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ABSTRACT

This paper addresses complexity reduced rate-distortion optimized
audio coding under rate constraint. A technique where distor-
tion minimizing coding templates, chosen from a set of templates,
are jointly selected for a set of segments. This optimization re-
quires knowledge of rate-distortion pairs for all segments, and for
each coding template, which often are costly to obtain. The pro-
posed framework exchanges true rate-distortion pairs withpre-
dicted ones, thereby allowing for complexity reduction. The pre-
diction is based on a property vector extracted for each segment,
from which distortion predictions, using Gaussian mixturemod-
els, are performed. Here, we evaluate the proposed framework in
a sinusoidal coding context. The results show that the proposed
framework can increase the distortion performance, compared to a
fixed sinusoidal coding scheme.

1. INTRODUCTION

Rate-distortion (R-D) optimization is of interest for audio cod-
ing for several reasons. It allows for adaptive coding schemes,
where the coder is adapted to user and network constraint as well
as source characteristics, thereby increasing the overalldistortion
performance. For example, parametric coders typically outper-
form transform coders at low bit-rates, and LPC-based coders per-
form very well for speech but not for audio. An R-D optimized
selection among such a set of coders is thus of interest.

There are a multitude of different applications that can be put
into the R-D optimization framework:1) Coder selection for spe-
cific segments [1],2) Distribution of bits over stages in multistage
structures [2],3) Variable bit-rate (optimal distribution of bits over
segments) [3], and4) Dynamic time-segmentation [4, 3]. All of
these applications require knowledge of the incurred distortion in
the current audio segment for all of the coders (coding template,
number of sinusoids, etc), in order to perform R-D optimization.
For some of the above applications, we end up having to do dis-
tortion calculations, which sometimes require both signalanalysis
and synthesis, for many different coding templates, not necessarily
useful in the final coder synthesis.

The complexity of these distortion calculations may be severe,
preventing the use of R-D optimized coders in many applications.
Thus, we here propose an open loop approach to the R-D opti-
mization problem. We exchange coding distortions with predicted
ones, thereby allowing for complexity reduction. For the predic-
tion purpose we employ an open loop framework for distortion
prediction proposed in [5]. The framework is based on a prop-
erty vector extracted from the segment to be coded, from which
distortion predictions, using a Gaussian mixture model (GMM)
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of the joint property-distortion pdf, are performed. We evaluate
the proposed framework in a sinusoidal coding context. Based on
predicted R-D curves we perform R-D optimized distributionof
sinusoids over sets of segments matching a given bit-budget. The
results are compared with a sinusoidal coder optimized on orig-
inal R-D curves, and a sinusoidal coder using a fixed number of
sinusoids per segment.

The paper is organized as follows. In Sec. 2 we discuss the
basics of R-D optimized coding, and in Sec. 3 we present the
prediction framework. This is followed by a presentation ofthe
experimental setup in Sec. 4. In Sec. 5 we evaluate the goodness
of the proposed system. Finally, we conclude in Sec. 6.

2. RATE-DISTORTION OPTIMIZATION

The problem of distributing a certain number of bits over a set of
segments,S , constituting an optimizationviewport, can be cast
into rate-distortion optimization under rate constraint.This opti-
mization can be stated as the following constrained optimization
problem:

min D

s. t. R ≤ R
⋆
,

(1)

whereD is the distortion,R is the resulting rate, andR⋆ is the
target rate. LetTs be a finite, discrete set of coding templates
(ways of encoding, etc.) for segments, andR(τ ) andD(τ ) be the
rate and distortion associated with coding templateτ ∈ Ts. The
distortionD and the rateR are the sum of distortions and rates
over the segments,S , associated with a particular set of coding
templatesτ = [τ1 · · · τS] with τi ∈ Ti, i.e.

D =
S

X

s=1

D(τs) and R =
S

X

s=1

R(τs). (2)

The problem (1) can then be written as the following uncon-
strained problem [4]

min
τ

S
X

s=1

D(τs) + λR(τs) =
S

X

s=1

min
τ∈Ts

D(τ ) + λR(τ ), (3)

whereλ is the non-negative Lagrange multiplier. The right side
follows from assuming that distortions and rates are additive and
independent over segments..

This means that the optimization problem can be solved in-
dependently for each segment for a particularλ. The Lagrange
multiplier λ can be interpreted as the slope of the R-D curve for a
certain rate. The problem is then to find theλ⋆ that leads to the tar-
get bit rateR⋆. Such aλ cannot be guaranteed to exist for discrete
problems such as ours. We can, however, find a solution close to
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Fig. 1: Illustration of the evaluation of the incurred distor-
tion,D(τs), for one particular coding template,τ , and one
particular audio segment,s. Qτ (·) represents the coding
or modeling associated with template,τ , andδ(·) is the
distortion criterion.

the optimal one provided that the{R(τ ),D(τ )} points are suffi-
ciently dense. The optimalλ is found by maximizing the concave
Lagrange dual function:

λ
⋆ = argmaxλ
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− λR
⋆

#

. (4)

This can be done by sweeping overλ using simple bisection until
the rateR(λ) is within some range of the target bit rate [4].

Given the optimalλ⋆, the rate-distortion optimization simply
becomes a matter of choosing the optimum coding template fora
particular segments as

τ
⋆
s = argminτ∈Ts

[D(τ ) + λ
⋆
R(τ )] . (5)

For the rate-distortion optimization to result in improvements
in perceived quality, the chosen distortion criterion,δ(·), must re-
flect human sound perception. In this work we have chosen to
work with the distortion criterion proposed in [6], which isfurther
described in Sec. 4.

3. RATE-DISTORTION PREDICTION

To perform R-D optimized coding over a set of segments,S , using
a set of coding templates,Ts, we require knowledge of R-D points
for each segment and each coding template,

{R(τs), D(τs)} : ∀ s ∈ S , ∀ τs ∈ Ts. (6)

Ideally these points are found by coding each segment with each
of the coding templates, as visualized in Fig. 11. This approach
is highly complex, and in general therefore not feasible. Thus we
here suggest an open loop alternative, where distortions,{D(τs)},
are predicted from the current segment of audio,s, as visualized
in Fig. 2. In essence the structure in Fig. 1 is exchanged for the
structure in Fig. 2. Below, we discuss the predictor employed to
predict the incurred distortion for one particular coding template.
In practice we require one predictor, as described below, for each
coding template.

3.1. Property Vector Based Prediction

We employ distortion prediction as suggested in [5]. The over
all prediction is separated into a property extraction,f(·), and a
prediction,gτ (·), as visualized in Fig. 2. Each audio segment,
s, is processed into a dimension reduced property vectorP, from
which a prediction,̂D(τs), of the coding distortion,D(τs) is to be

1The structure in Fig. 1 needs to be processedNxM times, if we per-
form a joint optimization overN segments, usingM coding templates for
each segment.
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Fig. 2: A framework for prediction of the incurred distor-
tion, D(τs) = δ(s,Qτ (s)), when coding a random vector
s, using coding templateτ . A dimension reducing prop-
erty vector extraction,f(·), is followed by a distortion pre-
diction,gτ (·).

found. For simplicity, we below drop segment and coding template
indices. The random variable representing the incurred distortion
will be denotedD, and the corresponding outcomes will be de-
notedδ.

The selection of a set of properties,p, from the input seg-
ment,s, is of great importance for the performance of the proposed
framework. The selected set of properties should be a representa-
tive for the incurred distortion in the current segment for the given
coder. In more theoretical terms, the random input segment,s, is
processed into two random variables, the distortion variable, D,
with outcomesδ, and the property vector,P. The basic task for
the property extractor,f(·), is to extract properties,P, that con-
tain sufficient information aboutD for a required predictor accu-
racy. The amount of information thatP contains aboutD, or the
goodness of a given property vector, can be measured by the mu-
tual informationI(D;P). In this work we have chosen to rely on
standard audio properties. Our choice of property vector isfurther
discussed in Sec. 4.

The aim of the predictor,g(·), is to find a prediction,̂δ, of
the incurred distortion,δ, based on an observation of the property
vector,P = p. Utilizing a pre-trained GMM for the joint distor-
tion property pdf,f (M)

D,P (δ,p), we approximate the MMSE at each
coding instant as

δ̂ = g(p) =

Z

δf
(M)

D|P (δ|P = p)dδ, (7)

wheref
(M)
D|P (δ|P = p) is the conditional model pdf, which can be

shown to be a mixture of Gaussian densities, and is easily derived
from the joint model pdf,f (M)

D,P (δ,p). In practice, this predictor
calculates a weighted sum of conditional means,

δ̂ =

M
X

i=1

ρ
′
imi,D|P=p, (8)

whereM is the number of mixture components, and{ρ′
i} and

{mi,D|P=p} represent the weights and the means of the condi-

tional model pdf,f (M)
D|P (δ|P = p), respectively.

3.2. Performance
The employed prediction scheme is designed to minimize the vari-
ance of the prediction error,Z = δ − δ̂. Assuming an unbiased
predictor, the variance of the prediction error can be expressed as

σ
2
Z = E

ˆ

(Z)2
˜

= E
h

(δ − δ̂)2
i

. (9)

Theminimum mean square error estimator(MMSE) for this task,
i.e., the one minimizingσ2

Z , is the conditional mean estimator,

δ̂mmse = E[D|P = p] =

Z

δfD|P(δ|P = p)dδ. (10)



The employed predictor is an approximation of the MMSE estima-
tor, and the predictor output (8) will approach the true conditional
(10), as the model pdf approaches the true pdf.

As discussed above, the performance of the predictor is de-
pendent of the chosen property vector. In [5] the relation between
the property goodness,I(D;P), and the overall prediction error,
σ2

Z was studied. It was shown that for a given property vector,P,
the overall prediction error,σ2

Z , can be bounded as

σ
2
D ≥ σ

2
Z ≥

1

2πe
22(h(D)−I(D;P))

, (11)

whereσ2
D is the variance of the distortion variable to be predicted,

h(D) is the differential entropy of the distortion random variable
D, andI(D;P) is the mutual information betweenD andP.

4. EXPERIMENTAL SETUP

Here, we present the experimental framework, separated into the
source coding system (sinusoidal coder, R-D optimization ,distor-
tion criterion), and the distortion predictor (GMM, property vector,
audio database).

4.1. Source Coding System
We employ asinusoidal coderbased on a simplified version of
psychoacoustic matching pursuit (PAMP) [7]. Using a PAMP based
coder, the distortion (12) will decrease in a monotone way asa
function of the number of iterations (sinusoids). The analysis/-
synthesis is performed for segments of length 35 ms, sampledat
48 kHz. The coder employs a Hanning window and has a 50 %
segment overlap. Phases are quantized uniformly using 5 bits per
component, whereas amplitudes and frequencies are quantized in
the logarithmic domain. Using entropy coding and differential en-
coding, we obtain perceptually transparent quantization at an av-
erage rate of approximately 16 bits/sinusoid.

R-D optimization, c.f. Sec. 2, is here employed to distribute
sinusoids (bit-allocation) over optimization viewports,S , of length
1 s, matching a target rate of 25 kbits/s2. For each segment the
algorithm allocates a number of sinusoids in the range0−85. The
optimization is performed using the sinusoidal modeling distortion
as input, using a cost of 16 bits/sinusoid.

We employ adistortion criterion, δ(·), based on the model in
[6]. For a particular segment the distortion can be written as

δ(e(n)) =

Z π

−π

A(ω)|F {w(n)e(n)} |2dω, (12)

whereF{·} denotes the Fourier transform,A(ω) ∈ {x ∈ R|x >
0} is a perceptual weighting function andw(n) is the analysis win-
dow ande(n) = s̃(n)− s(n) is the modeling error. The quantiza-
tion distortion is disregarded in the optimization as the distortion
criterion may be overly sensitive to frequency quantization.

4.2. Distortion Predictor
The key component of thepredictordescribed in Sec. 3 is aGMM
for the joint property-distortion pdf,f (M)

D,P (δ,p), which is to be
trained off-line. All GMM’s employ 16 mixtures, and the train-
ing were conducted using the expectation maximization-algorithm
(EM). For GMM training purposed we have extracted a training
set, consisting of 180.000 joint property-distortion vectors from

2In this context coding templates, referred to in Sec. 2, correspond to a
sinusoidal coder using different number of sinusoids.
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Fig. 3: Original and predicted R-D curves for one segment
(35 ms) in the excerpt “glockenspiel”.

the SQAM database (up-sampled to 48 kHz). All test excerpts are
disjoint from the training set.

We have chosen to work with a 4-dimensionalproperty vector
consisting of: 1) The loudness, which is calculate as the log of the
average energy of the segment,2) The spectral centroid, which is
calculated as mean of the spectrum with respect to frequency, 3)
Spectral bandwidth, which is calculated as the second moment of
the spectrum with respect to frequency,4) Spectral flatness, which
is calculated as the ratio of the geometric mean and the arithmetic
of the power spectrum. We do not claim to have chosen the best
property for the task at hand, rather we have chosen to rely on
simple (low-complexity) standard audio properties, used in audio
classification [8].

5. EXPERIMENTAL RESULTS

We have tested the proposed open loop R-D optimization, for the
purpose of R-D optimized bit-allocation (distribution of sinusoids)
over optimization viewports,S , c.f. Sec. 2. In the experiments we
have exchanged original R-D pairs, c.f. Eq. (6), with predicted
R-D pairs. For our particular setup, this means that we have ex-
changed 86 original R-D pairs, below referred to as a R-D curve,
with predicted ones for each segment, as visualized in Fig. 3. Pre-
dicted distortion values are only used in the optimization,meaning
that presented distortion values are based on original R-D curves.
For comparison purposes we have included the performance ofa
coder with a uniform sinusoidal distribution, i.e. the samenumber
of sinusoids per segment.

In Table 1 we compare the performance of the systems, by
averaging the distortion in Eq. (12) over a number of different
excerpts. The results show that the proposed system outperforms
a uniform sinusoidal distribution for all the excerpts. Naturally,
there is a loss compared to the reference system. The gains of
optimized systems compared to a system using a fixed number of
sinusoids vary. The achievable gain of R-D optimized codingis
large for “glockenspiel”. The non-stationary character ofthe sig-
nal, results in an R-D optimized bit distribution which is far from
uniform, c.f. Fig. 4. The result is a far too high distortion at onsets
for the uniform case, c.f. Fig. 5. For the “jazz” excerpt the R-D
optimized distribution of sinusoids is not far from uniform, and
thus a uniform distribution can compete with the RD optimized,
c.f. Table 1. It should be mentioned that the poor performance for
the proposed system on the “glockenspiel” excerpt, a 50 % loss,
can be traced back to the R-D optimization procedure. Due to the
non-convexity of predicted RD-curves, c.f. Fig. 3, the optimiza-
tion fails in selecting the correct operating point. By simple post
processing of predicted R-D curves, smoothing and forcing con-
vexity, the loss can easily be reduced to around 20 %.

An alternative application is up-front coder selection foreach
optimization viewport,S , i.e. selection of the coder that minimizes
the distortion for the current set of segments,S . For this purpose



excerpt E[δorg ] ∆E[δpre] ∆E[δuni]
glockenspiel 6.55 · 102 50 % 103 %

german speech 2.42 · 104 3.8 % 9.9 %
castanets 2.68 · 104 2.7 % 7.6 %

harpsichord 9.63 · 103 7.6 % 18 %
jazz 2.79 · 104 3.2 % 4.2 %

Table 1: Average segment distortion,E[δorg], for various
excerpts. ∆E[δsys] =

E[δsys]−E[δorg]

E[δorg]
represents the in-

crease in average distortion compared to an R-D optimized
system based on original R-D curves. Here shown for a
system using predicted R-D curves(pre), and for a system
using uniform bit allocation over the segments (uni).
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Fig. 4: Bit allocation for the first 200 segments of the ex-
cerpt “Glockenspiel”. The solid line represents an R-D
optimized system based on original R-D curves (org), the
dashed line represents an R-D optimized system based on
predicted R-D curves (pre), and the dotted line represent a
system with uniform bit allocation (uni). The periodically
changing shaded and white fields represents optimization
viewports.

viewport R-D curves are useful. Viewport R-D curves are achieved
by sweeping overλ⋆, c.f. Eq. (4). In Fig. 6 R-D curves for the
first viewport in the “glockenspiel” excerpt are shown. The solid
line represents the viewport R-D curve based on original distor-
tion values, the dashed line represents the predicted viewport R-D
curve and the dotted line represent the R-D curve for a sinusoidal
coder employing a fixed number of sinusoids per segment. Com-
paring the solid and the dotted curve indicate that we shouldselect
the R-D optimized system instead of the fixed system for all rates
on this viewport. We can also note that the choice would be the
same if we based our decision on the predicted curve, the dashed
line, instead of the original. This is obviously a dummy selection,
as an optimized system always outperforms a fixed system, butif
the dotted curve would have represented for example a waveform
coder, such a selection can be of interest. Note that the dashed line
represents a prediction of the performance of the R-D optimized
system (solid line), and it can therefor indicate a performance bet-
ter than the performance of the actual system3.

6. DISCUSSION

In this paper we have studied complexity reduced R-D optimized
coding, where R-D curves are exchanged for predicted ones. The
proposed framework was applied in a sinusoidal coding context,
for the purpose of distributing sinusoids over sets of audioseg-
ments. The results show that the proposed framework works, in
the sense that the performance is improved compared to a system

3Here all figures are based on predicted distortion values, asopposed to
above, where predicted distortion values only are used for the optimization,
and the results are based on original distortion values.
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Fig. 5: Distortion distribution for 200 segments of the ex-
cerpt “Glockenspiel”. The solid line represents an R-D
optimized system based on original R-D curves (org), the
dashed line represents an R-D optimized system based on
predicted R-D curves (pre), and the dotted line represent a
system with uniform bit allocation (uni). The periodically
changing shaded and white fields represents optimization
viewports.
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Fig. 6: Viewport R-D curves for the first optimization
viewport (1 s) in the excerpt “glockenspiel”. The solid
line represents an R-D optimized system based on original
R-D curves (org), the dashed line represents an R-D opti-
mized system based on predicted R-D curves (pre), and the
dotted line represent a system with uniform bit allocation
(uni).

with a uniform sinusoidal distribution. It should be noted that we
lose compared to an R-D optimized system based on the true R-D
curves. This loss can be decreased if our rather raw system isfur-
ther optimized, meaning a better choice of property vector,and a
set of training data better matching the expected audio input.
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