
DIGITAL IC-PROJECT, LTH, SWEDEN, MAY 2003 1

A hardware implementation of an MP3 decoder
Irina Fältman, Marcus Hast, Andreas Lundgren, Suleyman Malki, Erik Montnemery, Anders Rångevall,

Johannes Sandvall, Milan Stamenkovic

Abstract— In recent years, several commercial system-on-chip
solutions for MP3 decoding have been developed. They are
usually built around a specialised RISC processor with an
instruction set suitable for MPEG audio decoding. The purpose
of this project is to evaluate and implement the different parts
of the MP3 decoding without using a processor core. Instead,
small hardware accelerators are implemented for each stage in
the decoding chain. Using specialised logic could lower the power
consumption that is of most importance in handheld devices. The
implementation is based on Thomas Lenarts C-code for MP3
decoding.

I. INTRODUCTION

DURING the last years the usage of the MPEG-1 layer-
III (mp3) audio codec has exploded, and a large part of

the global bandwidth consumed is used for transferring layer-
III compressed audio data, or in casual language ”mp3 files”.
During the first years of widespread mp3 usage, software
decoders were the most common, but during the last couple
of years portable and other stand-alone players have gained
in popularity. Particularly in hand held devices dedicated
hardware for accelerating the mp3-decoding process, in terms
of clock cycles and power usage, is important. This report
describes an attempt to create an efficient dedicated mp3-
decoder in hardware.

II. FUNCTIONALITY

The input to the MP3 decoder is a bitstream and the
decoding process turns this into samples which are sent to
a DAC1 add-on board. The MP3 stream is divided into
frames where each frame contains 27 ms of music data. The
decoding process can be divided into six blocks and these are
implemented independent from each other.

The first three, huffman decoding, requantize and reordering
convert the original MP3 bitstream into 576 frequency lines
divided into 32 subbands with 18 frequency lines in each. This
is the format which the last three blocks antialias, IMDCT
and filterbank use. These blocks transform the MP3 from
the frequency domain into the time domain. A more in-depth
description of the decoding process as well as mp3 encoding
can be found in [1] and [2].

The design presented here has a couple of limitations. It
does not do stereo decoding, so the output is a mono signal
mixed into both channels. Furthermore it does not handle
mixed blocks correctly. Both of these are limitations that can
be rectified later.

1Digital to analog converter.

A. Huffman

The task of the huffman decoder is to transform incoming
compressed data into scalefactors and symbols representing
the 576 original frequency lines. The scalefactors are then used
in the next block (the requantizer block) to rescale the symbols
into non-scaled frequency lines. The information about how
to create these symbols and scalefactors is found in the side
information part of the MP3 frame.

The decoder compares the input sequence with information
in the Huffman table and produces a symbol when a match
is found. Information on what table to use for any given
frame is found in the frames side information. Output from
the Huffman decoder is 576 scaled frequency lines (symbols)
which are divided into three partitions:

• Big-values contain the lowest frequency lines and are
coded with the highest precision. Normally the scaled
value is between -15 and 15, but higher precision can be
obtained by using an escape sequence. When the decoder
finds the value 15 it assumes that higher precision is
needed and reads additional bits from the input stream.
This value is then added to the original value of 15. The
number of bits is specified in the Huffman table and are
called linbits.

• Count1 represents the higher frequency lines and does
not need the high precision, they are simply coded with
the values 1, 0 and -1.

• Rzero represents the highest frequency lines. They have
simply been removed by the encoder. These values are
filled with zeros by the decoder.

The boundaries of the partitions are specified in the side
information.

B. Requantize

The Requantizer block rescales Huffman decoded scaled
and quantized frequency lines. The result from the Requan-
tizer is the original frequency lines. The complete descaling
equations for both short (equation 1) and long (equation 2)
blocks are presented below. What equations to use depends
on the windowing function used in the encoding process. The
Huffman decoded value at index i is is(i), the output from the
Requantizer block at index i is xr(i).

xri = sign(isi) · |isi|
4

3 · 2
1

4
(global gain[gr]−210) ·

·2−2·subblock gain[window][gr] ·

·2−scalefac multiplier·scalefac s[gr][ch][sfb][window] (1)

xri = sign(isi) · |isi|
4

3 · 2
1

4
(global gain[gr]−210) ·

·2−scalefac multiplier·scalefac l[sfb][ch][gr] ·

·2−preflag[gr]·pretab[sfb] (2)

DIGITAL IC-PROJECT, LTH, SWEDEN, MAY 2003 2

Scalefactors scalefac s and scalefac l used by Requantizer
are provided by the Huffman decoder. The frequency lines for
long and short blocks are divided into 23 and 13 scalefactor
bands for each window respectively, each scalefactor band
having it’s own scalefactor.

The other parameters such as global gain, subblock gain
and preflag can be found in the frame information provided
by the Synchronizer block.

The requantization step must be performed once for each
frequency line in the bitstream.

C. Reordering

The reorder block has one task; it reorders the frequency
lines within a granule. The way that the frequency lines are
reordered depends on flags in the side information header.

The block works in three different ways depending on the
side information header. (Only support for MP3 streams with
44.1 kHz sample frequency is implemented.)

• All frequenct lines are reordered.
• Only frequency lines after after line number 36 are

reordered.
• No frequency lines are reordered.

D. Antialias

The antialias block attempts to reduce the inevitable alias
effects introduced by the use of a non-ideal bandpass filter.
This reduction is done by merging frequencies using butterfly
calculations as seen in figure 1.

...

8 Butterflies

x558

x575

x0

x35

x18
x17

Fig. 1. Antialias butterflies

E. IMDCT

Inverse Modified Discrete Cosine Transform, IMDCT, re-
produces, in cooperation with the synthesis polyphase filter-
bank, time samples from frequency lines. Given the frequency

lines Xk, time samples xi can be obtained by using the
following equation:

xi =

n/2−1∑

k=0

Xk cos(
π

2n
(2i + 1 + n/2)(2k + 1)), 0 ≤ i < n (3)

In our case n = 36, which means that the IMDCT takes
as input 18 frequency lines and generates 36 polyphase filter
sub-band samples. These samples are multiplied with a 36-
point window before they can be passed on to the next step
in the decoding process. Windowing contains four different
types of windows, the types are normal, short, start and
stop. Information on what type to use is found in the side
information part of each frame. Depending on window type
two different implementations are used.

Producing 36 samples from 18 frequency lines means that
only 18 of the samples are unique. Therefore IMDCT is said
to use a 50% overlap. The 36 values from the windowing
operation are divided into two groups, a low group and a high
group, containing 18 values each. Overlapping is carried out
by interleaving (adding) values from the lower group with
corresponding values from the higher group from the previous
frame.

General view of the “operation flow” is shown in figure 2.

Fig. 2. IMDCT operation flow

The entire cosine term for each output can be treated as
a known constant factor based on the combination of i and
k, in equation 3. Some investigation of these terms shows a
symmetry between the different xi. Only half of the values are
uniquely determined. The rest can be obtained as a function
of the previously calculated terms. The following symmetry
holds:

xi = −xn/2−i−1, i = 0 . . . n/4 − 1 (4)

and
xi = x3n/2−i−1, i = n/2 . . . 3n/4− 1 (5)

Therefore calculating the first quarter and the third quarter
of all values will be enough to determine the entire set.

DIGITAL IC-PROJECT, LTH, SWEDEN, MAY 2003 3

Another optimization was achieved by merging calculations
of IMDCT-values with the subsequent windowing into one
single multiplication step, when short windowing was used.
It was also noticed that a number of calculations could be
omitted because several multiplications contained the factor
zero.

F. Filterbank

The synthesis polyphase filterbank is the final step in the
decoding process. It exploits aliasing and windowing to move
the subbands back into their frequency domain origins. The
process is naturally divided in two parts, an MDCT part for
translating the aliased subband signals, and a windowing part
to filter out the undesired aliasing in the translated signal.

1) Modified discrete cosine transform: The sub-samples
from the transpose block are ordered is such a way that the
32 first values are the first sub-sample from each subband, the
next 32 are the second sub-sample and so forth. The MDCT
processes 32 values at a time using the following equations:

Yi =

31∑

k=0

Nik ∗ Sk (6)

Nik = cos(
π

2 ∗ 32
(16 + i)(2 ∗ k + 1)) (7)

The output values Yi are stored in a barrel shifter.

2) Windowing: Multiplying the values from the barrel
shifter with the window function, specified in the ISO stan-
dard. 32 PCM samples are computed each iteration. The
MDCT and windowing are performed 18 times for each
granule, resulting in 576 PCM samples, i.e. 27 ms at 44.1
KHz.

III. ARCHITECTURE

The target hardware of the project is a Virtex-II 1000 FPGA
manufactured by Xilinx. The FPGA features 5120 logic slices
and 40 pairs of one 18x18-bit multiplier and one Block Select
RAM macro2. Though hardware resources were plenty it was
decided early during the project that hardware use had to be
kept on a realistic level.

By dividing the decoding process into blocks which run
sequentially it is easy to share common resources. In this
design the main memory containing the frequency data and
the 32-bit multipliers are shared.

The memory is put into two Block Select RAMs and it
is the huffman decoder which fills it with data. The control
to read and write to this block is then given to the currently
active block, so the blocks which are inactive are not able to
do anything with the main memory.

Furthermore many of the blocks use multiplications in the
decoding process. These multiplications are 32x32-bit and are
made by joining a total of 4 18x18-bit multipliers into one.

2There are limitations on how one such pair is used. Some of the wires are
shared. It is not possible to use both the multiplier and BSR at 18-bit length
at the same time.

Since there is a limited number of multiplier and BSR pairs
it was decided to also share the multiplier between the blocks
in the same way as the main memory.

A. Huffman

The Huffman decoder uses a number of tables in the
decoding process. There are a total of 4 tables with constants
and 32 additional Huffman tables. The first decision to be
made was which of these to leave hard coded into the chip as
constant values and which to put in Block Select RAM.

As it turns out the four tables with constants are all quite
small. The largest of them is 690 bits and can thus be placed
on the chip as constants without taking a lot of space. This also
cuts down on local accesses to memory which makes the block
run smoother. The Huffman tables are huge in comparison (the
largest is 8176 bits), and there are 32 tables to store. Thus it
was decided that the Huffman tables should be placed in a
Block Select RAM.

The decoder works by reading a variable number of bits
from the input stream and decoding these as a block. The
number of bits to be read in every step can vary anywhere
from 0 to 13 bits, but access to memory is only possible in
8 bit words. This means that if 13 bits are to be read two or
three reads from the input stream would be needed causing
the decoder to stall. To reduce the number of reads one byte
is always prefetched from the input stream so that there are
between 9 and 16 bits available from the stream at any given
time (depending on how many bits were read in the previous
step). If 13 bits are to be read it can often be done in one read
(two reads in the worst-case scenario).

The total number of Huffman tables according to the ISO-
specification is 32, but the actual number of tables stored is
17. This is due to the fact that tables number 16 to 23 are
the same and so are tables number 24 to 31. Also, one table
has been omitted since its only task is to invert bits from the
input stream. Instead this special case is detected and treated
separately.

The representation of the Huffman tables is not specified in
the ISO-specification, but it can be viewed as a tree-like lookup
table that is processed from the root. The input sequence tells
the decoder which branch to take and bits are continually read
from the input stream until there are no more branches to take.

The interested reader might want to know what the states
of the decoder look like. For this reason figure 3 has been
included.

B. Requantize

The Requatizer has been partitioned into a number of blocks
for parallelizing the process as can be seen in the figure 4.

The requantize block is the highest stage in the hierarchy
interfacing with the Controller, the main memory and the
Huffman decoder and retrieves the necessary data from the
frame header and side information. The state machine for the
requantize can be seen in the figure 5.

The first step of the requantization process is to calculate
|is|

4

3 . The calculation of numbers raised to the power of 4
3 is

computationally expensive to implement. One way to improve

DIGITAL IC-PROJECT, LTH, SWEDEN, MAY 2003 4

Fig. 3. Figure showing all states in the decoder. The state CALC SF3 only
differs from CALC SF2 in that it is initialized differently, so there is actually
no CALC SF3 state in the decoder. It is still shown in the figure so that there
would be no confusion as to why there is no CALC SF3. In most states a
number of bits have to be read. This is done in the GET BITS state, but since
the figure would become overly cluttered if this state was included it has been
omitted.

requantize

counter divider_win gain_
correction shifter table_

look_up

table_
requantize

Huffman
decoder Controller Main

Memory

Requantizer

Fig. 4. The architecture of the Requantizer. Communication between the
blocks within the Requantizer is shown with black lines. Communication with
the external blocks is shown with dashed lines.

the performance is to use a look-up table containing all the
8192 possible input values. A look-up table is fast but requires
approximately 256 kbits of memory space. The computation
has been divided in two cases, so the size of the look-up table
has been reduced to 32 kbits.

Case 1: If is(i) is less than 1024, the result can directly be
found in the look-up table;

Case 2: If is(i) is greater than or equal to 1024, the value
is first divided by 8. The result from the look-up table is then
multiplied by 16. This is possible because of the relation in
the equation 8.

|isi|
4

3 = 16 · |
isi

8
|
4

3 (8)

The block performing the look-up is called table look up.
The table is stored in Block Select RAM and is included as a
part of the initialized data section.

Idle

B_type Adjust

Block_info

Calc

Gain_corrShift

RAM

counter < 576

counter = 576

start = 1

if xr = 0

Fig. 5. State machine for the requantize

A separate frequency line counter block has been created
to provide the requantize block with the information about
what frequency line that is being requantized at the time. The
total amount of frequency lines per frame is 576. When the
counter has become 576 the ready signal for the Requantizer
is generated.

The divider win block has been created for a simple and
fast window calculation. There can be totally three windows
in a short block.

The shifter is used for multiplying (sign(isi)|isi|
4

3) with
2

1

4
·C . The equations for factor C can be seen below. Equation 9

is used for calculation of short blocks and equation 10 for
calculation of long blocks. The factor C is pre-calculated in
the requantize block.

C = global gain[gr] − 210 − 8 · subblock gain[window][gr] (9)

C = global gain[gr] − 210 − scalefac multiplier ×

×scalefac l[sfb][ch][gr] − preflag[gr] · pretab[sfb]) (10)

The gain correction is another table used for storing the
correction factor. The table is stored in Distributed RAM and
is included as a part of the initialized data section.

A shared multiplier is used in the requatization calculations
for multiplying xr(i) with the correction factor.

C. Reordering

The reorder block is built around two memories. One
memory contains the temporary storage for sample data and
the second memory contains the addresses for the main
memory and the temporary storage memory. The order of these
addresses describes the functionality of the reorder block.

D. Antialias

The implementation of the antialias block is a statemachine
containing one butterfly calculation and some counters. Data
for one butterfly is read from memory, four multiplications
using the shared multiplier are carried out and then finally
one addition and one subtraction are made. The results from
these are stored back into the main memory.

The eight pairs of alias constants are not placed in a Block
Select RAM since that wasted the BSR needlessly. Instead the
constants are placed in ROM in LUTs. In order to minimize

DIGITAL IC-PROJECT, LTH, SWEDEN, MAY 2003 5

register use partial results are stored in two different registers.
Doing this instead of putting each of the different partial
calculations in separate registers lowered the size of the unit
to less than half of the first ”naive” implementation.

1) Butterfly calculations: The first observation to make is
that the main limit on the antialias block is the multiplier. Be-
sides the multiplications the main delay is accessing memory.
To minimize this latency as much as possible multiplications
and memory access are made in parallel as much as possible
(but no ”prefetch” of the next butterfly values is made while
the first one is still carried out). A diagram of one butterfly
can be seen in figure 6.

ca
ca

cs

cs

-

+

x18

x17x17

x18

Fig. 6. One butterfly merge

E. IMDCT

For all multiplications the common multiplier is used. To
obtain the summations of each xi (see formula 3) an accumla-
tor is used. All cosine-values, used for IMDCT-computations,
and sine-values, used for windowing, are stored in Block
Select RAMs. Figure 7 show how most components are
connected.

The following table shows the number of clock cycles
needed to compute all time samples in a frame. The time
required, when using a clock frequency of 24 MHz, is shown
too.

IMDCT type Clock Cycles time/µs
Short Windowing 15,615 651
“Normal” Windowing 15,196 633

F. Filterbank

During the implementation of the filterbank it has been a
strict design goal to keep the design simple, yet reasonably
efficient. With this philosophy in mind the implementation of
the DCT part was done very straight forward, using matrix
multiplications instead of a butterfly scheme such as Lee’s
algorithm [3]. One might object to this method since a large
number of multiplications are unnecessary and time is thus
wasted. As will later be shown, time was not critical. Another
benefit from this approach is that the amount of logic used in
the DCT is small.

Two Block Select ROMs were instantiated to keep DCT and
windowing constants, as well as two Block Select RAMs used
as a dual port shift register for passing data between the DCT
and windowing blocks.

G. I2S and communication with the real world

Sending data to the real world requires a properly formatted
continuous stream of samples. It was clear from the beginning
that the output data should be sent according to the I2S

protocol, originally developed by Philips, but now a de-facto
standard supported by virtually every DAC, SPDIF-converter
or any other component that processes real time digital audio.
The I2S standard dictates that data is sent over a synchronous
serial bus, in two complement and MSB first. The bus is a
three wire bus consisting of a serial data line, a word select
line and a clock line.

Since the mp3 decoder works with frames and granules it
is not able to produce a continuous flow of data, but rather
produces chunks of 576 samples at a time. A continuous data
flow is an absolute requirement however, and a FIFO-buffer
of some sort is a natural choice. A block select RAM was
instantiated, and is used as a 1024 sample buffer.

The mp3 standard supports a wide number of sample rates,
but output is currently fixed at 44.1kHz. Furthermore, the
24MHz system clock is not well suited for audio applications
as it can not be divided to form any of the standard sample
rates. Dividing the clock by 544 produces a 44.118kHz word
clock, which means that the audio is played somewhat too
fast, 44118/44100 = 1.0004, i.e. 0.04% too fast.

Adding functionality to support other sample rates would
not be taxing to implement, and is actually prepared for, but
since the majority of all mp3s are encoded in 44.1kHz it was
decided that supporting this sample rate would be enough.

Furthermore, to be able to test our implementation of the
mp3-decoding standard, a very simple, yet perfectly working,
mp3 playing system was created. The structure is implemented
in the entity ’mp3player’ which instantiates a decoder as well
as instances of entitities to initialize the DAC and transfer data
from an external flash ROM containing mp3 encoded music,
to the decoder. The system lacks any ability to interact with
a user, and will continuously loop the music stored in the
external memory.

Since the development board used during the project does
not feature a DAC, but does feature expansion possibilities, a
PCB containing a DAC as well as a flash ROM was designed.
The DAC used is a Texas Instruments TLV320AIC23. The
TLV320AIC23 actually contains an ADC as well as the
oversampling sigma-delta D/A converter used in this project.

IV. SYNTHESIS

During the synthesis different tools were used, Synopsis
FPGA compiler, Xilinx XST and Synplicities Synplify Pro.
Due to problems with the software only Synplify Pro was
able to successfully synthesize the project.

A. Huffman

Logic Logic Blocks Utilization
Slices 576 11%
Flip Flops 181 1%
4-input LUTs 1046 10%
Block RAMs 3 7%

DIGITAL IC-PROJECT, LTH, SWEDEN, MAY 2003 6

B. Requantize
Logic Logic Blocks Utilization
Slices 634 12%
Flip Flops 166 1%
4-input LUTs 1106 10%
Block RAMs 2 5%

C. Reordering
Logic Logic Blocks Utilization
Slices 36 1%
Flip Flops 16 1%
4-input LUTs 51 1%
Block RAMs 5 12%

D. Antialias
Logic Logic Blocks Utilization
Slices 165 3%
Flip Flops 102 1%
4-input LUTs 287 2%

E. IMDCT
Logic Logic Blocks Utilization
Slices 400 7%
Flip Flops 155 1%
4-input LUTs 654 6%
Block RAMs 3 7%

F. Transpose

The order that the Filterbank and I2S blocks read data from
main memory is different than that of preceding blocks. The
purpose of the transpose block is to reorder main memory data
into a format that suites the Filterbank and I2S.

The implementation of the block is really straight forward.
It reads data from the main memory and writes it in the new
order into Block Select RAM. The data is then written back
to the main memory again.

The transpose block could be eliminated altogether if the
filterbank and I2S blocks where to read data in the same
order that the IMDCT block writes it.

Logic Logic Blocks Utilization
Slices 68 1%
Flip Flops 38 1%
4-input LUTs 111 1%
Block RAMs 2 6%

G. Filterbank
Logic Logic Blocks Utilization
Slices 319 6%
Flip Flops 149 1%
4-input LUTs 596 5%
Block RAMs 4 10%

H. I2S
Logic Logic Blocks Utilization
Slices 83 1%
Flip Flops 60 1%
4-input LUTs 123 1%
Block RAMs 1 2%

I. MP3 project

Logic Logic Blocks Utilization
Slices 2881 56%
Flip Flops 1587 15%
4-input LUTs 4614 45%
Block RAMs 23 57%
18x18 Multipliers 4 10%

As has been mentioned previously, when using adjacent
multiplier and Block Select RAM, limits are put on the address
width used, in order to keep it routable on a Virtex II. This
reduces the available number of multiplier / Block Select RAM
blocks to a total of 40, compared to 40 for each type. This
means that 27 out of 40 primitve blocks are used.

The calculations of the timing for the blocks were done
by measuring the time with an oscilloscope on the hardware,
running at 24 MHz.

Block Time
sync 140 µs
huffman 120 µs
requantize 140 µs
reorder <10 µs
antialias 83 µs
imdct 630 µs
transpose 48 µs
filterbank 1.16 ms
All 2.3 ms

The Virtex-II development board supplies a 24 MHz clock.
A comparison between the timing of the design and the
requirements, 44.1 KHz → 27 ms, shows that it is capable
of running at a significant lower clock speed than 24 MHz.

V. CONCLUSIONS

A. Huffman

The design is satisfactory, although some improvements
are possible. The main drawback of the decoder are the
scalefactors, and the way they are communicated from the
decoder to the requantizer block. By using ”Gaisler’s” method
of coding made it (too) easy to put the scalefactors in the
feedback flip-flops, however this proved quite inefficient since
this lead to excessive routing. The implementation actually
leads to 248 parallel connections between the two blocks. This
routing could be substantially decreased simply by storing the
scalefactors in Block Select RAM. Also othertables besides
the Huffman tables could be put in Block Select RAM to
further decrease the size of the design. But as always there
is a tradeoff between time and area. The design now is fast
but large, whereas decreasing the size would make it slower
(since there would be more memory reads).

B. Requantize

The design of the requantizer block can be further improved.
In this version of the Requantizer rather heavy computations

DIGITAL IC-PROJECT, LTH, SWEDEN, MAY 2003 7

are performed for the function 2
1

4
·C . The factor C is precal-

culated in the requantize and then 2 is raised to the power of
1
4 · C by shifting. The function 2

1

4
·C does not take on more

than 384 different values. Both calculations and shifter are area
consuming, that’s why a small look-up table would probably
be the best choise and would improve both the timing and the
block area. The table can be made even smaller (196 values)
by rounding small values down to zero.

C. Reordering

Since this block is already very fast there is little point in
spending resources on making it faster. Neither does it use a
lot of logic on the chip. The only part which is big is the
number of Block Select RAMs it utilizes, but this is a trade
off to keep logic use down.

D. Antialias

The largest optimizations made in the antialias block was
to put constants in a LUT based ROM and to store as few
temporary values from multiplications as possible. One further
improvement could be to fetch the next iterations values
while doing the multiplications for the current iteration3. The
benefits of doing this to the entire chip would be marginal
however. Since the antialias block currently is both quite small
and quite fast it would be better to concentrate any efforts on
other blocks.

E. IMDCT

Already at the beginning of the project, critical decisions
concerning what algorithms of IMDCT to use, had been made.
Many fast algorithms were found, but choice was done to
use the most straight forward one, due its low complexity
compared to another more sophisticated algorithms. Loss of
efficiency could be accepted to as quickly as possible achieve
working architecture in the first hand, especially that loss of
efficiency was not critical for the entire design. The result
showed to be satisfactory.

It’s worth mentioning that best (fastest) algorithm [4], and
at the same time most complex to implement, that could be
found, is carried out by Vladimir Britanak and K. R. Rao. This
algorithm is based on the DCT/DST, of types II and III, and a
butterfly pattern for calculating both IMDCT- and windowing-
values.

3This is basically “software pipelining” of the antialias loop.

F. Filterbank

The implementation of the filterbank satisfies the design
goals, and does not use excessive amounts of hardware. If need
be, the DCT calculation could easily be modified to exploit the
redundancy in the DCT algorithm with a butterfly scheme such
as Lee’s algorithm [3]. Such a modification would lower the
number of clock cycles needed to perform the entire filterbank
calculation by a factor ten.

ACKNOWLEDGMENT

The authors would like to thank our instructors, Hugo Hed-
berg, Fredrik Kristensen and Thomas Lenart for all help during
the project. We would also like to thank Martin Nilsson for all
his help and support with developing the DAC daugherboard.

REFERENCES

[1] ISO/IEC 11172-3:1993 Information technology – Coding of moving
pictures and associated audio for digital storage media at up to about
1,5 Mbit/s, 1993.

[2] S. Gadd and T. Lenart, “A hardware accelerated mp3 decoder with
bluetooth streaming capabilities,” Master’s thesis, Lund Institute of Tech-
nology, Sweden, 2001.

[3] B. G. Lee, “A new algoritm to compute the discrete cosine transform,”
IEEE transactions on acoustics, speech and signal processing, vol ASSP-
32, No 6, December 1984.

[4] V. Britanak and K. R. Rao, “A new fast algorithm for the unified forward
and inverse mdct/mdst computaion,” Signal Processing, 2002.

DIGITAL IC-PROJECT, LTH, SWEDEN, MAY 2003 8

APPENDIX I
PICTURES

Fig. 7. IMDCT’s block diagram

Fig. 8. Xilinx devel board, DAC board

