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Harmonic Decomposition of Audio Signals With
Matching Pursuit

Rémi Gribonval and Emmanuel Bacry

Abstract—We introduce a dictionary of elementary waveforms, pursuit and introduce our modified matching pursuit, stating
called harmonic atoms that extends the Gabor dictionary and g convergence theorem (the proof is given in Appendix A). A
fits well the natural harmonic structures of audio signals. By fast implementation of this pursuit, namely, the fast harmonic

modifying the “standard” matching pursuit, we define a new . L . . - .
pursuit along with a fast algorithm, namely, the fast harmonic matching pursuit, is described in more detail in Section V.

matching pursuit, to approximate N-dimensional audio signals Some applications of the harmonic matching pursuit are then
with a linear combination of M harmonic atoms. Our algorithm  described: A time—frequency representation is defined in

has a computational complexity of O(M KN ), where K is the  Section VI, examples of the analysis of real audio signals are

number of partials in a given harmonic atom. The decomposition iven in Section VII, and a simple note detection algorithm is
method is demonstrated on musical recordings, and we describe . . -
experimented in Section VIII.

a simple note detection algorithm that shows how one could use
a harmonic matching pursuit to detect notes even in difficult
situations, e.g., very different note durations, lots of reverberation, II. DICTIONARIES OF HARMONIC ATOMS
and overlapping notes.

- _ A. Gabor and Harmonic Atoms
Index Terms—Audio signals, fundamental frequency extraction,

Gabor atom, harmonic structure, matching pursuit, note detection, 1) Gabor Atoms:Gabor atoms [see (1)] are obtained by
time—frequency analysis. dilating, translating, and modulating a mother windawt),
which is generally real-valued, positive and of unit norm
[ lw(t)|*dt = 1. A Gabor atomg; , ¢(t) is located around
time » with a duration of the order of, and its Fourier trans-

UDIO signals contain superimposed structures such ggm g, , .(w) is centered at frequencywith a dispersion in
transients and stationary parts. It has been noticed [28kquency of the order of/s.

I. INTRODUCTION

[23], [26] that Gabor atoms 2) Harmonic Atoms:Harmonic atoms [see (2)] are defined
1 . by their scales, timew, frequency componen{s < & < --- <
Goue(t) i= —=w <;u> ei2mé(t—u) (1) &k, and by the complex coefficients;)X_; . A harmonic atom
Vs § has the same localization in time as a Gabor atom, and its Fourier

provide a redundant familydictionary) of elementary wave- transform has essentially peaks, located around frequencies

. . . . $k, 1 < k < K, with a common width of the order df/s.
forms @tomg that is well suited for decomposing such signals. i : :
H . . . .~ Remark 1: Obviously, Gabor atoms are special cases of har-
owever, given the strong harmonic content of most audio Slﬁ{onic atoms. Withc — 1. Moreover. real-valued Gabor atoms
nals, it seems more natural to use a dictionafyasfmonic atoms ' o '

g e o0 = e g (1) cosnele )49 @
h(f) = ch.05,1z,§k(t)7 ||h||2 — /|h(f)|2 dt =1 (2) g & ¢ Cs, &, oW 3 Ccos U

= are also harmonic atoms, withi = 2, £&; = —¢, andé; = &,

whereé;, =~ k&, 1 < k < K. Indeed, these elementary waveandc, ¢ , is a normalizing constant. In practical applications,
forms reflect well the prior knowledge about the structure of thee will also consider real-valued harmonic atoms, which are
signal. We define in this paper a modification of the matchingjmply harmonic atoms with_, = &, 1 <k < K.
pursuit algorithm [22] to decompose efficiently audio signals In the context of audio signals, it seems natural to “tune” the
into linear combinations of such harmonic atoms. harmonic atoms in order to fit one of the main structure of these
Dictionaries of harmonic atoms are defined in Section Il. Igignals, namely, th@lmost) harmonicity; ~ k&, between the
Section I1I, we recall the definition of the “standard” matchingrequency; of thekth partial g, .., ¢, and thefundamental fre-
quency, [7], [8]. Taking into account the spectral width (of the
Manuscript received May 30, 2001; revised July 31, 2002. The associate Qé—der Ofl/.s) of thekth partlalg& u, &k the (aImo;t)harmomcny
itor coordinating the review of this paper and approving it for publication wagan be writtef [£, — k&o| < A/s, 1 <k < K, with A = 1.
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B. Harmonic Subspace—Quasi-Orthogonality of the PartialsA. Standard Matching Pursuit

The set of all harmonic atoms at scaletime u, and with From a decomposition of the signal indé — 1 > 0 atoms
frequency component§ < & < --- < {k is exactly the unit

. 5 M1
sphereS; . ¢, .. ¢, inthe subspace di*(R) s(t) = Z (Ri—1, gm) gm (t) + Rag—1(t)
VS,UIL---,EK = Span{gs,u,fln 1<k< K} (4) m=t

one gets a/-atom decomposition in the following way.
which will be referred to as Aarmonic subspacéVhen it is 1) Computel(Ry_1, g)| forall g € D.

possible, it is helpful to specify a range of possible fundamental 2) Select a (near) best atom of the dictionary
frequencies

. , |(Rar—1, gar)| > psup [(Rar—1, 9)|
o (s, u) < &o < (s, w). (5) g€D

This may come froma priori knowledge on the audio signal.
For some technical reason that will become clearer later on, we

need the partial§g, . ¢,, 1 < k < K} to bequasiorthogonal Rur(t) = Rur 1(£) — (R, Nawr (4 7
that is to say for some < 6 < 1 a(t) = Bar-a(H) = (Rar-1, 9a) 901 (1)- 0

where0 < p < 1is some number independentff.
3) Compute the new residual

— 1—96 . L. . .. .
(Gs.wers Gs.u.e )| = |w2(s(& — &))| < k#1 B. Standard Matching Pursuit in Harmonic Dictionaries

2 _ ’ . L e . .
K K (6) With harmonic dictionaries, one can write

It is not difficult to check that this is satisfied (s, u) > R B = R h
B/s for some constanB = B(6, K, w). f;?h [{Rar-1, 1] S,Z? hsélg [(Bar—1, bl

C. Gabor and Harmonic Dictionaries = Sg? ||th, RM—1||
Y

1) Gabor Dictionaries: The Gabor dictionaryis the set hereP. is th h | oroiecti C |
D, = {gs.ucs (5, u, €) € Ty = Ry x R} of Gabor atoms at wherePy, is the orthonormal projection ontd. Consequently,

every scales > 0, time locationu € R and frequency € R. the standard matching pursuit can take the following form.

2) Harmonic Dictionaries: A harmonic dictionaryD;, is an 1) Computef| Py, Ras—a| forally € T.
extension of the Gabor dictionaf, 2) Select a (near) best harmonic subspace

D=Dou U Sewe e 1Pos Baeall 2 pup [Py, Bnea |

(syu,&1, .., Ex)ET, . . .
3) Compute the new residual as in (7) with

for some set of indicels;, . We will use the notatiolt = I',UI';,,

and~y € I will denote the index of either a Gabor at¢m u, &) ha(t) == Py Bar-a(1)

or a harmonic subspade, u, &1, ..., £x). Notice that due to 1Py, Bar—1 |

the constraint (5), not all Gabor atomse D, lie in somesS.,,, (Rar_1, har) == ||Py,, Rar—1]| -
v € Fh-

This formulation shows that no exhaustive search over the
I1l. STANDARD MATCHING PURSUIT parameteréc, )X is needed for the optimization of a harmonic
atom. In particular, following Remark 1, when the dictionary

The matching pursuit [22] is a greedy algorithm very Slm"aéonsists of real-valued Gabor atoms [see (3)], the pi n

to the projection pursuit introduced in statistics [11], [19]. Give . -

a complete dictionar, i.e., a redundant family of unit vectorsBe automatically optimized [22], [4], [14], [16].

in a Hilbert spacet such thaEparﬁD) = and an arbitrary IV. APPROXIMATE AND WEAK HARMONIC MATCHING PURSUIT

numberM, it decomposes a signalt) into a residual term

Ry (t) and a linear combination d¥/ atoms chosen amorig At each step of the standard matching pursuit described
above, one needs to compUitey,_ R,;_:|| for every subspace

M . .
V., v € T, as well as the exact projectidd,,, Ry, 1(t) for
s(t) = Z Amgm (t) + B (t) the selected subspace. For Gabor atoms= 1A)I, this is( gasily
m=l done asPy, Ras—1(t) = (Rar—1, g4)9,(t). A fast and exact
with the essentiaénergy conservatioproperty computation is also possible with real-valued Gabor atoms
o (K = 2)[4], 4], [16]. _
9 9 2 For general harmonic dictionaries, computihg,. s 1]|
sl = Z A+ 1 Bal” for every subspac®,, v € T' is time consuming and, from a

m=1

practical point of view, makes the standard matching pursuit un-

The strong convergendan,, ... ||Ras|| = 0 was proved by usable. In the next section, we describe how the quasiorthogo-
Jones [21] and shows that one can get as good an approximatiality of the partials [see (6)] along with some recent results on

to s(t) as wanted. the convergence dapproximate weak greedy algorithrfis3]
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can be used to define a modified pursuit that avoids these cofren, the residual obtained with the modified matching pursuit

putations. [i.e., see (8)—(11)] converges strongly to zero.
Thus, the so-obtained matching pursuitvisakin the sense
A. Modified Harmonic Matching Pursuit that the choice (9) of a “good” harmonic atom can be much

Thanks to the quasiorthogonality condition [see (6)], the séakerthan in a standard matching pursuit. Indeed, one is not
of Gabor atoms{g, = g..u.c,, 1 < k < K} used to define restricted top,, > p > 0, and we will see in Section V an
V, in (4) is nearly an orthonormal basis df,. The modified €xample wherg.,, € {0, 1}, in which case, convergence is
matching pursuits a standard matching pursuit actiagifthe guaranteedib_, pm/m =32, _1/m = oco.
partials wereexactlyan orthonormal basis of the corresponding Moreover, it is approximatein the sense that, at each
harmonic subspace. step, A\, b (t) defined by (11) is only arapproximationof

If the partials were orthogonal, one would have (Rin—1, hm)hn (1), and the energy conservation is approxi-
mate as well, i.e.,

K
| Py RM—1”2 =Y URa-1, o)’ M MK
’ kzzl sl = > ol + 1 Racl* 2 DD lem,l” + 1R
m=1

and m=1 k=1
K (14)
Py Rar—a(t) = > (Ra-1, gk) gi(t).
k=1 as long as [defined by (6)] satisfie$ ~ 1. The proof and
The modified matching pursuit is thus defined as follows. Xlspg;%?f; formulation of this last equation can be found in
1) Compute for ally the correlation function Let us now describe a fast implementation of this modified
K harmonic matching pursuit, namely, the fast harmonic matching
Qv, (Rar—1) =Y (R, gi)l” (8) Pursuit
k=1

. V. FAST HARMONIC MATCHING PURSUIT
2) Select a harmonic subspagg such that

A. Main Principles
2
Qv (Ry-1) 2 P f’{lélg Qv, (Rar-1) ©) The main idea of the fast harmonic matching pursuit is that it
is possible to select the “best” harmonic subspdgen a finite
where0 < par < 1 may depend o/ ; see Theorem 1. sub-dictionaryD,, C Dj,
3) Compute the new residual according to

Qy,, (Rm-1) := max Qv, (Rm-1). (15)
R]\,[(f/) = R]\/j_l(t) — /\]\,[h]\/[(f/) (10) V|84 CDm
where By choosing the sub-dictionari€®,,, } ..>1 much smallethan

the whole harmonic dictionar®;,, we decrease the numerical

K complexity. By using (13), we can indeed construct small sub-
Anrha(t) = Z (Rar-1, gar, k) g, 1(1) (1) dictionaries without loosing the convergence of the pursuit. The
k=1 general principle is the following.
with the notationy,.,, x(t) = gs.., u,., .1 (). 1) Initialization: At som_e.stepsml. = 1 < my <
After M steps, this modified matching pursuit provides ade:* < mp < --- the finite sub-dictionaryD,,, is ini-
composition of an audio signal as tialized so that it satisfiesmax,|s cp,,, Qv,(Bm-1) =
maxy|s, cD, QV-,(Rm—l)-
M 2) Update: At the intermediate steps €]m,,, m,11[, the
() = > Amham(t) + Ras(t) sub-dictionaryD,,, C D,,_; is updatedby removing some har-
m=1 monic subspaces from,,, 1.
M K
=3 ) kg k() + Ra(t). (12) B. Convergence
m=1 k=1

From the brief description above, one can easily show that at
each step, the selected harmonic subspaceatisfies the “pes-

B. Convergence—Approximate and Weak Pursuit simistic” estimate)y,, (Rm—1) > pm sups. cp, Qv, (Rm-1)
The conditions for the convergence of the so-defined pursm‘ﬂ\ﬂth

are given in the following theorem (the proof is in Appendix A). 1, me{m, p>1}
Theorem 1: Assume that the harmonic dictionary satisfies Pm = {0: m ¢ {my, p > 1}.

the quasiorthogonality condition [see (6)]. Ligt,, }m>1 With
0 < pm < 1such that Hence, ify", , po/m =3 (m,,) " = +o0, then{p,, },n>1 is
Pm an acceptable “weakness” sequence (according to Theorem 1),
> T =t (13)  and the pursuit will be convergent.
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C. Adaptive Sub-Dictionaries of Local Maxima 2) [O(K)] (Optional) Perform a Newton interpolation to get

Let us describe howP,,,, is initialized and howD,, is up- a fine estimate fot < &k < K of
dated fromD,,,_.
1) Initialization: At each stepm,, we detect thelocal ~ &m.k ‘= B b, o= A o e, 0 +A/5] {1, a1
maximaof the function
X 3) [O(K N)] Update the residual according to (10).
. Z sup |<Rm s e >|2 (16) 4) [O(K2N,)] Update the inner products of the useful
= e, —kéo| <A/, P IR Ak Gabor atoms

K

for every value ofs and¢y, as well as the local maxima of the
y 60 <Rm7 g) = <Rm—17 g> - Z <Rm—17 gm,k) <gm,k7 g>~

function
k=1
- h ful Gab rach
2 There are at mosk' NV, useful Gabor atomsk in eac
S Pt ,gk_kiff;A/& [(Bom,=1 9o, an subspace oD,,,. Each inner productg,, x, g) can be
- computed inO(1) with an analytic formula (see e.g.,
for every value ok andu and keep the location of th, largest [22]).
(the choice ofN, will be discussed in a moment). This corre- 5) [O(KN,)] Recompute the correlations [see (18)] for
sponds to keeping only the local maxitrfar which the corre- every discretd s, u, &) associated with some subspace
lation is above somthresholdy,. in Dy,
2) Update: The same threshold is used to updatg for 6) [O(N, )] Eliminate fromD,,, 1, the subspaces whose cor-
m €]my, mpi1[: ONCeh,y, (t) € Dy, has been selected, one re- relation has fallen below,.
computes the correlation of the new residual with the subspaces
of D,,,, and the threshold, is applied to obtairD,,, ;1. E. Computational Complexity and Convergence

The next initialization step,4+1 occurs when the process of

. o In practice we choose @nstant sizef D,,
throwing away subspaces fraf,,, has emptied it. i

_ ) ) (K +1logN)log N < N, := Ny < N/K.
D. Fast Matching Pursuit Algorithm

When one deals with a finite but high-dimensional signal dfhe number of steps necessary to empty each sub-dictionary
N samples, the standard discretizatif of the Gabor dictio- Dy, is at least its size, i.em;,+1 — m;, < No. Because local

nary containg’(N log N) Gabor atoms. maxima of the correlation function have a tendency to be al-
Let us describe in details the implementation and the numenost orthogonal one to another, only few subspaces are removed

ical complexity of the fast harmonic matching pursuit. from D,, at each step, hence it is reasonable to assume that
1) Initialization Stepsn € {m,, p > 1}: Mp+1 — my > alNg for somea > 0. As a result, the com-

1) [O(N log? N)] Compute (R,._1, g) for every Gabor Putational complexity ofl/ iterations of this pursuit is at most
atomg € DI. This is equivalent to computing several®((M/No) N (K + log N)log N) + O(MEN(1 + No/N))
short time Fourler transforms (STFTs) based on wiribat is to say
dows at each possible scale, which is done using a fast

algorithm (FFT or direct convolution). O(MKN).
2) [O(K N log N)] Compute, for every discretgs, «) and
€0 € [EMIn(s, u), EM (s, u)] The convergencgR,,|| — 0 follows from Theorem 1 and the

fact thatm, < Ny x p = Zp(mp)_l = 400.
K
2
. kSEU‘ILA/ (Ri—1: Gs,u, )] - (18) VI. TIME—FREQUENCY REPRESENTATION
k=1 I8k —FS0[=A/S, . . . . . .
The harmonic matching pursuit described in the previous sec-

There is at mostO(N log N) such discrete values oftions allows one to decompose a sigrél) as the sum of a

(s, u, &o)- residual term and of a linear combination of an arbitrary number
3) [O(N log N)] Detect the local maxima. M of harmonic atoms, i.e.,
4) [O(N log® N)] Sort the local maxima and threshold.
2) Updates form, < m < mpq1: Z Ambom () + Rz (1).

1) [O(N,)] Select(sm, um, &m, o) Of the “best” subspace,
and set,, i := k&m0, 1 < k < K.
One fundamental property of this decomposition is that it satis-

2t has been observed [27] that local maxima of correlation functions such
(16) and (17) are likely to correspond to signal features. This is a desirable fﬁéts the approximate energy conservation law

because it shows that far €]m,,, m, 11, the harmonic aton,,, € D,,, C

D, will likely be a featureof the signatather than an artefact of the matching ) ) )
pursuit, as was sometimes the case with the standard matching pursuit [6], [17], IIs||” ~ Z [Am|” + | Ras]]
[20].
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Fig. 1. Time—frequency representation using the harmonic matching pursuit. The analyzed signal is a simple sum of two harmonic aféms pyitising

the asymmetric window(t) defined by (23) and displayed in Fig. 2. The first atom corresponds te 128, u; = 220, and¢;, ., = 0.09% and the second

one tos, = 512, u, = 244, andé,, , = 0.058k. A M = 2 step harmonic matching pursuit is performed. (a) Graph of the analyzed signal. (b) Energy density
E[s](t, w) [see (20)]. (c) Reduced energy density™ [s](#, w) [see (21)].

(letusrecall that the,,,s are complex numbers and thiat,. || = and displayed in Fig. 2. It shows the energy density corre-
1). Moreover, each harmonic component corresponds to a linsponding to a signal made of two harmonic atoms (With= 5)
combination of Gabor atoms starting, respectively, at time; = 220 anduy = 244. The
K black spots in Fig. 1(b) represent the Wigner—Ville distributions
Al (1) = Z . kGm. k(1) of the corresponding Gabor atoms. The two lower spots cor-
=1 respond to the fundamental frequencies of the two harmonic

atoms and the other ones to their harmonics. In this case, since
there are only two harmonic atoms, it is of course very easy to
relate which spots belong to which harmonic atom. However, for
l|s]|? ~ Z Z |, k|? + || Rar]?- real audio signals, this can get rather complicated and make this
m=1k=1 representation very hard to “read.” For the sake of simplicity, we
Let us note that from a numerical point of view, these ener@M” use a “reduced” version of this representation, consisting of
conservation relations [see (14) and its precise formulation &T€presentation of only the flfSt partial of each harmonic atom.
Appendix B] can be considered, in a very good approximatiohhis reduced energy densit§{;)[s](t, w) is then simply de-

and consequently

to be exact equalities. fined as
Following the usual representation used for the standard "
matching pursuit [22], we choose to represent each Gabor (r) 2
. . - t, AWV g, 1](t 21
atomgs, ., ¢(t) in the (¢, w) time—frequency half-plane by its r )t @) ;' | lgm. 1](2, @) (21)

Wigner—Ville distribution [9]WV [gs, . ¢](t, w). The energy
density Er[s](t, w) of the signals(¢) in the time-frequency and it is illustrated in Fig. 1(c).
half-plane at the step/ of the pursuit is then naturally defined In the next section, we illustrate the harmonic matching pur-

by suit on a real audio signal.
M K
Exlsl(t, @) = Y ) lem s’ WVgm il(t, ). (20) VIl. HARMONIC MATCHING PURSUIT
m=1k=1 OF A REAL AUDIO SIGNAL

Fig. 1 illustrates the so-obtained time-frequency representatiorSound signals are asymmetric in time. They often consistin a
using the asymmetric window(¢) defined by equation (23) short transient part (e.g., the attack of the sound) followed by a
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. T are performed based on the FFT; however, as suggested in [15],
. ] they may be sped up by using recursive filters.
0.1 . The harmonic matching pursuit using this asymmetric
] window is illustrated on Fig. 3. It has been performed on a real
0.08f 3 audio signal which consists in an 11-note melodic recording of
C ] a clarinet [5]. Fig. 3(c) shows the residual, for M = 100. It
0.06F . shows that 100 harmonic atoms are enough to capture most of
C Ny the energy of the original signal (the relatié error is of the
0.04F 2 order of 9 dB). Moreover, as it can be seen in Fig. 3(b), each
5 ] note (with all its harmonic structure) is captured by very few
0.02F ] atoms [to make this figure easier to read, each note has been
] indexed by order of appearance from the first one (1) to the last
of :'1(')6' Lo one (11)]. Moreover, the use of the asymmetric window (23)

prevented any pre-echo, i.e., the beginning of the notes can be
Fig. 2. FoF window. The graph of the asymmetric windaWt) [see (23)] deteCtEd_ very precisely looking at the Elg. 3(b). . .
with 3 = 47 ande = 10°, Thus, it seems very natural to use this harmonic decomposi-
tion to build a note detection algorithm. In the following section,
stationary part which eventually slowly fades out (e.g., the suge elaborate what could be the basis of such an algorithm.
tained/decay parts of the sound). Consequently, as shown in a
previous work [17], if a symmetrical window(t) is used, the VIIl. N OTE DETECTION ALGORITHM USING HARMONIC
matching pursuit will often pick up, as the most energetic atom, MATCHING PURSUIT DECOMPOSITION

an atom that overlaps the actual starting time location ofthetran-.l.he note detection alaorithm we describe here is basic and
sient. It results in “creation of energy” just before this transien{. g

Thus, for instance, if the signal consists in a succession of no ghould not be used as it is for note detection applications.
' . 9 . o e purpose of this section is to show that, although it is a first
played by an instrument, the matching pursuit tlme—frequen%

: o o ive version of what should be a more elaborate algorithm, it
representation will display the energy of each note as if it was . o .
. . o . . ._can detect notes successfully even in some very difficult situa-
starting before its actual starting time location. This results in.a . . .
. . o ) tions, e.g., very different note durations, lots of reverberation,
pre-echo effect in the resynthesized audio signal:

etc. Moreover, let us point out that, apart from the frequency

M range [see (5)], the only prior information on the audio signal
su(t) = Z AP (t). (22) that is implicitly used by the algorithm is that the pitches of
m=1 the notes do not change significantly through time. There is no

As suggested in [17] and [20], in order to avoid creation g¥rior information on what instruments are playing, how they are
energy, one could use a high-resolution matching pursuit. Hofined, how many notes can be played at the same time, what type
ever, it slows down the pursuit quite a bit. In the case of audf§ music is played, etc.
signals, since the time asymmetry is basically alwaysstme
(e.g., the transients generally come before the stationary parfs),Note Detection Algorithm
the pre-echo effect can be taken care of (as shown in Fig. 3) byrhe basic idea of the algorithm is that the most energetic har-
simply using an asymmetric window that reproduces a genefifonic atoms are good candidates for notes. Given such an atom,
transient followed by a generic slowly decaying part [14], [15}he algorithm first evaluates what the fundamental frequency
In order to keep a fast algorithm, one has to choose a wind@#the corresponding note is, based on the simplifying assump-
which enables an analytic formula of the inner product of twgon that it corresponds to the most energetic partial. Then, it
atoms [see (19)] [22]. For that purpose, we chose the FoF furgmputes (using all the atoms of the decomposition) the energy
tion [24], which is defined by density profile £y [s](, w) at this frequency [see (20)]. A
simple thresholding on this profile will allow to detect the begin-
ning and the end of the corresponding note. The algorithm then
loops by considering the “next” most energetic harmonic atom
skipping all the atoms that have been “marked” as belonging
to some formerly detected notes. The algorithm stops when the

(23) only harmonic atoms left have small energy.

whereC is a normalization factor3 allows one to adjust the Let us describe each step of this algorithm more precisely.

size of the transient, and is the damping factor (let us noteFirst, of course, the harmonic matching pursuit is performed on

thato will be chosen so that the discontinuitytat 1 is of the the considered signal. At the beginning of the detection algo-

order of the numerical noise). The analytical formulas of théhm none of the harmonic atoms are marked.

inner product of two such atoms are rather complicated and canl) Locate the most energetic harmonic atdmh; (¢), which

be found in [1] and [3]. In the following, we will always choose is not marked.

B = 4m anda = 10°. The graph of this window is displayed on  2) If |A?|/||s]|* is smaller than a given threshold,,,, the

Fig. 2. The computation ofR,,_1, ¢) at the initialization step algorithm stops.

0.5 % C(1 — cos(Bt))e—t, for0<t< %

w(t) =4 ge—ot for % <t<l1

7

0, otherwise
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Fig. 3.
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Harmonic matching pursuit of a real audio signal. The analyzed signal corresponds to an excerpt of a recording of a solo clarinet pisteirt consi

a melodic phrase made of 11 notes with very different durations and a lot of reverberation. The harmonic matching pursuit is performed using the asymme
window w(t) (cf. Fig. 2), withAf = 100, {min = 130 Hz, andémax = 1400 Hz [see (5)]. (a) Graph of the audio signdk). (b) Reduced energy density

Eg;) [s](t, w) [see (21)] obtained through the harmonic matching pursuit. It is gray-coded from the smallest values (white) to the largest values (black). To make

this figure easier to read, each note has been indexed by order of appearance from the first one (1) to the last one (11). (B)R@sidualt) — s, (t), where
s (t) is the resynthesized signal [see (22)]. Relafiveerror is of the order of 9 dB.

3)

4)

5)

6)

7

8)

The most energetic partial of this harmonic atom is col. Note Detection With Some Musical Signals

sidered to be the fundamental frequency- &, .- ofthe |, this section, we apply the note detection algorithm de-

note, i.e.k* = argmaxy, [ci k|- _ scribed in the previous section to some musical signals. The pa-
Compute the energy density profild.(f) = ameters for the algorithm have been chosen in the following

Enls](t, w) at this frequency. _ WaY: eqrop = 0.01, fpeg = fond = —14 dB, Aty = 0.03
Let u; be the time location of the considered harmomgnd6 L = 2.1075.

(max) . . ) ) . .
atom(si, i, &1, -+, &, i) Let DL the maximum e first apply it to the clarinet signal previously analyzed

value of D,,(t) in a neighborhood of.; (of size of the (.t Fig. 3). Asillustrated in Fig. 4(a), all the notes are success-
order of ;). Compute the largest (resp. smal(lgi)) UMglly detected, although they are of very different durations and,
t < u; (resp.t > u;) for which 10log, (D, (t)/Do™"")  as shown by the time-frequency representation, some of them
is larger than a given threshol., (resp.6.,.4)- The overlap each other (due to reverberation). Moreover, the begin-
so-obtained time locatiof)., (resp.t.q) is considered ning of each note is very accurately estimated. This estimation
as being the beginning (resp. end) of the note. (i.e., step 5 of the algorithm) is illustrated on Fig. 4(b). Let us
If the duration’c,.a — tueg is large enough (1.6 Atmin),  point out that the detection of notes of very different durations
anote is detected at frequencyt timety. till ime Zena-  and of their starting time locations using “standard” techniques
We mark the current harmonic atom along with all thg gificult. In the particular case where the musical instrument
harmonic atoms.;(¢) that correspond to the same noteyat is playing is a piano, it has been shown in [25] that, if one
i.e., which satisfy;., < u; < t.nq andforwhichatleast performs an extensive learning phase on the specific piano thatis
one partial aton;, .g;, . satisfies, for a given threshold ;seq, then STFT-based algorithms can achieve polyphonic note
€mark detection with few errors. However, in the case there is none
or little prior information on the specific instruments that are
playing, these algorithms no longer apply and precise note de-
max WV{g;, k](t, w) > €mark. tection using STFT techniques becomes really difficult. A major
problem one has to face when using STFT is the fact that one
Go back to step 1. has to choose, once for all, the size of the window. Ideally, one
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Fig. 4. Note detection on a clarinet signal. The signal is the same as the one displayed in Fig. 3(a). (a) Reduced ener@%ﬂbﬂ\eityu) defined by (21).

The harmonic matching pursuit is performed using the same parameters as for Fig. 3. The detected notes obtained using the detection alg@ithim describ
Section VIII-A are indicated using triangle shapes and the corresponding symbolic names for each note is in parentheses (using the standgr& nGtation

D, E, F, G). (b) FunctioD,,(t) = E{J[s](t, w) for the first note (A). The beginning time,., and ending time...q of this note are estimated using simple
thresholding (i.e., step 5 of the algorithm) with= 61,., = f.na = 19 dB.

would want to use both a very short window (for very short notdékat are close enough one to each other, whereas large values
or for estimating accurately the starting time of each note) amdll lead the algorithm to split single notes into two notes, as if
longer windows (of the order of the note durations). In a wathe note was played twice. Actually, in Fig. 5, one can see that
the harmonic matching pursuit changes the size of the windall the notes are detected, but the “G” (starting at ttme 2.2)
adaptatively according to these requirements and makes theideletected twice (one after the other) though only one “G” has
tection very accurate. been played.

The next signal we have tested our note detection algorithmLet us point out that these decisions (mainly the one note
on is a recording of the beginning of tromatic Fantasypy versus two notes decision and the estimation of the time location
Bach [2]. Detection is much harder than on the previous signaf. the beginning of a note) are really hard to make, especially
This recording involves much more reverberation, the melodyligcause of the reverberation and of the soft attacks. If the attacks
really fast, and the attacks of the notes are very soft. Moreovegre a little harder, just decreasing the, would improve the
since the melody is made of three successive scales (ascendiegpit quite a bit.
descending, and then ascending again), there are a lot of reverbeGonsidering the difficulty of the note detection on this signal,
ating octaves orfifths, which make the detection allthe more diffihe fact that this rather simple algorithm succeeds in finding
cult. Actually, at a given time, the only way to “understand” that all the notes and in estimating precisely most of their starting
an octave has been played (and not just a single note) is to laimke locations, makes, we think, the harmonic matching pursuit
at the energy density at time locations that can be arbitrarily farvery promising tool for note detection.
fromtimet, i.e., attimes when only one of the two notes of the oc-
tave could be heard. Although this is very hard to achieve using
a regular algorithm based on a STFT, this is automatically per-
formed when using the harmonic matching pursuit. As illustrated The flexibility of the matching pursuit paradigm makes it pos-
in Fig. 5, the detection is quite good. The reverberating fifths asible to design dictionaries of elementary waveforms that reflect
the octaves are alldetected. Moreover, although the attack of edehexpected structures of the analyzed signals. Harmonic struc-
note is very soft, all the notes are detected. tures, which are common in audio signals, are easily described

However, the algorithm makes a few mistakes. Most miss linear combinations of a few quasiorthogonal Gabor atoms.
takes are due to the sensitivity of the algorithm to the paramet@ifiis enables the efficient realization of a harmonic matching
values (mainly,e, andfena). The value of,., must be chosen pursuit decomposition. One can indeed notice that the com-
relatively to how hard the attacks of the notes are. As seenplexity O(M K N) of the fast harmonic matching pursuit is es-
Fig. 5, most of the attack time locations are well estimated esentially that of building the approximalt, | , ¢m, kgm, k. i-€.,
cept for very few (e.g., the “A” detected at time~ 0.8, which the cost of selecting the harmonic atoms of interest is negligible.
has been detected to start after the “B” leading to an inversionBecause of its demonstrated ability to decompose a musical
of the scale). Moreover, low values fég., andf..q will lead recordingintoharmonic structures of very differentdurations and
the algorithm to merge notes that have the same frequency éimat could overlap each other, the harmonic matching pursuitis a

IX. CONCLUSION
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Fig. 5. Note detection on a piano signal. The signal corresponds to the beginning@birtimeatic Fantaspy Bach. It is basically made of three successive scales
(ascending, descending, and then ascending again) played really fast with very soft attacks and a lot of reverberation. (a) Reduced er@kﬁy‘qensi&y as
defined in (21). The harmonic matching pursuit is performed using the asymmetric wingigvicf. Fig. 2), withAZ = 100, {min = 130 Hz andémax = 1700

Hz [see (5)]. The detected notes obtained using the detection algorithm described in Section VIII-A are indicated using triangle shapes, aspathairogrr
symbolic names for each note are in parentheses (using the standard notation A, B, C, D, E, F, G).

very promising tool for note detection. However, the note detec-For any v = (s,u, &1, ..., ¢x), let G, =
tion algorithm we proposed is still too sensitive to its parameté{g., g;))1<k, i<k, the Grammian matrix of the family
values. We actually believe that this sensitivity is inherentto tHgr = gs,4.¢,, 1 < k < K}. One can easily check that (6)
use of the harmonic matching pursuit itself rather than to the deplies that the eigenvalues df, lie within [6, 2 — 4.
tection algorithm and that, consequently, the pursuit should ndénce,{gx, 1 < k < K} is a linearly independent family of
be used “as is.” We believe that the selection of harmonic atowectors, as well as its biorthogonal bagis., 1 < £ < K}
for note detection should rather be done simultaneously with tfeharacterized by(gr, 1) = 06r) in V.. As a result, the
detection algorithm itself, which may imply using tracking techextremal eigenvalues of the positive definite quadratic form
nigues [12], [13] and penalizing those harmonic atoms where the
coefficients{c,,, , } 2, “oscillate” to much. . 9
Asa Iastsiemar}kk, V\lle believe the “subspace matching pursuit” v Qy(v) = Z (v, g0l
framework that we have defined in this paper may be the basis =t
for other applications where it is possible to use dictionaries thaestricted to the finite dimensional subspacg are equal to
are the union of the unit spheres of small dimensional spadbs extremal eigenvalues 6f,. Hence, for ally € H and all

K

spanned by simple quasiorthogonal atoms. vyeTl
2 2
APPENDIX A 8[| Pv,v||” < Qy(Pr,v) = Qy(v) < (2= 6) || Py, v]|
PROOF OFTHEOREM 1 26)

Similarly for the dual basis, for att € H and ally € T', (2 —
To prove this theorem, we are going to use [18, Th. 2.1})-1 [Py, ol> < 5 1w, Gi)? < 67| Py, v||?. Thus, since

which states the condition of convergence for éipproximate 5, pelongs toV,, and||h,,|[> = 1, one can show that there
weak greedy algorithmsThis theorem shows that in order tOeXISt86 € [~1+6, 1— 6] such thatzf NP G ) =
prove the convergence of our modified pursuit, one just nee@s_i_ em)” 1_ Thus, one easily gets ’

to prove the two following points.

1) For some sequende < «,, < 1, which satisfies

~ 2
> @m/m = +00, hy, satisfies A = Am(L+ €m) Y [(Bms G, k)]
k=1
(Rp—1, hin)| = @ sup [(Rp—1, h)]. (24) K ~ ~
hep 1+Em Z m ms gm,k> <gm,k; hm>
2) Forsoméd) < 4 < 1, the coefficient\,,, is approximately =t
(Rm—1, hm): Since, from (11), one gets thal,,hm, m k) = (Rm—1,
gm.x), We finally get
Am = (14 €m) (Rm_1, hm) (25) B
W|th €m € [—1 =+ (57 1 - 6] )\ / 1+6Tn Z m—1; 9m, k <gm,k> hm,>:<Rm,—17 h'm)

(Let us note that the condition for convergence in [18] is slightly k=1

weaker.) Hence, this proves point 2) [i.e., (25)].
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From (11), one gets

K
Qe (Rm1) = 3 1Bt g i)” = (R, AP
k=1

Then, using (25)

Q. (Rm—1) = (1 + €m) [(Rm-1, hm)|2 .

On the other hand, (9) and (26), along with the fact thate
[-1+6,1— 6], give

(27)

Q”/ (Rm—l) /’2
m > m RTn_
1+e€n 14 en iléllev( 1)
6 2
> p2 Py R,_1||".
2 Py g [Py, B |

Combining this last equation with (27), we get

[ 6
|<Rm717 hm>| Z ﬂ Pm SUp |<Rm717 h’>| .
- heDy,

Since Theorem 1 assumes tha}  p../m = +oo, this last

equation proves point 1) [i.e., (24) with,, = \/6/(2 — 6) pm]-

In order to apply [18, Th. 2.1], we just need to check that
Dy, is complete, but this is easily done because it contaifis
which is complete as soon as the window is smooth and satisfie?8

lw(t)| = O((1 +¢)71) [22].

APPENDIX B
PROOF OF(14)

From (11), one gets

1Rt |l” = |1 Bonll” = (1= €5) (Bom—1, hn)[*. (28)
Using (25), this last equation becomes
2 2 l—€m o
Bt ll” = (1B [ = 1 A (29)

On the other hand, from (27), one deduces that

(1 - 67211) |<Rm—17 hm>|2 = (1 - Em)Qﬂ/m (Rm—l)
K
=(1—¢€m) Z lem. k]2
k=1
Using (28), we get
K
IR all* = 1Rl = (1 =€) Y lem x> (30)
k=1

Hence, using (29) and (30)

M

>

m=1

1_6711
1+em

2
lIs]|* = A |? + || R |

M

K
=3 D> (= em)lem i + [ Rar])*

m=1 k=1

Sincele,| < 1 — 6, if we assume that ~ 1, we obtain the

desired approximations.
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