MHz.
It could run faster according to the synthesizer but the design does not
work at 25 MHz, most likely because of the interface to the external
memory banks.

The resource usage of various parts of the design is shown in figure 8.4.
The critical path was located in the logarithmic shifter of the fpu. This
was no surprise as fpgas are not very suited for the large multiplexers

8.2 FPGA prototype 55

needed by a fast shifter. The heavy pipelining of the design ensured
that the design could easily be synthesized without any fpga specific
optimizations in the vhdl code.

0

100

200

300

400

500

600

700

800

900

DFF

FG

DFF and FG usage of the FPGA prototype

D
F

F
 a

nd
 F

G
 u

sa
ge

 c
ou

nt

FPU Decode Special
Registers

Sound
Output

Register
File

Program
Counter

Memory
Interface Misc

Figure 8.4: The utilization of the fpga. Dff is a regular flip flop and
an fg is a 4-bit function generator. Fgs can also be used
for implementing register files in an area efficient manner.

56 Chapter 8. RTL implementation

9
Results

Overall, the project has been a success. The decoder has successfully de-
coded all tested streams and the performance is satisfactory, especially
considering the limited instruction set. The cpu was easy to implement
in vhdl but somewhat awkward to program for, especially in the begin-
ning.

• The decoder stores intermediate data in a 16-bit floating point
format to limit memory usage.

• The decoder is verified as a limited accuracy iso/iec 11172-3 mpeg-1
layer iii decoder. It does not support layer i or ii. The rms of error
is 3.2 · 10−5.

• A clock frequency of 20 MHz is enough to decode all mpeg-1
layer iii streams.

• Vhdl code for the hardware has been implemented and verified on
an fpga prototype board.

• The gate count, excluding external memories, is 32500 gates when
synthesized against Leonardo Spectrum’s sample SCL05u techno-
logy.

• The size of the program memory is 6785 24-bit words. The size
of the constant memory is 908 23-bit words. The size of the data
memory is 6069 16-bit words.

58 Chapter 9. Results

10
Future work

This chapter describes various improvements that can be made to the
software and the hardware.

10.1 Improved software

It would be relatively straight-forward to add layer i and ii to the current
decoder. It would also be interesting to investigate if other audio formats
such as aac and Ogg Vorbis can be decoded using low precision floating
point arithmetics.

10.2 Improved hardware

It is unlikely that large gains could be made without modifying the hard-
ware architecture since the software is already optimized.

• Data memory access with pointer auto-increment would improve
performance and reduce the size of the program memory.

• A hardware loop instruction would reduce register pressure and
the size of the program memory. In the current implementation
the critical loops are unrolled.

• There is a large overhead associated with the Huffman decoder.
The tree can be represented with 10 bits per node whereas the
current implementation uses one instruction per node (24 bits).

60 Chapter 10. Future work

• Optional result forwarding would eliminate some explicit pipeline
stalls.

• The fpu should have a saturation on overflow mode. (It is possible
to construct bitstreams that will cause an overflow in fpack.)

There are a few other optimizations that could be useful if the cpu is
going to be used for other applications.

• A bit-reversed addressing mode for fft and other transforms.

• The conditional branches should be increased beyond branch-if-zero
and branch-if-not-zero.

• Support for hardware interrupts.

10.3 Improved development tools

The assembler supports only a limited form of expressions, in the form
label+offset. This could be extended so that arbitrary expressions could
be used.

It is sometimes necessary to declare a function before it is used due to
improper handling of forward references across name space levels.

The speed of the instruction set simulator could be improved. An inter-
active debugger could also be implemented to aid development.

10.4 Power measurements

It would be interesting to measure the power consumption of the hard-
ware. It would be interesting to compare this to other MP3 decoding
solutions.

A
Instruction set reference

This chapter contains the instruction set reference.

Notation

x << y Shift x left by y steps.

abs16 16-bit absolute address contained in the instruction word.

cm(x) The floating point value located in constant memory address
x.

fp16to23(x) Expand x from a 16-bit floating point value to a 23-bit floating
point value.

fp23toint(x) Convert the 23-bit floating point value x, scaled by 32768, to
a signed integer, with saturation.

fp(x) x is interpreted as a 23-bit floating point argument.

fp23to16(x) Convert x from a 23-bit floating point value to a 16-bit floating
point value with rounding.

imm7 7-bit immediate signed data contained in the instruction word.

imm10 10-bit immediate signed data contained in the instruction word.

imm16 16-bit immediate signed data contained in the instruction word.

highbits(x) Refers to the upper 7 bits of the register x.

msb(x) Refers to the most significant bit of x.

62 Appendix A. Instruction set reference

pop(x) Pop an element off the hardware stack.

push(x) Push an element onto the hardware stack.

rD An arbitrary register used as a destination argument. This
refers to the lower 16 bits of the register unless fp() or highbits()
is used.

r0. . . r15 Register 0. . . 15.

rA,rB An arbitrary register used as a source argument. This refers
to the lower 16 bits of the register unless fp() or highbits() is
used.

signextend(x) Sign extend x to the appropriate number of bits.

sr0. . . sr15 Special register 0. . . 15.

datamem(x) Value of data memory location x.

An operation surrounded by parentheses in the pipeline diagram is not
always executed, e.g., “(Update PC)” in a conditional branch.

Fetch

Decode

abort

Assembler syntax:
abort

Operation:
Abort simulation.

The instruction set simulator will abort simulation when this instruction
is encountered. The behaviour of this instruction is undefined on the real
hardware.

63

Fetch

Decode

Read registers

Fixed point add

Write register

add

Assembler syntax:
add rA,rB,rD

Operation:
rA + rB → rD

16-bit fixed point addition.

Fetch

Decode

Read registers

Fixed point add

Write register

addi

Assembler syntax:
addi #imm10,rB,rD

Operation:
signextend(imm10) + rB → rD

16-bit fixed point addition, immediate data.

64 Appendix A. Instruction set reference

Fetch

Decode

Read registers

Logic and

Write register

and

Assembler syntax:
and rA,rB,rD

Operation:
rA ∧ rB → rD

16-bit bitwise and.

Fetch

Decode

Read registers

Logic and

Write register

andi

Assembler syntax:
andi #imm10,rB,rD

Operation:
signextend(imm10) ∧ rB → rD

16-bit bitwise and, immediate data.

65

Fetch

Decode
Turn off fetching

Read register

Check branch cond
(Update PC)

Turn on fetching

beqz

Assembler syntax:
beqz rA,abs16

Operation:
if rA = 0

abs16 → PC

Conditional jump to address specified by abs16.
Jump is taken if rA is zero. There is one delay slot, i.e., one instruction
after the jump is executed. (See bra for a delay slot example.)

The results of having a branch instruction (including ret) in the delay slot
is undefined.

66 Appendix A. Instruction set reference

Fetch

Decode
Turn off fetching
nop→next insn

Update sr0
Update sr1

(Update sr2)

(Memory read)
Check branch cond

(Update PC)
Turn on fetching

bnbc

Assembler syntax:
bnbc abs16

Operation:
nop → next instruction
msb(sr0) → next bit
(sr0 << 1) → sr0
if sr1 = 0

datamem(sr2) → sr0
15 → sr1
if sr2 = sr4

sr3 → sr2
else

sr2 + 1 → sr2
else

sr1 − 1 → sr1
if next bit = 0

abs16 → PC
NOTE: The instruction following the bnbc instruction is ignored.

Read the next bit from the bit buffer and branch to abs16 if it is clear.

The instruction that follows bnbc is changed to a nop. This makes it
possible to construct small Huffman tables.

The bitstream is located in ram, but the cpu buffers 16 bits (one memory
word) to reduce the number of memory accesses. When the 16 bits in
this bit cache have been read, a new word is read from memory. All of
this is done automatically by the hardware.

sr0 contains the bit buffer and sr1 is set to the number of bits remaining,
minus one. The most significant bit in sr0 is always read and the contents
of sr0 is shifted left one bit on each read while sr1 is decremented. When
sr1 indicates that there are no bits left in sr0, a new word is read from
ram at the address indicated by sr2. sr2 is then incremented unless it
equals sr4, in which case it is set to the contents of sr3.

67

Fetch

Decode
Turn off fetching
nop→next insn

Update sr0
Update sr1

(Update sr2)

(Memory read)
Check branch cond

(Update PC)
Turn on fetching

bnbs

Assembler syntax:
bnbs abs16

Operation:
nop → next instruction
msb(sr0) → next bit
(sr0 << 1) → sr0
if sr1 = 0

datamem(sr2) → sr0
15 → sr1
if sr2 = sr4

sr3 → sr2
else

sr2 + 1 → sr2
else

sr1 − 1 → sr1
if next bit = 1

abs16 → PC
NOTE: The instruction following the bnbc instruction is ignored.

Read the next bit from the bit buffer and branch to abs16 if it is set.

The instruction that follows bnbs is changed to a nop. This makes it
possible to construct small Huffman tables.

The bitstream is located in ram, but the cpu buffers 16 bits (one memory
word) to reduce the number of memory accesses. When the 16 bits in
this bit cache have been read, a new word is read from memory. All of
this is done automatically by the hardware.

sr0 contains the bit buffer and sr1 is set to the number of bits remaining,
minus one. The most significant bit in sr0 is always read and the contents
of sr0 is shifted left one bit on each read while sr1 is decremented. When
sr1 indicates that there are no bits left in sr0, a new word is read from
ram at the address indicated by sr2. sr2 is then incremented unless it
equals sr4, in which case it is set to the contents of sr3.

68 Appendix A. Instruction set reference

Fetch

Decode
Turn off fetching

Read register

Check branch cond
(Update PC)

Turn on fetching

bnez

Assembler syntax:
bnez rA,abs16

Operation:
if rA 6= 0

abs16 → PC

Conditional jump to address specified by abs16.
Jump is taken if rA is non zero. There is one delay slot, i.e., one instruc-
tion after the jump is executed. (See bra for a delay slot example.)

The results of having a branch instruction (including ret) in the delay slot
is undefined.

69

Fetch

Decode
Turn off fetching

—

Update PC
Turn on fetching

bra

Assembler syntax:
bra abs16

Operation:
abs16 → PC

Unconditional jump to address abs16. There is
one delay slot, i.e., one instruction after the jump is executed. The
results of having a branch instruction (including ret) in the delay slot is
undefined.

Delay slot example:

bra foobar
set #0x0,r0 ; This will be executed (delay slot)
set #0x1,r1 ; This will not be executed

foobar:
set #0x2,r2 ; Execution continues here

70 Appendix A. Instruction set reference

Fetch

Decode
Turn off fetching

Read register

Update stack.
Update PC

Turn on fetching

call

Assembler syntax:
call rA

Operation:
push(next PC)
rA → PC

Unconditional call to subroutine specified by the
low 16 bits of rA. There is one delay slot, i.e., one
instruction after the jump is executed. (See bra for a delay slot example.)

The results of having a branch instruction (including ret) in the delay slot
is undefined.

Fetch

Decode
Turn off fetching

—

Update stack.
Update PC

Turn on fetching

calli

Assembler syntax:
calli abs16

Operation:
push(next PC)
abs16 → PC

Unconditional call to subroutine specified by abs16.
There is one delay slot, i.e., one instruction after
the jump is executed. (See bra for a delay slot example.)

The results of having a branch instruction (including ret) in the delay slot
is undefined.

71

Fetch

Decode

Read registers

FP add

FP add

FP add

FP add

Write register

fadd

Assembler syntax:
fadd rA,rB,rD

Operation:
fp(rA) + fp(rB) → fp(rD)

Floating point addition.

Fetch

Decode

Read reg

FP Int

FP Int

FP Int

FP Int

Write register

fint

Assembler syntax:
fint rA,rD

Operation:
fp23toint(rA) → fp(rD)

Scale a 23-bit fp by 32768 and convert it to an
integer.

72 Appendix A. Instruction set reference

Fetch

Decode

Read reg
Read CM
Update sr5

Read fmacbuf
Read fmacbuf2

Read memory
FP Add
FP Mul

Update fmembuff
FP Add
FP Mul

FP Add
FP Mul

FP Add
FP Mul

Update fmulbuff
Write register

fmac

Assembler syntax:
fmac rA,rD

Operation:
fp(fmulbuf) + fp(rA) → fp(rD)
fp(fmembuf) · fp(cm(sr5))→ fp(fmulbuf)
fp16to23(datamem(sr2)) → fp(fmacbuf)
sr5 + 1 → sr5

NOTE: These are not executed in sync!
See pipeline figure.

Floating point multiply and accumulate.

The fmac instruction combines 3 operations (load,
multiply, accumulate) into one instruction.

A group of fmac instructions will perform the fol-
lowing operations, read data memory at address
sr2, expand it to a high precision floating point
number, multiply it with a constant fetched from
constant memory location sr5, accumulate that
result with register rA into register rD. Increment
sr5.

See fmaci for an example.

73

Fetch

Decode

Read reg
Read CM
Update sr5

Read fmacbuf
Read fmacbuf2

Read memory
Update sr2
FP Add
FP Mul

Update fmembuff
FP Add
FP Mul

FP Add
FP Mul

FP Add
FP Mul

Update fmulbuff
Write register

fmaci

Assembler syntax:
fmaci rA,rD

Operation:
fp(fmulbuf) + fp(rA) → fp(rD)
fp(fmembuf) · fp(cm(sr5)) → fp(fmulbuf)
fp16to23(datamem(sr2)) → fp(fmacbuf)
sr5 + 1 → sr5
if sr2 = sr4

sr3 → sr2
else

sr2 + 1 → sr2
NOTE: These are not executed in sync!

See pipeline figure.

Floating point multiply and accumulate.

The fmaci instruction combines 4 operations (load,
multiply, accumulate, modulo increment) into one
instruction.

A group of fmaci instructions will perform the fol-
lowing operations, read data memory at address
sr2, expand it to a high precision floating point
number, multiply it with a constant fetched from
constant memory location sr5, accumulate that
result with register rA into register rD. Increment sr5. Increment sr2
with 1 unless sr2 is equal to sr4. Set sr2 to sr3 in that case.

An example of how to use the fmac and fmaci instruction is included on
the next page.

74 Appendix A. Instruction set reference

fmac, fmaci example:
This is an example of the following operation:

r0=
∑2

k=0fp(cm(cmconsts+0+6·k)) · fp16to23(datamem(startptr+0))

r1=
∑2

k=0fp(cm(cmconsts+1+6·k)) · fp16to23(datamem(startptr+1))

r2=
∑2

k=0fp(cm(cmconsts+2+6·k)) · fp16to23(datamem(startptr+2))

r3=
∑2

k=0fp(cm(cmconsts+3+6·k)) · fp16to23(datamem(startptr+3))

r4=
∑2

k=0fp(cm(cmconsts+4+6·k)) · fp16to23(datamem(startptr+4))

r5=
∑2

k=0fp(cm(cmconsts+5+6·k)) · fp16to23(datamem(startptr+5))

; A program demonstrating how to calculate
; the above values using fmac/fmaci
setsr #cmconsts−2,sr5 ; Constant memory pointer

; Data memory pointers:
setsr #startptr,sr2 ; Starting location
setsr #startptr,sr3 ; Wraparound address
setsr #endptr,sr4 ; End address

fsub r5,r5 ; zero out accumulators

; fmembuf is not valid
; fmulbuf is not valid
; constant memory pointer sr5 is set to cmconsts−2
fmac r0,r0 ; Write scratch value to r0, start
fmac r0,r0 ; loading values from data memory

; fmembuf is now valid
; Constant memory pointer sr5 is now at cmconsts
fmac r0,r0 ; Start multiplying values valid values
fmac r0,r0 ; (Still writing undefined values to r0)
fmac r0,r0
fmaci r0,r0 ; increment data memory read pointer

; fmembuf and fmulbuf are now both valid
; Constant memory pointer sr5 is now at comconsts+4

75

fmac r5,r0 ; start accumulating, r5 contains 0 at this point
fmac r5,r1
fmac r5,r2
fmac r5,r3
fmac r5,r4
fmaci r5,r5 ; increment data memory read pointer

fmac r0,r0 ; r0 is now datamem(startptr)*cm(cmconstptr)
fmac r1,r1
fmac r2,r2
fmac r3,r3
fmac r4,r4
fmac r5,r5 ; No need to increase data memory pointer now

fmac r0,r0 ; r0 is now datamem(startptr)*cm(cmconstptr) +
fmac r1,r1 ; datamem(startptr+1)*cm(cmconstptr+6)
fmac r2,r2 ; No more valid values are fed to multiplier now
fmac r3,r3
fmac r4,r4
fmac r5,r5

fpack r0,r0 ; r0 is now datamem(startptr)*cm(cmconstptr) +
fpack r1,r1 ; datamem(startptr+1)*cm(cmconstptr+6) +
fpack r2,r2 ; datamem(startptr+2)*cm(cmconstptr+12)

76 Appendix A. Instruction set reference

Fetch

Decode

Read registers

FP mul

FP mul

FP mul

FP mul

Write register

fmul

Assembler syntax:
fmul rA,rB,rD

Operation:
fp(rA) · fp(rB) → fp(rD)

Floating point multiplication.

Fetch

Decode

Read reg
Read CM
Update sr5

FP Mul

FP Mul

FP Mul

FP Mul

Write register

fmulc

Assembler syntax:
fmulc rA,rD

Operation:
fp(rA) · fp(cm(sr5)) → fp(rD)
sr5 + 1 → sr5

Floating point multiplication with constant. The
constant memory is addressed with sr5. sr5 is
auto-incremented.

77

Fetch

Decode

Read reg

FP Pack

FP Pack

FP Pack

FP Pack

Write register

fpack

Assembler syntax:
fpack rA,rD

Operation:
fp23to16(fp(rA)) → rD

Convert a high precision 23-bit fp to a low preci-
sion 16-bit fp value with rounding. A value with
an exponent that is smaller than the 16-bit fp
format allows is rounded to zero. The behaviour
is undefined if a value that is too large is passed to
fpack. (The instruction set simulator will abort
and notify the user of an error condition in this
case.)

Fetch

Decode

Read registers

FP sub

FP sub

FP sub

FP sub

Write register

fsub

Assembler syntax:
fsub rA,rB,rD

Operation:
fp(rA) − fp(rB) → fp(rD)

Floating point subtraction.

78 Appendix A. Instruction set reference

Fetch

Decode

Read register

—

Write register

htol

Assembler syntax:
htol rA,rD

Operation:
highbits(rA) → rD

Transfer high bits of rA to low bits of rD. The 9
most significant bits of rD are set to 0.

79

Fetch

Decode
Turn off fetching

Read register

Update PC
Turn on fetching

jmp

Assembler syntax:
jmp rA

Operation:
rA → PC

Unconditional jump to address specified by the
low 16 bits of rA. There is one delay slot, i.e., one instruction after the
jump is executed. (See bra for a delay slot example.)

The results of having a branch instruction (including ret) in the delay slot
is undefined.

80 Appendix A. Instruction set reference

Fetch

Decode

Read register

Memory read

Write register

ld

Assembler syntax:
ld [rA],rD

Operation:
datamem(rA) → rD

Load low 16 bits from data memory, register in-
direct addressing.

Fetch

Decode

Read register

Memory read

Write register

ldf

Assembler syntax:
ldf [rA],rD

Operation:
fp16to23(datamem(rA)) → rD

Load a floating point number from memory, re-
gister indirect addressing, and expand it from a
16-bit low precision fp to 23-bit high precision fp.

81

Fetch

Decode

—

Memory read

Write register

ldi

Assembler syntax:
ldi [abs16],rD

Operation:
datamem(abs16) → rD

Load low 16 bits from data memory, absolute
addressing.

Fetch

Decode

Read register

—

Write register

ltoh

Assembler syntax:
ltoh rA,rD

Operation:
rA → highbits(rD)

Transfer low bits of rA to high bits of rD.

82 Appendix A. Instruction set reference

Fetch

Decode

Read register
Update sr0
Update sr1

(Update sr2)

(Memory read)

Write register

nbit

Assembler syntax:
nbit rA,rD

Operation:
msb(sr0) → next bit
(sr0 << 1) → sr0
(rA << 1) ∨ next bit → rD
if sr1 = 0

datamem(sr2) → sr0
15 → sr1
if sr2 = sr4

sr3 → sr2
else

sr2 + 1 → sr2
else

sr1 − 1 → sr1

Read the next bit from the bit buffer.

The bitstream is located in ram, but the cpu buffers 16 bits (one memory
word) to reduce the number of memory accesses. When the 16 bits in
this bit cache have been read, a new word is read from memory. All of
this is done automatically by the hardware.

sr0 contains the bit buffer and sr1 is set to the number of bits remaining,
minus one. The most significant bit in sr0 is always read and the con-
tents of sr0 is automatically shifted left one bit on each read while sr1
is decremented. When sr1 indicates that there are no bits left in sr0, a
new word is read from ram at the address indicated by sr2. sr2 is then
incremented unless it equals sr4, in which case it is set to the contents of
sr3.

83

Fetch

Decode

nop

Assembler syntax:
nop

Operation:
None

No operation.

84 Appendix A. Instruction set reference

Fetch

Decode

Read registers

Logic or

Write register

or

Assembler syntax:
or rA,rB,rD

Operation:
rA ∨ rB → rD

16-bit bitwise inclusive or.

Fetch

Decode

Read registers

Logic or

Write register

ori

Assembler syntax:
ori #imm10,rB,rD

Operation:
signextend(imm10) ∨ rB → rD

16-bit bitwise inclusive or, immediate data.

85

Fetch

Decode

—

Read special reg

Write register

rdsr

Assembler syntax:
rdsr srA,rD

Operation:
srA → rD

Write the value of special register srA to destin-
ation register rD.

Fetch

Decode
Turn off fetching

—

Update stack.
Update PC

Turn on fetching

ret

Assembler syntax:
ret

Operation:
pop(PC)

Return from subroutine. There is one delay slot,
i.e., one instruction after the jump is executed.
The results of having a branch instruction (including ret) in the delay slot
is undefined. (See bra for a delay slot example.)

86 Appendix A. Instruction set reference

Fetch

Decode

—

—

Write register

set

Assembler syntax:
set #imm16,rD

Operation:
imm16 → rD

Set low 16 bits from immediate data.

Fetch

Decode

—

—

Write register

seth

Assembler syntax:
seth #imm7,rD

Operation:
imm7 → highbits(rD)

Set high 7 bits from immediate data.

87

Fetch

Decode

—

Write special reg

setsr

Assembler syntax:
setsr #imm16,srD

Operation:
imm16 → srD

Set special register srD from immediate data.

88 Appendix A. Instruction set reference

Fetch

Decode

Read registers

Memory write

st

Assembler syntax:
st [rD],rA

Operation:
rA → datamem(rD)

Store low 16 bits to data memory, register indirect addressing.

Fetch

Decode

Read register

Memory write

sti

Assembler syntax:
sti [abs16],rA

Operation:
rA → datamem(abs16)

Store low 16 bits to data memory, absolute addressing

89

Fetch

Decode

Read registers

Fixed point sub

Write register

sub

Assembler syntax:
sub rA,rB,rD

Operation:
rA − rB → rD

16-bit fixed point subtraction.

Fetch

Decode

Read registers

Fixed point sub

Write register

subi

Assembler syntax:
subi #imm10,rB,rD

Operation:
signextend(imm10) − rB → rD

16-bit fixed point subtraction, immediate data.

90 Appendix A. Instruction set reference

Fetch

Decode

Read register

Write special reg

wrsr

Assembler syntax:
wrsr rA,srD

Operation:
rA → srD

Set special register srD from register rA.

91

Fetch

Decode

Read registers

Logic xor

Write register

xor

Assembler syntax:
xor rA,rB,rD

Operation:
rA ⊕ rB → rD

16-bit bitwise exclusive or.

Fetch

Decode

Read registers

Logic xor

Write register

xori

Assembler syntax:
xori #imm10,rB,rD

Operation:
signextend(imm10) ⊕ rB → rD

16-bit bitwise exclusive or, immediate data.

92 Appendix A. Instruction set reference

B
Instruction encoding

This chapter contains the instruction encoding.

Notation

abs16 An absolute address (16 bits).

rA Source register A (4 bits).

rB Source register B (4 bits).

rD Destination register (4 bits).

srA Special source register (4 bits).

srD Special destination register (4 bits).

imm7 Immediate data (7 bits).

imm10 Immediate data (10 bits).

imm16 Immediate data (16 bits).

. Don’t care.

94 Appendix B. Instruction encoding

0 0 0 0 1 abort
0 0 0 1 0 0 0 0 nop
0 0 0 1 0 0 0 1 ret
0 0 0 1 0 0 1 0 rA jmp rA
0 0 0 1 0 0 1 1 rA call rA
0 0 0 1 0 1 0 0 abs16 bra abs16
0 0 0 1 0 1 0 1 abs16 call abs16
0 0 0 1 0 1 1 0 abs16 bnbc abs16
0 0 0 1 0 1 1 1 abs16 bnbs abs16
0 0 1 1 rD imm16 set #imm16,rD
0 1 0 0 rD abs16 ldi [abs16],rD
0 1 0 1 rB abs16 sti [abs16],rB
0 1 1 0 srD imm16 setsr #imm16,srD
0 1 1 1 rD rB 0 0 0 0 0 . . . rA add rA,rB,rD
0 1 1 1 rD rB 0 1 0 0 0 . . . rA sub rA,rB,rD
0 1 1 1 rD rB 0 0 1 0 0 . . . rA and rA,rB,rD
0 1 1 1 rD rB 0 1 1 0 0 . . . rA or rA,rB,rD
0 1 1 1 rD rB 1 0 1 0 0 . . . rA xor rA,rB,rD
0 1 1 1 rD 0 1 0 0 0 rA ltoh rA,rD
0 1 1 1 rD 0 1 0 0 1 rA htol rA,rD
0 1 1 1 rD 0 1 0 1 0 srA rdsr srA,rD
0 1 1 1 srD 0 1 0 1 1 rA wrsr rA,srD
0 1 1 1 rD 0 1 1 0 0 rA ld [rA],rD
0 1 1 1 rB 0 1 1 0 1 rA st [rA],rB
0 1 1 1 rD 0 1 1 1 0 rA nbit rA,rD
0 1 1 1 rD 0 1 1 1 1 rA ldf [rA],rD
0 1 1 1 rD 1 . imm7 seth #imm7,rD
1 0 0 0 rD rB 0 0 imm10 addi #imm10,rB,rD
1 0 0 0 rD rB 0 1 imm10 subi #imm10,rB,rD
1 0 0 1 rD rB 0 0 imm10 andi #imm10,rB,rD
1 0 0 1 rD rB 0 1 imm10 ori #imm10,rB,rD
1 0 0 1 rD rB 1 0 imm10 xori #imm10,rB,rD
1 0 1 0 rB abs16 beqz rB,abs16
1 0 1 1 rB abs16 bnez rB,abs16
1 1 1 0 rD 0 0 0 0 0 0 0 0 rA fmac rA,rD
1 1 1 0 rD 0 0 0 0 0 1 0 0 rA fmaci rA,rD
1 1 1 0 rD 0 0 0 0 0 1 1 0 rA fmulc rA,rD
1 1 1 1 rD rB 0 0 0 rA fadd rA,rB,rD
1 1 1 1 rD rB 0 0 1 rA fsub rA,rB,rD
1 1 1 1 rD rB 0 1 0 rA fmul rA,rB,rD
1 1 1 1 rD 1 0 0 rA fpack rA,rD
1 1 1 1 rD 1 0 1 rA fint rA,rD

Table B.1: The instruction encoding.

C
Matlab code for the x4/3 function

This appendix contains matlab code for the algorithm used in the MP3
decoder to calculate x4/3.

function y = pow43(x)
% Y = POW43(X) calculates Y=X.ˆ(4/3) using the same algorithm
% that is used in the MP3 decoder.
%
% (It is normally called for every two subband samples, but
% this matlab implementation can handle an arbitrary number
% of values in X.)

% Since this function is usually called 44100 times per second
% (44.1kHz sample rate, stereo), it has to be very fast. A few
% special cases at the beginning reduce the average execution
% time significantly. The worst case execution time can be
% estimated by calculating how many samples that must be handled
% by the general case code. This is a function of the bit rate
% (higher bit rate allows room for larger numbers).

% This is a common special case:

if x==0
% Numbers are zero:
y = zeros(size(x));
return

96 Appendix C. Matlab code for the x4/3 function

end

% This is another common special case due to the
% way samples are encoded in the bitstream:

if abs(x)<16
% Numbers are small, handle with lookup-table:
y = sign(x) .∗ abs(x).ˆ(4/3);
return

end

% General case. Convert x into the internal floating point type
% (it is originally an integer). Here, the sign, exponent and
% mantissa are explicitly separated into three variables.

[m e] = log2(x);
s = sign(m);
m = 2.∗abs(m);
e = e − 1;

% Use the fact that xˆ(4/3) = (s ∗ 2ˆe ∗ m)ˆ(4/3) =
% = s ∗ (2ˆe)ˆ(4/3) ∗ mˆ(4/3) =(approx)
% = s ∗ (2ˆe)ˆ(4/3) ∗ P(m)
% where P is a fifth-order polynomial:

P = polyfit(1 : 0.2 : 2, (1 : 0.2 : 2) .ˆ (4/3), 5);

c1 = P(1)/P(3);
c2 = P(2)/P(4);
c3 = P(3)/P(5);
c4 = P(4)/P(6);
c5 = P(5);
c6 = P(6);

97

% Evaluate P(m) in way that allows parallel calculations:

m2 = m .ˆ 2;
m43 = ((m2 .∗ c1 + 1) .∗ m2 .∗ c3 + 1) .∗ c5 .∗ m + ...

((m2 .∗ c2 + 1) .∗ m2 .∗ c4 + 1) .∗ c6;

% This is handled by a lookup-table:
% (In the assembly language case, it also takes care
% of x==0 since this is encoded in the exponent.)

e43 = s .∗ (2.ˆe).ˆ(4/3);

% Finally, the result:

y = e43 .∗ m43;

98 Appendix C. Matlab code for the x4/3 function

D
Matlab code for a fast IMDCT

This appendix contains matlab code for Szu-Wei Lee’s imdct algorithm [8].

function y = imdct(x)
% An implementation of Szu-Wei Lee’s fast IMDCT algorithm.
% 36-point IMDCT as used in MP3 decoding.

temp=dctIV(x);

% Convert 18-point DCT-IV to 36-point IMDCT
% by rearranging output and changing signs as
% appropriate
for m=0:17

temp(36−m)=−temp(m+1);
end

for m=0:8
y(m+1+3∗9)=−temp(m+1);

end

for m=9:35
y(m−8)=temp(m+1);

end

100 Appendix D. Matlab code for a fast IMDCT

function X=dctIV(y)

% Scale input
for m=0:17

temp(m+1)=y(m+1)∗cos(pi∗(2∗m+1)/(4∗18));
end

X=sdctII(temp′);

% Output accumulation
for k=2:18

X(k)=X(k)−X(k−1);
end

101

function X = sdctII(x)
% Divide the 18-point SDCT-II into two 9-point SDCT-II

% Even input butterfly
for m=0:8

temp(m+1)=x(m+1)+x(18−m);
end
u=fastsdct(temp′);

% Odd input butterfly and scaling
for m=0:8

temp(m+1)=(x(m+1)−x(18−m))∗2∗cos(pi∗(2∗m+1)/(2∗18));
end
v=fastsdct(temp′);

% Output accumulation step
for k=1:8

v(k+1)=v(k+1)−v(k−1+1);
end

% Return even/odd values in X
X(0+1)=u(0+1);
X(1+1)=v(0+1);

for k=1:8
X(2∗k+0+1)=u(k+1);
X(2∗k+1+1)=v(k+1);

end

102 Appendix D. Matlab code for a fast IMDCT

function y = fastsdct(x)
x0=x(1);
x1=x(2);
x2=x(3);
x3=x(4);
x4=x(5);
x5=x(6);
x6=x(7);
x7=x(8);
x8=x(9);

d0=sqrt(3);
d1=2∗cos(8∗pi/9);
d2=2∗cos(4∗pi/9);
d3=2∗cos(2∗pi/9);
d4=2∗sin(8∗pi/9);
d5=2∗sin(4∗pi/9);
d6=2∗sin(2∗pi/9);

a1=x3+x5;
a2=x3−x5;
a3=x6+x2;
a4=x6−x2;
a5=x1+x7;
a6=x1−x7;
a7=x8+x0;
a8=x8−x0;
a9=x4+a5;

a10=a1+a3;
a11=a10+a7;
a12=a3−a7;
a13=a1−a7;
a14=a1−a3;
a15=a2−a4;
a16=a15+a8;
a17=a4+a8;
a18=a2−a8;

103

a19=a2+a4;

m1=−d0∗a6;
m2=−d1∗a12;
m3=−d2∗a13;
m4=−d3∗a14;
m5=−d0∗a16;
m6=−d4∗a17;
m7=−d5∗a18; % NOTE: The 8 seems to be missing in the paper [8]
m8=−d6∗a19;

a20=x4+x4−a5;
a21=a20+m2;
a22=a20−m2;
a23=a20+m3;
a24=m1+m6;
a25=m1−m6;
a26=m1+m7;

y0=a9+a11;
y1=m8−a26;
y2=m4−a21;
y3=m5;
y4=a22−m3;
y5=a25−m7;
y6=a11−a9−a9;
y7=a24+m8;
y8=a23+m4;

y(1)=y0;
y(2)=y1;
y(3)=y2;
y(4)=y3;
y(5)=y4;
y(6)=y5;
y(7)=y6;
y(8)=y7;
y(9)=y8;

104 Appendix D. Matlab code for a fast IMDCT

E
Matlab code for a fast DCT

This appendix contains matlab code for Byeong Lee’s dct algorithm [7].

function X = recursive dct(x)
% An implementation of DCT using Lee’s algorithm
% The size of x should be a power of 2
%
% Note that the output from this program is not identical
% to matlab’s dct. X(1) should be scaled by 1/2 and
% all other elements of X should be scaled by 1/sqrt(2) to
% convert this dct to the same type as matlab’s.

% The size of x
N=size(x);
N=N(2);

if N == 1
X=x;

else

% Even input butterfly
for i=1:(N/2)

temp(i)=x(i)+x(N−i+1);
end

% Recursively calculate N/2-point DCT
resulteven=recursive dct(temp);

106 Appendix E. Matlab code for a fast DCT

% odd input butterfly and scaling
for i=1:(N/2)

temp(i)=(x(i)−x(N−i+1)) ∗ 1/(2∗cos(pi/2/(N)∗(2∗(i−1)+1)));
end

resultodd=recursive dct(temp);

% Output butterfly
for i=1:(N/2−1)

temp(i)=resultodd(i)+resultodd(i+1);
end
temp(N/2)=resultodd(N/2);

for i=1:(N/2)
X(i∗2−1)=resulteven(i);
X(i∗2)=temp(i);

end
end

References

[1] Painter, T. and Spanias, A., “Perceptual Coding of Digital Audio”,
Proceedings of the IEEE, Vol. 88, No. 4, April 2000

[2] ISO/IEC, “Information Technology — Coding of Moving Pictures
and Associated Audio for Digital Storage Media at up to About
1.5Mbit/s, Part 3: Audio”, 1992

[3] “MPEG Audio Decoder Compliance”,
http://www.underbit.com/resources/mpeg/audio/compliance/

[4] “Layer III compliance bitstreams”,
ftp://ftp.tnt.uni-hannover.de/pub/MPEG/audio

[5] “ISO MP3 sources (distribution 10)”,
http://www.mp3-tech.org/programmer/sources/dist10.tgz

[6] Konstantinides, K., “Fast subband filtering in MPEG audio coding”,
IEEE Signal Processing Letters, Vol. 1, Iss. 2, Feb 1994

[7] Lee, B., “A new algorithm to compute the discrete cosine Trans-
form”, IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, Vol. 32, Iss. 6, Dec 1984

[8] Lee, S.-W., “Improved algorithm for efficient computation of the
forward and backward MDCT in MPEG audio coder”, Circuits and
Systems II: Analog and Digital Signal Processing, IEEE Transac-
tions on, Vol. 48, Iss. 10, Oct 2001

[9] Britanak, V. and Rao, K. R., “An efficient implementation of the
forward and inverse MDCT in MPEG audio coding”, IEEE Signal
Processing Letters, Vol. 8, No. 2, Feb 2001

[10] “Sound Quality Assessment Material”,
http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/

http://www.underbit.com/resources/mpeg/audio/compliance/
ftp://ftp.tnt.uni-hannover.de/pub/MPEG/audio
http://www.mp3-tech.org/programmer/sources/dist10.tgz
http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/

108 REFERENCES

[11] “LAME test samples”,
http://lame.sourceforge.net/gpsycho/quality.html

http://lame.sourceforge.net/gpsycho/quality.html

Avdelning, Institution
Division, Department

Datum
Date

Spr̊ak

Language

� Svenska/Swedish

� Engelska/English

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

URL för elektronisk version

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

Titel

Title

Författare
Author

Sammanfattning
Abstract

Nyckelord
Keywords

The effects of using limited precision floating point for intermediate
storage in an embedded MP3 decoder are investigated in this thesis.
The advantages of using limited precision is that the values need shorter
word lengths and thus a smaller memory for storage.

The official reference decoder was modified so that the effects of dif-
ferent word lengths and algorithms could be examined. Finally, a soft-
ware and hardware prototype was implemented that uses 16-bit wide
memory for intermediate storage. The prototype is classified as a lim-
ited accuracy MP3 decoder. Only layer iii is supported. The decoder
could easily be extended to a full precision MP3 decoder if a corres-
ponding increase in memory usage was accepted.

Institutionen för Systemteknik
581 83 Linköping

23 maj 2003

—

LITH-ISY-EX-3446-2003

—

http://www.ep.liu.se/exjobb/isy/2003/3446/

11th June 2003

A hardware MP3 decoder with low precision floating point intermediate
storage

En h̊ardvarubaserad MP3-avkodare som använder flyttal med l̊ag pre-
cision för mellanlagring

Andreas Ehliar, Johan Eilert

××

MP3, audio, implementation, floating point

Copyright

Svenska

Detta dokument h̊alls tillgängligt p̊a Internet - eller dess framtida ersättare - under en längre tid
fr̊an publiceringsdatum under förutsättning att inga extra-ordinära omständigheter uppst̊ar.

Tillg̊ang till dokumentet innebär tillst̊and för var och en att läsa, ladda ner, skriva ut enstaka kopior
för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis-
ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillst̊and. All
annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som
god sed kräver vid användning av dokumentet p̊a ovan beskrivna sätt samt skydd mot att do-
kumentet ändras eller presenteras i s̊adan form eller i s̊adant sammanhang som är kränkande för
upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hemsida:
http://www.ep.liu.se/

English

The publishers will keep this document online on the Internet - or its possible replacement - for a
considerable time from the date of publication barring exceptional circumstances.

The online availability of the document implies a permanent permission for anyone to read, to
download, to print out single copies for your own use and to use it unchanged for any non-commercial
research and educational purpose. Subsequent transfers of copyright cannot revoke this permission.
All other uses of the document are conditional on the consent of the copyright owner. The publisher
has taken technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when his/her work
is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its procedures
for publication and for assurance of document integrity, please refer to its WWW home page:
http://www.ep.liu.se/

c© Andreas Ehliar, Johan Eilert
Linköping, 2003

	Abstract
	Contents
	Introduction
	Purpose of this work
	Report outline
	Acknowledgements

	Background
	Perceptual audio coding
	The masking effect
	Critical bandwidth
	Quality measurements

	The MP3 standard
	Encoder
	Decoder
	The bitstream

	Floating point format
	Precision
	Observations
	Optimized algorithms
	Required operations

	Hardware architecture
	Overview
	General purpose registers
	Special purpose registers
	Fixed point data path
	Floating point data path
	Memory interfaces
	Program memory
	Data memory
	Constant memory

	Instruction set

	Tools
	Instruction set simulator
	Assembler
	Huffman table compiler

	MP3 decoder implementation
	Components
	Huffman decoder
	Sample dequantization
	IMDCT
	Subband Synthesis

	Decoder verification
	Listening test

	Benchmarks and profiling
	Clock frequency requirements
	Memory usage
	Instruction usage statistics

	RTL implementation
	VHDL
	Development environment
	Functional verification

	FPGA prototype
	Resource usage
	FPGA resource usage

	Results
	Future work
	Improved software
	Improved hardware
	Improved development tools
	Power measurements

	Instruction set reference
	Instruction encoding
	Matlab code for the x4/3 function
	Matlab code for a fast IMDCT
	Matlab code for a fast DCT
	References
	Library card
	Copyright

