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ABSTRACT of the joint property-distortion pdf, are performed. We leage

the proposed framework in a sinusoidal coding context. 8ase
predicted R-D curves we perform R-D optimized distributiafn
sinusoids over sets of segments matching a given bit-buddpet
results are compared with a sinusoidal coder optimized ag or
inal R-D curves, and a sinusoidal coder using a fixed number of
sinusoids per segment.

The paper is organized as follows. In Sec. 2 we discuss the
basics of R-D optimized coding, and in Sec. 3 we present the
prediction framework. This is followed by a presentationttoé
experimental setup in Sec. 4. In Sec. 5 we evaluate the gesdne
of the proposed system. Finally, we conclude in Sec. 6.

This paper addresses complexity reduced rate-distorftmized
audio coding under rate constraint. A technique where disto
tion minimizing coding templates, chosen from a set of textgd,
are jointly selected for a set of segments. This optimizatie-
quires knowledge of rate-distortion pairs for all segmeatsl for
each coding template, which often are costly to obtain. Tioe p
posed framework exchanges true rate-distortion pairs it
dicted ones, thereby allowing for complexity reduction.eTire-
diction is based on a property vector extracted for each sagm
from which distortion predictions, using Gaussian mixtored-
els, are performed. Here, we evaluate the proposed frarkeéwor
a sinusoidal coding context. The results show that the m®go

framework can increase the distortion performance, coetptara 2. RATE-DISTORTION OPTIMIZATION
fixed sinusoidal coding scheme. The problem of distributing a certain number of bits over e
segmentsS, constituting an optimizationiewport can be cast

1. INTRODUCTION into rate-distortion optimization under rate constraifhis opti-

Rate-distortion (R-D) optimization is of interest for aodiod- mlzatlon. can be stated as the following constrained opéition

. . . problem:

ing for several reasons. It allows for adaptive coding sasgm

where the coder is adapted to user and network constraineks w min D

as source characteristics, thereby increasing the owdisadirtion st R<R" Q)

performance. For example, parametric coders typicallypeut
form transform coders at low bit-rates, and LPC-based coger
form very well for speech but not for audio. An R-D optimized
selection among such a set of coders is thus of interest.

There are a multitude of different applications that can bie p
into the R-D optimization frameworkt) Coder selection for spe-
cific segments [1]2) Distribution of bits over stages in multistage
structures [2]3) Variable bit-rate (optimal distribution of bits over
segments) [3], and) Dynamic time-segmentation [4, 3]. All of
these applications require knowledge of the incurred distoin s s
the current audio segment for all of the coders (coding tatepl D= ZD(TS) and R= ZR(TS). 2)
number of sinusoids, etc), in order to perform R-D optinmiaat 1
For some of the above applications, we end up having to do dis-
tortion calculations, which sometimes require both sigmellysis
and synthesis, for many different coding templates, notsearily
useful in the final coder synthesis. s s

The complexity of these distortion calculations may be s&ve min Z D(71s) + AR(7s) = Z min D(7) + AR(7), (3)
preventing the use of R-D optimized coders in many apptoeti T o= =TT
Thus, we here propose an open loop approach to the R-D opti-
mization problem. We exchange coding distortions with joted
ones, thereby allowing for complexity reduction. For thedic- :
tion purpose we employ an open loop framework for distortion independent over segments.. )
prediction proposed in [5]. The framework is based on a prop- This means that the optimization problem can be solved in-

erty vector extracted from the segment to be coded, fromhwhic dependently for each segment for a particllar The Lagrange
distortion predictions, using a Gaussian mixture model (&M multiplier A can be interpreted as the slope of the R-D curve for a
certain rate. The problem is then to find thiethat leads to the tar-

This research was conducted within the ARDOR project, arsiaua- get bit rateR*. Such a\ cannot be guaranteed to exist for discrete
ported by the E.U. under grant IST-2001-34095 problems such as ours. We can, however, find a solution atose t

where D is the distortion,R is the resulting rate, an&* is the
target rate. LetZ; be a finite, discrete set of coding templates
(ways of encoding, etc.) for segmentandR(7) andD(7) be the
rate and distortion associated with coding temptate 7;. The
distortion D and the rateR are the sum of distortions and rates
over the segmentsS, associated with a particular set of coding
templatesr = [r1 -+ 75| with; € T, i.e.

s=1
The problem (1) can then be written as the following uncon-
strained problem [4]

where ) is the non-negative Lagrange multiplier. The right side
follows from assuming that distortions and rates are adzliind




Fig. 1: lllustration of the evaluation of the incurred distor-
tion, D(7s), for one particular coding template, and one
particular audio segment, Q- (-) represents the coding
or modeling associated with template, andd(-) is the
distortion criterion.

the optimal one provided that tHe?(7), D(7)} points are suffi-
ciently dense. The optima is found by maximizing the concave
Lagrange dual function:

S

A* = argmax, [Z

s=1

<H€11%1 D(r) + AR(T)) —AR*|. (¥

This can be done by sweeping oveusing simple bisection until
the rateR()\) is within some range of the target bit rate [4].

Given the optimal\*, the rate-distortion optimization simply
becomes a matter of choosing the optimum coding templata for
particular segment as

72 = argmin, . [D(7) + X R(7)]. (5)

For the rate-distortion optimization to result in improvems

in perceived quality, the chosen distortion criterié(), must re-

flect human sound perception. In this work we have chosen to

work with the distortion criterion proposed in [6], whichfigther
described in Sec. 4.

3. RATE-DISTORTION PREDICTION

To perform R-D optimized coding over a set of segmeftsysing
a set of coding templateg,, we require knowledge of R-D points
for each segment and each coding template,
{R(7s),D(15)}:V s €8,V 75 € T,. (6)
Ideally these points are found by coding each segment with ea
of the coding templates, as visualized in Fig. This approach
is highly complex, and in general therefore not feasibleustive
here suggest an open loop alternative, where distortidbér ) },
are predicted from the current segment of audicas visualized
in Fig. 2. In essence the structure in Fig. 1 is exchangedhi®r t
structure in Fig. 2. Below, we discuss the predictor empioye
predict the incurred distortion for one particular codiegnplate.
In practice we require one predictor, as described belowedich
coding template.

3.1. Property Vector Based Prediction

We employ distortion prediction as suggested in [5]. Therove
all prediction is separated into a property extractigf,), and a
prediction, g-(-), as visualized in Fig. 2. Each audio segment,
s, is processed into a dimension reduced property vdetdrom
which a predictionD(r), of the coding distortion(7s) is to be

1The structure in Fig. 1 needs to be procesa&d\/ times, if we per-
form a joint optimization ovelN segments, using/ coding templates for
each segment.

.3—> P D(Ts)

Fig. 2. A framework for prediction of the incurred distor-
tion, D(7s) = (s, Q- (s)), when coding a random vector
s, using coding template. A dimension reducing prop-

erty vector extractionf(-), is followed by a distortion pre-

diction, g, (-).

found. For simplicity, we below drop segment and coding tiextep
indices. The random variable representing the incurretdign
will be denotedD, and the corresponding outcomes will be de-
noteds.

The selection of a set of properties, from the input seg-
ment,s, is of great importance for the performance of the proposed
framework. The selected set of properties should be a reptas
tive for the incurred distortion in the current segment far given
coder. In more theoretical terms, the random input segmei,
processed into two random variables, the distortion végjah,
with outcomess, and the property vectoP. The basic task for
the property extractorf(-), is to extract propertie®?, that con-
tain sufficient information aboub for a required predictor accu-
racy. The amount of information th& contains abouD, or the
goodness of a given property vector, can be measured by the mu
tual information (D; P). In this work we have chosen to rely on
standard audio properties. Our choice of property vecturther
discussed in Sec. 4. .

The aim of the predictorg(-), is to find a predictiony, of
the incurred distortiong, based on an observation of the property
vector,P = p. Utilizing a pre-trained GMM for the joint distor-
tion property pdf‘fg\;’,) (4, p), we approximate the MMSE at each
coding instantas

5=g(p) = /5f<;‘;>(5|1» = p)ds, @)

Wherefg‘\;‘,) (6|P = p) is the conditional model pdf, which can be
shown to be a mixture of Gaussian densities, and is easilyeder
from the joint model pdef(DA,’IL)(& p). In practice, this predictor
calculates a weighted sum of conditional means,

M
8 _ /
= PiM; D|P=p,
i=1

where M is the number of mixture components, afid;} and
{m; pjp—p} represent the weights and the means of the condi-

tional model pdfféfﬁ(&P = p), respectively.

(8)

3.2. Performance

The employed prediction scheme is designed to minimizedhie v
ance of the prediction errof = § — §. Assuming an unbiased
predictor, the variance of the prediction error can be esqeé as

9)

Theminimum mean square error estimai®IMSE) for this task,
i.e., the one minimizing %, is the conditional mean estimator,

0} =E[(2)?] =E [(5 - 5)2] .

Sunmee — E[D|P = p] = / 5fop(6P = p)ds.  (10)



The employed predictor is an approximation of the MMSE eatim
tor, and the predictor output (8) will approach the true ¢toal
(10), as the model pdf approaches the true pdf.

As discussed above, the performance of the predictor is de-
pendent of the chosen property vector. In [5] the relatiawben
the property goodnesg(D; P), and the overall prediction error,
0% was studied. It was shown that for a given property ved®r,
the overall prediction errog%, can be bounded as

od > 0% > L2z<h<v>—I<D;P>>7

25— (1)

wherecs? is the variance of the distortion variable to be predicted,
h(D) is the differential entropy of the distortion random vatéb
D, andI(D; P) is the mutual information betweeh andP.

4. EXPERIMENTAL SETUP

Here, we present the experimental framework, separatedtiet
source coding system (sinusoidal coder, R-D optimizattiatpr-
tion criterion), and the distortion predictor (GMM, propevector,
audio database).

4.1. Source Coding System
We employ asinusoidal codetased on a simplified version of
psychoacoustic matching pursuit (PAMP) [7]. Using a PAMBdzh
coder, the distortion (12) will decrease in a monotone wag as
function of the number of iterations (sinusoids). The asialy
synthesis is performed for segments of length 35 ms, sangled
48 kHz. The coder employs a Hanning window and has a 50 %
segment overlap. Phases are quantized uniformly usingspéit
component, whereas amplitudes and frequencies are qeritiz
the logarithmic domain. Using entropy coding and diffei@ren-
coding, we obtain perceptually transparent quantizattcamaav-
erage rate of approximately 16 bits/sinusoid.

R-D optimizationc.f. Sec. 2, is here employed to distribute
sinusoids (bit-allocation) over optimization viewpoiss,of length
1 s, matching a target rate of 25 kbifs/SFor each segment the
algorithm allocates a number of sinusoids in the rahge’5. The
optimization is performed using the sinusoidal modelirgiatition
as input, using a cost of 16 bits/sinusoid.

We employ adistortion criterion ¢(-), based on the model in
[6]. For a particular segment the distortion can be written a

" AW)|F {w(ne(n)} Pdw,

-

5(e(n)) = (12)

whereF{-} denotes the Fourier transfori(w) € {z € R|z >
0} is a perceptual weighting function andn) is the analysis win-
dow ande(n) = §(n) — s(n) is the modeling error. The quantiza-

tion distortion is disregarded in the optimization as th&atition
criterion may be overly sensitive to frequency quantizatio

4.2. Distortion Predictor

The key component of theredictordescribed in Sec. 3 is@MM
for the joint property-distortion pdffé,/\;‘.) (6,p), which is to be
trained off-line. All GMM's employ 16 mixtures, and the trai
ing were conducted using the expectation maximizationriiym
(EM). For GMM training purposed we have extracted a training
set, consisting of 180.000 joint property-distortion westfrom

2In this context coding templates, referred to in Sec. 2,aspond to a
sinusoidal coder using different number of sinusoids.
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Fig. 3: Original and predicted R-D curves for one segment
(35 ms) in the excerpt “glockenspiel”.

the SQAM database (up-sampled to 48 kHz). All test excengs a
disjoint from the training set.

We have chosen to work with a 4-dimensiopadperty vector
consisting of: 1) The loudnesswhich is calculate as the log of the
average energy of the segme®}, The spectral centroidvhich is
calculated as mean of the spectrum with respect to frequéjcy
Spectral bandwidthwhich is calculated as the second moment of
the spectrum with respect to frequendy, Spectral flatnessvhich
is calculated as the ratio of the geometric mean and thenaetib
of the power spectrum. We do not claim to have chosen the best
property for the task at hand, rather we have chosen to rely on
simple (low-complexity) standard audio properties, usedudio
classification [8].

5. EXPERIMENTAL RESULTS

We have tested the proposed open loop R-D optimizationhfer t
purpose of R-D optimized bit-allocation (distribution @figsoids)
over optimization viewports$, c.f. Sec. 2. In the experiments we
have exchanged original R-D pairs, c.f. Eq. (6), with prestc
R-D pairs. For our particular setup, this means that we have e
changed 86 original R-D pairs, below referred to as a R-Deurv
with predicted ones for each segment, as visualized in FiBr&
dicted distortion values are only used in the optimizatioeaning
that presented distortion values are based on original Rizes.
For comparison purposes we have included the performanae of
coder with a uniform sinusoidal distribution, i.e. the samenber

of sinusoids per segment.

In Table 1 we compare the performance of the systems, by
averaging the distortion in Eq. (12) over a number of differe
excerpts. The results show that the proposed system ooitpesf
a uniform sinusoidal distribution for all the excerpts. Maily,
there is a loss compared to the reference system. The gains of
optimized systems compared to a system using a fixed number of
sinusoids vary. The achievable gain of R-D optimized coding
large for “glockenspiel”. The non-stationary charactethsf sig-
nal, results in an R-D optimized bit distribution which is feom
uniform, c.f. Fig. 4. The resultis a far too high distortidroasets
for the uniform case, c.f. Fig. 5. For the “jazz” excerpt thdR
optimized distribution of sinusoids is not far from uniformnd
thus a uniform distribution can compete with the RD optirdize
c.f. Table 1. It should be mentioned that the poor perforradoc
the proposed system on the “glockenspiel” excerpt, a 50 % los
can be traced back to the R-D optimization procedure. Dubdo t
non-convexity of predicted RD-curves, c.f. Fig. 3, the opta-
tion fails in selecting the correct operating point. By sienpost
processing of predicted R-D curves, smoothing and forcomg ¢
vexity, the loss can easily be reduced to around 20 %.

An alternative application is up-front coder selectiondach
optimization viewportsS, i.e. selection of the coder that minimizes
the distortion for the current set of segmerss,For this purpose



excerpt E[0ore] AEl[dpre] | AE[0uni]
glockenspiel | 6.55 - 10° 50 % 103 %
german speech 2.42 - 107 3.8% 9.9%
castanets | 2.68-10* 27% 7.6%
harpsichord | 9.63 - 10° 7.6 % 18 %
jazz 2.79 - 10* 3.2% 4.2 %

Table 1: Average segment distortioR}[do.¢|, for various

excerpts. AE[dsys] = %@Tﬁ"g] represents the in-
crease in average distortion compared to an R-D optimized
system based on original R-D curves. Here shown for a
system using predicted R-D curves(pre), and for a system

using uniform bit allocation over the segments (uni).
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Fig. 4. Bit allocation for the first 200 segments of the ex-
cerpt “Glockenspiel”. The solid line represents an R-D
optimized system based on original R-D curves (org), the
dashed line represents an R-D optimized system based on
predicted R-D curves (pre), and the dotted line represent a
system with uniform bit allocation (uni). The periodically
changing shaded and white fields represents optimization
viewports.

viewport R-D curves are useful. Viewport R-D curves are el
by sweeping ovei*, c.f. Eq. (4). In Fig. 6 R-D curves for the
first viewport in the “glockenspiel” excerpt are shown. Tlodids
line represents the viewport R-D curve based on origindbdis
tion values, the dashed line represents the predicted vidRD
curve and the dotted line represent the R-D curve for a sidako
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Fig. 5. Distortion distribution for 200 segments of the ex-
cerpt “Glockenspiel”. The solid line represents an R-D
optimized system based on original R-D curves (org), the
dashed line represents an R-D optimized system based on
predicted R-D curves (pre), and the dotted line represent a
system with uniform bit allocation (uni). The periodically
changing shaded and white fields represents optimization
viewports.
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Fig. 6: Viewport R-D curves for the first optimization
viewport (1 s) in the excerpt “glockenspiel”. The solid
line represents an R-D optimized system based on original
R-D curves (org), the dashed line represents an R-D opti-
mized system based on predicted R-D curves (pre), and the
dotted line represent a system with uniform bit allocation
(uni).

with a uniform sinusoidal distribution. It should be notdwht we

lose compared to an R-D optimized system based on the true R-D
curves. This loss can be decreased if our rather raw systam is
ther optimized, meaning a better choice of property veetod a

set of training data better matching the expected audictinpu

coder employing a fixed number of sinusoids per segment. Com-
paring the solid and the dotted curve indicate that we sheellect

the R-D optimized system instead of the fixed system for &dlsa  [1]
on this viewport. We can also note that the choice would be the
same if we based our decision on the predicted curve, theedash
line, instead of the original. This is obviously a dummy sétm, [2]
as an optimized system always outperforms a fixed systenif but

the dotted curve would have represented for example a wamefo [3]
coder, such a selection can be of interest. Note that theeddste
represents a prediction of the performance of the R-D opé#rhi
system (solid line), and it can therefor indicate a perfaroeabet- [4]
ter than the performance of the actual system

6. DISCUSSION [5]

In this paper we have studied complexity reduced R-D optuhiz
coding, where R-D curves are exchanged for predicted onles. T [g]
proposed framework was applied in a sinusoidal coding abonte

for the purpose of distributing sinusoids over sets of aistig-

ments. The results show that the proposed framework wanks, i [7]
the sense that the performance is improved compared to ensyst

SHere all figures are based on predicted distortion valuesppssed to 8]
above, where predicted distortion values only are usedh&optimization,
and the results are based on original distortion values.
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