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In mobile telecommunications the transmission speed is currently very limited. Advanced

coding methods are used to pack transmitted information into a smaller memory space. The

coding of audio signals has developed a lot in the past years, and one method enabling better

coding efficiency has been bandwidth extension.

In this thesis, the current bandwidth extension methods are studied, and analysis is made to find

out if the methods could be improved. Two new methods have been developed by the author.

A method based on modified discrete cosine transform (MDCT) has been used to examine how

different parameters affect the result of bandwidth extension. The second method uses linear

prediction (LPC) in modeling the properties of audio signals.

The new methods were compared against each other and one previous bandwidth extension

method in listening tests. The results of the tests were that the new methods can be used to

improve coding efficiency in high-quality audio coding.

Keywords: audio coding, bandwidth extension, spectral band replication, acoustic signal analy-

sis, acoustic signal processing
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Langattoman viestinnän siirtonopeudet ovat tällä hetkellä varsin rajalliset. Kehittyneiden koo-

dausmenetelmien avulla siirrettävä tieto saadaan pakattua pienempään muistiin. Äänisignaalien

pakkaaminen on edistynyt paljon kuluneina vuosina, ja yksi tämän mahdollistanut menetelmä

on ollut kaistanlaajennus.

Tässä diplomityössä tutkitaan nykyisiä kaistanlaajennusmenetelmiä. Menetelmiä analysoidaan

tavoitteena löytää keinoja niiden parantamiseen. Diplomityön tekijä on kehittänyt kaksi uutta

menetelmää. Modifioituun diskreettiin kosinimuunnokseen (MDCT) perustuvaa menetelmää

on käytetty selvittämään kuinka eri parametrit vaikuttavat kaistanlaajennuksen lopputulokseen.

Toinen menetelmä käyttää lineaarista ennustusta (LPC) äänisignaalin ominaisuuksien mallin-

tamiseen.

Uusia menetelmiä vertailtiin toisiinsa ja yhteen olemassaolevaan menetelmään kuuntelutes-

teissä. Testien tuloksina todettiin, että uusia menetelmiä voidaan käyttää pakkaustehokkuuden

parantamiseen korkealaatuisessa audiokoodauksessa.

Avainsanat: audiokoodaus, äänenpakkaus, kaistanlaajennus, äänenkäsittely, äänianalyysi
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Chapter 1

Introduction

Coding in the context of this thesis means packing information into a smaller memory space.

How much the space needed by the information is reduced is one of the most important

aspects in coding. Other points of concern include for example the processing power and

memory required by the coding. As the technology advances coding can be done more

efficiently.

With powerful computers and broadband Internet connections the importance of cod-

ing efficiency has somewhat diminished, as there is not as much need for reduction in bits

required by information, and even computationally heavy coding algorithms can be per-

formed. However, there are some situations where development is still useful. The quality

of video distributed through networks is very dependent on the coding used. Usually larger

file size provides better quality, but takes more time or bandwidth to be transmitted. Also

the coding of unpacked video into smaller space takes still quite a lot of time at least with

most home computers, so improvement in that area would also be welcome.

One other area where coding efficiency is currently important is mobile applications. The

coding algorithms must be fairly simple because mobile processors are relatively not very

powerful, and less processing leads to lesser use of battery. In addition the wireless trans-

mission speed and storage capacity are currently limited. And as for mobile applications,

where it usually is cheaper to transmit less information than more, packing the data into

small space with efficient methods is beneficial.

Overview of the thesis

This thesis concentrates on developing new methods to improve coding in high-quality

audio applications. In chapter2 background of perceptual audio coding is covered, and one

specific approach to the coding, bandwidth extension is presented. Chapter3 introduces two

new methods of bandwidth extension, and how they are implemented in a way that they can

1



CHAPTER 1. INTRODUCTION 2

be compared with each other and existing bandwidth extension methods. The comparison

is done with listening tests, which are described and their results presented in chapter4.

The new methods and test results are discussed in chapter5, and finally conclusions are

made and future work is planned in chapter6.



Chapter 2

Perceptual audio coding

In order to give the reader some background information on the work done in this thesis,

this chapter first briefly describes some parts of the history of audio coding, and then one

specific way to improve the coding, bandwidth extension, is introduced. Some technical

terms needed in this thesis are also explained.

2.1 MPEG-1 Audio

In November 1992 Moving Picture Experts Group (MPEG) finalized the international stan-

dard ISO/IEC 11172 “Coding of Moving Pictures and Associated Audio for Digital Storage

Media at up to about 1.5 Mbit/s” [5]. It consists of three parts: system, video and audio.

The standard is also known as the MPEG-1 standard.

One part of the standard, MPEG-1 Audio, deals with audio bitrate reduction techniques.

It includes three different levels of coding capabilities, Layers I, II and III, of which the

Layer III is the most widely known audio compression technique, “mp3”.

MPEG-1 Audio bases its audio compression mainly on the properties of the human hear-

ing. The human hearing has a feature that a high-amplitude tone at some frequency may

“mask” lower amplitude tones with frequencies close to it, so that the lower tones can’t

be heard. This is called the masking phenomenon [29]. The MPEG-1 Audio uses this

phenomenon as one of the ways how to reduce bitrate.

In an MPEG-1 Audio encoder the input signal is converted to discrete frequency domain.

This presentation of the signal is then analyzed, and frequencies where higher amplitudes

are masking lower levels of the signal are noted. This information is then used in determin-

ing how precisely different parts of the frequency domain are to be quantized — masked

regions do not need as good precision as others, as they are not heard as accurately. There-

fore less bits can be used in quantizing the masked parts, as the noise caused by more coarse

3



CHAPTER 2. PERCEPTUAL AUDIO CODING 4

quantization is not much of a problem. In addition to the masking, MPEG-1 Audio uses

several other techniques to reduce the bitrate, such as Huffman coding, these are described

more thoroughly for example in [5].

2.2 Improvements after MPEG-1

The MPEG standardization body has continued its work to develop new audio and video

coding standards. In 1994 two new standards were defined, MPEG-2 BC (backward com-

patible) and MPEG-2 LSF (lower sampling frequencies) [4]. The MPEG-2 BC was made

as an backward compatible multichannel extension to the MPEG-1 Audio. The MPEG-2

LSF was introduced to enable audio coding at sampling rates of 16, 22.5 and 24 kHz, as the

MPEG-1 operated at 32, 44.1 and 48 kHz.

In 1994, development for a new, non-backward-compatible (NBC), audio standard was

started. The standard was later named MPEG-2 AAC (advanced audio coding), and it

was finalized in 1997. It was formally an extension to MPEG-2 Audio, but in reality a

completely new coder that offered a 2:1 improvement in bitrate efficiency when compared

to MPEG-1/2 Layer II [10, 14]. However, when compared to the most used coder, MPEG-1

Layer III, the improvement of AAC is not as high [30].

After MPEG-2 AAC, already in 1998, the MPEG-4 General Audio coder (Version 1)

was standardized [10]. AAC was used as the base coder, and some new functionalities,

concerning for example coding at very low bitrates, were introduced to the standard. Other

tools included for example coding natural and synthetic audio objects and composing them

into an “audio scene” [28].

Work on Version 2 of MPEG-4 was already ongoing when Version 1 was completed,

and the amendment of Version 2 was finalized in 1999 [27]. MPEG-4 Version 2 added

again new features to the existing coder, features which were not mature enough at the time

of Version 1’s standardization. These features include error resilience, low-delay audio

coding, small step scalability, parametric audio coding, and environmental spatialization.

More information on these can be found in [28].

Several other audio coders (for example Microsoft’s WMA, RealNetworks’ RealAudio,

Ogg Vorbis) have also been introduced in the past years, but they have not been adapted as

wide international standards as the MPEG-coders.

Current state-of-the-art coders will be presented briefly later in this chapter.
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2.3 Bandwidth extension

2.3.1 Spectral band replication

As MPEG-2 AAC was already coding audio into fairly small space, finding new ways to

achieve even lower bitrates while maintaining quality was increasingly difficult. However,

in 2001 software containing a new approach to audio coding was released. The new ap-

proach was bandwidth extension, and this use of it in the context of audio coding was

named Spectral Band Replication (SBR) by its inventors [7]. The basic idea behind SBR is

shown in figure2.1.

Divide original spectrum
into two parts

Code low frequencies
with selected audio coder

Transpose lower half
to high frequencies

Figure 2.1:How SBR works.

The approach was again based on the properties of the human hearing. The hearing

threshold for high frequencies is higher than for lower frequencies (except very low fre-

quencies), so high frequency tones are not heard as loud as the same amplitude tones at

lower frequencies [29]. Also the frequency resolution of hearing is better on lower frequen-

cies. On higher frequencies two tones must be relatively far from each other (in frequency)

in order to be considered different by the listener.

Another useful feature of many types of audio samples is that the level of the higher

frequencies is usually lower than the level of lower frequencies. And finally, the sound of

many musical instruments is harmonic, which means that some properties of the frequency

spectrum are very similar in lower and higher frequencies. An example frequency spectrum

of a very harmonic sound is shown in figure2.2. The example is from a pitch pipe. The

spectrum is mostly harmonic, but there is some noise between the spectral peaks.

In figure 2.3 there is an example frequency spectrum of a non-harmonic sound. This

sound is from a sample with castanets.

In both figures2.2 and2.3 the spectrum has been calculated from 2048 samples at 32

kHz sampling frequency, so the length of the samples is 64 ms.

In an encoder using SBR only the lower frequencies of the spectrum are coded using

conventional techniques (like MPEG-1 Layer III). Only some specific data is extracted from
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Figure 2.2:Example of a harmonic spectrum.

the higher frequencies. The limiting frequency between the lower and higher frequencies

is often chosen to be at the middle of the audio bandwidth (for example at 8 kHz for 32

kHz sampling frequency), but other limit frequencies can be also used. In a simple case

the data extracted from the higher frequencies is just the shape of the frequency spectrum.

Some other information can be extracted as well, as will be described later. A basic block

diagram of the SBR encoder is shown in figure2.4. In the figure “Core codec” refers to

the basic codec upon which the SBR is applied. “Bitstream multiplex” is a component

where the data from the core codec and SBR part are joined together, so that they can be

transmitted appropriately.

An SBR decoder gets the lower frequencies into its input, along with the additional data.

In the decoder the lower frequencies are transposed to the upper frequencies, and using the

additional data their level is shaped so that the level of the new upper band is similar to the

original upper band. In a case where the signal is very harmonic as in figure2.2the method

will produce a signal very much like the original, as the spectral peaks from the lower band

will replicate the peaks in the original upper band. Also in cases where the original signal
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Figure 2.3:Example of a non-harmonic spectrum.

Control parameter
extraction

Envelope
extraction

Core codec’s encoder

Bitstream
multiplex

Bitstream

Input

Figure 2.4:SBR encoder [7].

is not harmonic the method can work well, as long as the data from the higher frequencies

is detailed enough.

However, in some signals there can be spectral peaks in the upper band, which are not

present at the corresponding location at the lower band that gets transposed to the upper
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band, so the original peak will not be reproduced. Also it can be so that the original lower

band has spectral peaks not present in the original upper band, and transposing those to the

upper band would create incorrect characteristics for the signal, even if the level around the

peak is adjusted to be correct. The former case can be solved by adding sinusoidal peaks

to the upper band near the location of the missing peak. The latter case can be handled

by flattening the area in the generated upper band near the unnecessary peak. In SBR the

addition of sinusoids is called “sine synthesis” and removing them is “inverse filtering” [8].

Both of these methods require some additional data to be transmitted, at least the location

and amplitude of the sinusoidal peaks in the sine synthesis and the area where the flattening

is needed in the inverse filtering. A basic block diagram of the SBR decoder is presented

in figure2.5. In the figure “Bitstream demux” is a “de-multiplex” which works oppositely

to a multiplex, and separates the data for SBR and the core codec from the transmitted

bitstream.

Applying SBR over a normal coder can make it possible to achieve almost equal quality

with a bitrate almost half as low as earlier. This assumption is based on a case where coding

the lower band takes half the amount of bits compared to normal situation, and the SBR part

only needs a few bits. However, in many cases the quality will not be equal, and the normal

coders usually have more bits allocated to the lower band of the sound signal, where most

of the information of the sound often is, and dropping the upper band from normal coding

does not really reduce the bits as much as one might imagine. In any case SBR can be used

to reduce the bitrate somewhat while achieving equal quality, or getting better quality at the

same bitrates. The latter is made possible by having more precision to code the lower band

normally when the upper band needs less bits. Test results for applying SBR over a normal

coder can be found for example from [7], [11] and [31].

SBR applied over “mp3” is called mp3PRO [34]. mp3PRO is backwards compatible

with existing mp3-decoders, which means that the files encoded using mp3PRO can be also

played on an older decoder. However, the older decoder can only play the traditionally

encoded lower band, and the SBR-coded upper band is completely left out, so the sound

quality will be far from optimal.

MPEG-4 AAC with SBR has been named MPEG-4 High Efficiency AAC (HE AAC)

[33]. It is nowadays also called aacPlus [9]. The latest development in the MPEG audio

coder branch is Enhanced aacPlus, which adds parametric stereo functionality to aacPlus

[1]. Enhanced aacPlus is a very efficient audio coder and can be used for example at multi-

media messaging and mobile streaming of audio.
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Figure 2.5:SBR decoder [7].

2.3.2 Other uses of bandwidth extension in audio or speech coding

“Blind” bandwidth extension

SBR is not the only way to perform bandwidth extension for an audio signal. A different

method has been introduced for example in [22]. The method is fundamentally different

from SBR in the sense that the decoder does not require any information known from the
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upper band of the original signal. This means that the method does not even need anything

specific done in the encoder, and can be applied to any signal. A block diagram for the

method is shown in figure2.6.

FIL1 NLD FIL2

DELAY
in out

G

Figure 2.6:Another method for high-frequency bandwidth extension [22].

In the diagramFIL1 is a bandpass filter picking the lower frequencies from the input

audio signal. As the method assumes that the higher frequencies should be missing from

the signal, the filter removes any possible unwanted material from the upper band.NLD is

a non-linear device, which performs most of the bandwidth extension in this method. The

non-linear device can be for example a full-wave rectifier, which is a component that outputs

the absolute value of the input signal, usually causing non-linearities for signals that have

both positive and negative values. The non-linearities generally mean unwanted frequency

components around the original signal. Some of these components should become created

to the missing upper band, and as they originate from the original signal, they can be used

as additional high-frequency components in the method. Another bandpass filterFIL2

is used to pick only the high-frequency components from the signal, removing generated

lower frequency components. Scaling componentG is used to adjust the level of the new

upper band to be suitable for using with the orignal lower band. Finally the upper band

is summed with the original signal, which has been delayed for some small time that the

high-frequency processing components use during processing.

As the method does not know anything of the original upper band, the generated upper

band will be just some random high-frequency components in most cases, so it is not very

suitable for high-quality audio coding. However, the sound may be perceptually pleasant,

and many listeners may find it to be better that just the original lower frequencies. The

method also has low computational complexity, so it does not need much processing power

from the decoder.

The authors of this method have also published a method which can extend bandwidth

for low frequencies as well [2], but in this thesis the aim is to study high-frequency band-

width extension, so the method will not be described here. More low-frequency bandwidth
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extension methods can be also found from [21].

An artificial bandwidth extension (ABE) algorithm

An algorithm called ABE has been first presented in [23], further developed in [20] and

[18].

ABE is meant to be used for speech signals, and it can extend the higher frequencies

without knowledge of the original upper band. However, the method takes advantage from

analyzing the lower band and trying to know what type of phoneme is present in the current

part of speech being processed. The method uses this information to shape the upper band,

which has been generated from the transmitted lower band.

The method is computationally quite simple, and can be applied to any existing speech

decoder, as it does not need any side information from the original signal. However, in

a listening test the test subjects rated non-expanded samples slightly higher than samples

processed with ABE [18], so some more work is needed to make this method more useful.

2.4 Some technical terms explained

The reader is assumed to know the basics of signal processing and related things, but some

more audio coding specific terms will be needed to understand the thesis. The most impor-

tant ones are briefly explained next.

Discrete frequency domain

As bandwidth extension mostly works with the frequency information of a signal, working

in time domain is not suitable for the methods. Therefore the time domain signal is often

transformed into another domain, one of which is the discrete frequency domain. The

transform to this domain is usually made with Fourier transform, especially with its discrete

version (DFT). The transform is defined as follows [12]:

X(k) =
N−1∑

n=0

x(n)e−j2πkn/N for 0 ≤ k < N − 1. (2.1)

The transform is defined for finite length sequences (N ). The inverse transform goes as

follows [12]:

x(n) =
1
N

N−1∑

k=0

X(k)ej2πkn/N for 0 ≤ k < N − 1. (2.2)
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For transforming the time domain signals into the discrete frequency domain there are

very efficient computational algorithms called the fast Fourier transform (FFT), and its

inverse, IFFT. Such algorithms are described for example in [26].

MDCT

Modified discrete cosine transform (MDCT) is in this work used to transform sound sig-

nals from time domain to a domain better suitable for bandwidth extension, here named as

the MDCT-domain. The MDCT-domain is a frequency presentation of a signal, as is the

discrete frequency domain, and is ofter used in audio coding. The transform is defined as

follows [13]:

Xi,k = 2 ·
N−1∑

n=0

zi,n cos
(

2π

N
(n + n0)

(
k +

1
2

))
for 0 ≤ k < N/2, (2.3)

where:

Xi,k = MDCT spectral coefficient

zi,n = windowed time domain input sequence

n = sample index

k = spectral coefficient index

i = block index

N = window length of the one transform window

n0 = (N/2 + 1) /2.

To transform the signal from MDCT-domain back to the time domain, an inverse trans-

form, IMDCT, is needed. It is defined as follows [13]:

xi,n =
2
N

N
2
−1∑

k=0

Xi,k cos
(

2π

N
(n + n0)

(
k +

1
2

))
for 0 ≤ n < N, (2.4)

where:

Xi,k = MDCT spectral coefficient

n = sample index

i = window index

k = spectral coefficient index

N = window length of the one transform window

n0 = (N/2 + 1) /2
xi,n = time domain signal values.
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“Normal” discrete cosine transform (DCT) is often used in signal compression, and not

only for audio signals [26, 27]. Advantages of MDCT in audio coding are presented for

example in [32].

Linear prediction

Linear prediction is a way to model spectral characteristics of a signal. Linear prediction

itself means predicting the next value of a signal from the immediately preceding values,

by multiplying them with a specific prediction coefficients. These coefficients can be cal-

culated by various methods, so that the error in the prediction is as small as possible [24].

If the prediction coefficients are calculated for a signal or a signal frame, they can be

also used to generate a filter whose impulse response models the spectral envelope of the

signal. This can be useful in bandwidth extension, where such information of a signal can

be highly valued. An example LPC envelope calculated for a signal can be found in figure

2.7. The signal frame in the example is from a speech signal. In the next chapter a BWE

method using linear prediction will be described, and in that method the level of the spectral

envelope is adjusted closer to the mean level of the signal, to give needed information from

the mean level of the signal.

Linear prediction is widely used in speech processing, as described for example in [6].

Line spectral frequencies

Line spectral frequencies (LSFs) are linear prediction coefficients converted into another

form. Usually the coefficients are statistically concentrated around zero, being both positive

and negative, and not having a lower or upper limit. This is not optimal situation when

considering the quantization of the coefficients. Using calculations presented for example

in [3], the coefficients can be transposed to range between0 andπ, which is much more

efficient to quantize.

Transient detection

In sound signal analysis there is often need for two things. The frequency resolution in

the analysis is wanted to be as precise as possible, which is achieved by analysing long

segments of the signal. Also the time resolution is important in the analysis, which in

contrast demands short parts of signal, so both of these requirements may not be possible

at the same time.

In the BWE methods described in the next chapter the analysis is mainly done on frames

with 2048 samples. However, this does not give enough time resolution for all situations,

so transient detection is used to find such cases.
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Figure 2.7:Example LPC envelope.

The transients are short sharp variations of sound, and they require slightly different

processing than other parts of the sound signal. For detecting the transients, the input signal

is high-pass filtered. If the energy of the high-pass signal changes significantly from one

window to another, it is concluded that a transient has occurred. The information is used to

decide what length and type of windows and frames should be used for the signal.

In figure 2.8, the top figure is an example of a transient occuring during a signal (a

castanet hit), and at the bottom is a fairly stationary signal (vowel /i/ from a speech signal),

which can be fairly well analysed using long frames.
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Figure 2.8:Example of a transient and a mainly stationary signal, in time domain.



Chapter 3

New bandwidth extension methods

The objective in the work upon which this thesis is based on was to study current band-

width extension methods, try to find out if they could be done better, and also create new

methods if ideas for those would come up. As several different methods were expected to

be tested, a general framework for processing the methods was created first. All methods

were processed similarly, only the part where bandwidth was extended was different for

the methods. In this chapter the general processing will be described first, then the two

different extension methods developed by the author, the modified discrete cosine trans-

form –based (MDCT) method and the linear predictive coding –based (LPC) method. In

the MDCT-based method, the input signal is transformed to the MDCT domain, the signal’s

upper frequency band is divided into subbands, and their energies are calculated and after-

wards used to generate the synthesized upper band. In the LPC-based method the shape

of the upper band is calculated and transferred as LPC-coefficients, which are then used to

generate the new upper band.

3.1 General processing

This section describes the general processing part of the developed bandwidth extension

framework.

3.1.1 Encoder

A block diagram for the general processing is shown in figure3.1.

16
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Figure 3.1:General processing in the encoder.

BWE limit frequencies other than middle of the audio bandwidth

The methods presented in this chapter always work so that the limit frequency where the

bandwidth extension begins is in the middle of the audio bandwidth. Sometimes it might be

desired that the limit frequency is somewhere else. The methods can be made to work with

higher limit frequencies by upsampling the input signal to a sampling frequency for which

the limit frequency is now in the middle of the audio bandwidth. Doing this the methods

work internally at a higher sampling rate than what the original rate was. The procedure is
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reversed after decoding by downsampling back into the original sampling rate.

Transient detection and frame division

In audio coding the input signal is usually first divided into frames before it is studied and

processed. The frame division and windowing used here are the same as in MPEG-4 Audio

[13], but some parts have been simplified a bit.

However, before frame division transient detection is done for the input signal. The de-

tection gives information about the location of the transients in the signal, and is briefly

described in section2.4. After the detection, the input signal is divided into 50% overlap-

ping frames with length of 2048 samples.

Lower band signal to the decoder and comparison signal

Before continuing with the frames, a new signal is generated by removing the upper band

frequency information from the input signal. This is done by first downsampling the input

signal by a factor of 2, and then upsampling it by the same factor. Aliasing cancellation

filters are used in both resamplings. The result from this processing is a signal with the

original sampling frequency, but with just the lower frequencies.

The new signal also divided into 50% overlapping frames. It is also windowed and

transformed into the MDCT-domain, using equation2.3. Reason for generating the signal

is that the decoder needs a signal which has only the lower band frequencies. The modified

signal resembles a signal which in real situation would be input to the decoder.

The signal can also be used in the encoder, if some specific methods are used in the

processing. These can include performing the bandwidth extension already in the encoder,

and comparing the acquired signal with the original, and calculating some parameters based

on the result.

Windowing

The frames are next windowed. The windows used are sinusoidal windows [13]. The

window lengthN can be 2048 or 256. Longer windows are used for normal frames, and

shorter windows for frames which contain transients. There are also specific windows for

transitions from normal windows to short windows and back. The windows are defined as

follows:

WSIN_LEFT,N (n) = sin
(

π

N

(
n +

1
2

))
for 0 ≤ n <

N

2
(3.1)
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WSIN_RIGHT,N (n) = sin
(

π

N

(
n +

1
2

))
for

N

2
≤ n < N. (3.2)

A 2048 samples long window for a normal frame which is preceded and followed by a

frame of same type, is defined as follows:

W (n) =

{
WSIN_LEFT,2048(n), for 0 ≤ n < 1024
WSIN_RIGHT,2048(n), for 1024 ≤ n < 2048

. (3.3)

Time domain values after windowing (zi,n) for all 2048 samples long window types can

be expressed as:

zi,n = W (n) · x′i,n. (3.4)

A 2048 samples long window which is preceded by a normal frame and followed by a

transient frame, is defined as follows:

W (n) =





WSIN_LEFT,2048(n), for 0 ≤ n < 1024
1.0, for 1024 ≤ n < 1472
WSIN_RIGHT,256(n), for 1472 ≤ n < 1600
0.0, for 1600 ≤ n < 2048

. (3.5)

A 2048 samples long window which is preceded by a transient frame and followed by a

normal frame, is defined as follows:

W (n) =





0.0, for 0 ≤ n < 448
WSIN_LEFT,256(n), for 448 ≤ n < 576
1.0, for 576 ≤ n < 1024
WSIN_RIGHT,2048(n), for 1024 ≤ n < 2048

. (3.6)

Finally, the frames containing transients are windowed in the following fashion:

W (n) =

{
WSIN_LEFT,256(n), for 0 ≤ n < 128
WSIN_RIGHT,256(n), for 128 ≤ n < 256

. (3.7)

A transient frame contains 2048 samples as the other frames do. However, the transient

frame is processed quite differently. The middle part of the 2048 samples are divided into

eight overlapping segments, and windowed as follows:
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zi,n =





x′i,n+448 ·W (n), for 0 ≤ n < 256
x′i,n+576 ·W (n− 256), for 256 ≤ n < 512
x′i,n+704 ·W (n− 512), for 512 ≤ n < 768
x′i,n+832 ·W (n− 768), for 768 ≤ n < 1024
x′i,n+960 ·W (n− 1024), for 1024 ≤ n < 1280
x′i,n+1088 ·W (n− 1280), for 1280 ≤ n < 1536
x′i,n+1216 ·W (n− 1536), for 1536 ≤ n < 1792
x′i,n+1344 ·W (n− 1792), for 1792 ≤ n < 2048

. (3.8)

After windowing, the eight short segments are distributed evenly on the 2048 samples

long frame, so that they no longer overlap. This enables the BWE encoding function to

easily process each of the short frames.

An example sequence of frames and corresponding windows is presented in figure3.2.

From left to right first is a normal frame, then a transition frame from normal frames to short

frames, eight short frames, transition frame back to normal frames, and two more normal

frames. The 50% overlap of the frames is also seen in the figure.

0 1000 2000 3000 4000 5000 6000 7000
0

0.2

0.4

0.6

0.8

1

Figure 3.2:Example window sequence.

After windowing, the frames are passed to the specific BWE encoder part.

3.1.2 Decoder

After being processed in the BWE decoder, the frames still have to be treated so that they

form a sound signal as the original input signal was. A block diagram for the general

processing of the decoder is shown in figure3.3.

Windowing

The windowing is again similar as in [13]. For long frames of the 3 different situations

the same windows are used as in previous section (3.1.1). Also the time domain values are
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Figure 3.3:General processing in the decoder.

calculated with equation3.4.

For transient frames the windowing in the decoder is not as straightforward. The BWE

part of the decoder outputs the short frames as they were in the input, non-overlapping. The

general processing in the decoder requires the short frames to be again overlapping in the

middle part of the 2048 samples long frame. The short frames are windowed individually

with the same windows as in the previous section, and overlap-and-added as follows:

zi,n =





0, for 0 ≤ n < 448
xi,n−448, for 448 ≤ n < 576
xi,n−448 + xi,n−320, for 576 ≤ n < 704
xi,n−320 + xi,n−192, for 704 ≤ n < 832
xi,n−192 + xi,n−64, for 832 ≤ n < 960
xi,n−64 + xi,n+64, for 960 ≤ n < 1088
xi,n+64 + xi,n+192, for 1088 ≤ n < 1216
xi,n+192 + xi,n+320, for 1216 ≤ n < 1344
xi,n+320 + xi,n+448, for 1344 ≤ n < 1472
xi,n+448, for 1472 ≤ n < 1600
0, for 1600 ≤ n < 2048

. (3.9)

So in the overlap-and-add the second half of a short frame is added with the first half of
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the next short frame (as they overlap each other), for all short frames except the first half

of the first short frame and the second half of the last short frame. The modified frames are

placed around the middle of the 2048 samples long frame.

Reconstruction of the frames

Now the decoded signal is in overlapping frames, quite like in figure3.2. To get a usable

continuous sound signal, the frames need to be overlap-and-added. As described in [13],

the operation goes as follows:

outi,n = zi,n + zi−1,n+N
2

for 0 ≤ n <
N

2
, N = 2048. (3.10)

As the overlap-and-add used for the eigth short frames, equation3.10sums the first half

of a frame with the second half of the next frame. The result from the output is a completely

processed bandwidth extended audio signal.

3.2 MDCT-based extension method

The modified discrete cosine transform –based extension method was built to be much like

the model of the SBR, but different types of copying the frequency spectrum and adjusting

the frequency envelope were developed.

3.2.1 Encoder

A block diagram for the MDCT-based extension method’s encoder is shown in figure3.4.

The encoder receives windowed time domain frames one at a time from the general

processing part, and some control parameters (the number of subbands to do energy cal-

culation and the frequency scale being used). In the method’s encoder the frames are first

converted to MDCT-domain with equation2.3. In the MDCT-domain the frequency infor-

mation of the signal is practicably available. The MDCT-domain is also good presentation

of the signal, as it only requires the same amount of discrete spectral values as the original

signal has time domain values, whereas the Fourier transformed signal would have double

the amount of values, because discrete frequency domain also includes the phase values of

the signal. The upper band of the MDCT information is then divided into subbands.

The subbands can have either uniform width, so that all of them have equal number of

MDCT values, or they can be divided according to the equivalent rectangular bandwidth

(ERB) scale [25]. The ERB scale models the analysis bandwidth of human hearing, which

affects for example the masking phenomenon described in section2.1. In the MDCT-based

method the scale was chosen to see if dividing the subbands according to the scale would
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Figure 3.4:MDCT-based method encoder.

have effect on results of the bandwidth extension. The bandwidth of anERB in Hz on a

center frequencyF in kHz can be calculated with the following equation [25]:

ERB = 24.7(4.37F + 1). (3.11)

Applying equation3.11the borders of the ERBs can be calculated, and the subbands in

the MDCT-domain will be placed accordingly.

If the ERB scale was chosen, the number of subbands is selected according to how many

ERBs the calculation found for the upper band. For example 32 kHz and 44.1 kHz sampling

rates have seven subbands, and 48 kHz has eight. When using uniform width subbands, the

number can be chosen. For example 8, 16 or 32 subbands can be used.

After deciding the subbands, the energiese of the MDCT-valuesm(n) are calculated

separately on each of the subbands as follows:

e =

√√√√
N−1∑

n=0

m(n)2. (3.12)

In equation3.12N is the length of the subband. The subbands start from the middle of

the MDCT-transformed frame, so the border frequency for the BWE is at the center of the

audio band of the original signal.

The output from the MDCT-based method’s encoder is just the energies on the MDCT

subbands.
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3.2.2 Decoder

A block diagram for the MDCT-based extension method’s decoder is shown in figure3.5.

Input frame
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Copying of
the lower band

Energy adjustment
on the subbands

Inverse
MDCT-transform

Output signal
to general processing

Figure 3.5:MDCT-based method decoder.

The decoder receives transmitted signal in MDCT-form without any upper band infor-

mation, subband energies the encoder has calculated, and some control parameters (the

copying type of the extension and the frequency scale being used). First the decoder copies

the lower band to the upper band. This can be done in four different ways, which are shown

in table3.1.

After copying, the upper band is again divided into subbands, same as were used in

encoding the corresponding frame. The energies in the copied upper band are calculated as

in the encoder, using equation3.12. The copied upper band must still be modified so that the

levels on the subbands are same as in the original upper band. This is done by multiplying

every MDCT value with the ratio of the original and copied energies, separately on each of

the subbands:
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Table 3.1:Copying types for the MDCT-based method.
Copying type Description

full The lower band is copied completely

half The upper half of the lower band is copied twice one after another

mirror_full The lower band is copied completely, but mirrored horizontally

mirror_half The upper half of the lower band is copied twice mirrored

madjusted(n) = mcopied(n) · eoriginal

ecopied
for 0 ≤ n < N − 1, (3.13)

whereN is the number of MDCT values on the corresponding subband. Note that when

using uniform width subbandsN is same for every subband, but with the ERBs the width

of the subbands (andN ) changes according to the center frequency of the subband.

After the adjustment, an inverse MDCT is performed for the frames using equation2.4.

Resulting time domain frames are passed to the general processing part of the decoder.

Example figures of signals extended with the MDCT-based method can be found in ap-

pendixA. The figures include the frequency spectrum of the same frame coded with differ-

ent number of subbands and different type of copying. There are also time domain figures of

a transient and a mainly stationary signal, and the frequency spectrum of a situation where

the MDCT-based method has some problems.

3.3 LPC-based extension method

In the linear predictive coding –based method the focus of study was on how well a set of

coefficients could be used to model the frequency envelope of a signal, and then used to

generate a synthesized upper band.

3.3.1 Encoder

A block diagram of the LPC-based method encoder is shown in figure3.6.

The LPC-method’s encoder receives windowed time domain frames one at a time from

the general processing part, and one control parameter, the order of the LPC calculation to

be used. The frames are first high-pass filtered. The filter used is a FIR-filter with the cut-

off frequency at the middle of the frequency scale, and the order of the filter is high enough

to keep the level of the lower frequencies from interfering with the upper band processing.

The filtered signal is next downsampled by a factor of two, to isolate just the upper band of

the signal. The downsampling has caused the frequency spectrum of the upper band to be

mirrored horizontally, so the mirroring is negated by mirroring again, by multiplying every
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Figure 3.6:LPC-based method encoder.

other value of the time domain signal by−1.

Now linear predictor coefficients are calculated from the upper band time domain val-

ues. The coefficients are later transformed into line spectral frequencies (LSF), which is a

efficient form for the coefficients in quantization.

Just the LPC coefficients are not enough to model the desired characteristic of the upper

band. The LPC model models the spectral envelope of the signal, but the average level of

the spectrum is also required in this extension method. Therefore a scaling factor is used to

measure the distance of the envelope from the average level, their shape is mostly similar

but they are at different levels initially. The scaling factor is calculated by synthesizing the

upper band from the predictor coefficients and comparing its average level to the average

level of the original upper band.

The synthesizing of the upper band is done by first calculating the impulse response of a

filter defined by the LPC coefficients. Then the LPC upper band and the original signal are
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transformed to the discrete frequency domain by using FFT. Sum of the discrete frequency

domain values of the original upper band is divided by the sum from the LPC upper band,

and the result is the scaling coefficient.

During the design of the method, it was found out that the scaling coefficient was not ac-

curate enough to set the level of the LPC spectral envelope. It was noticed that with signals

having relatively low levels the scaling produced too low level envelopes. On somewhat

high levels the behaviour was correct. This is fixed by compressing the scaling coefficients,

so that most of the coefficients are amplified, smaller ones more than the larger coefficients.

The compression is done using theµ-law compression:

y =
V ln(1 + µ|x|/V )

ln(1 + µ)
sgn(x), (3.14)

wherex is the input signal value,V is the “maximum” value of compression, taken from the

largest scaling coefficient of the signal being processed,µ is theµ-law parameter, informal

testing has proved that 1.6 is a good value here,sgn(x) is the signum function ofx, andy

is the compressed output value.

The output from the LPC-based method’s encoder is the LPC coefficients in LSF-form,

and the scaling coefficient.

3.3.2 Decoder

A block diagram of the LPC-based method’s decoder is presented in figure3.7.

The decoder receives input frames in MDCT-form, which are first inverse transformed

to time domain using equation2.4. Other inputs to the decoder are the LPC coefficients in

LSF form, and the scaling coefficient.

In the decoding process the lower band again has to be transposed to the upper band.

This can be done for example the same way as in the MDCT-based method, section3.2.2.

However, only themirror_full –type of copying is used in the LPC-based method.

After getting the information also to the higher frequencies, FFT is done for the upper

band.

The LSF values are then converted back to LPC-form. Impulse response of the LPC-filter

is then calculated, as in the method’s encoder. With FFT this is transformed to the discrete

frequency domain, and the level of the resulting synthesized frequency envelope is adjusted

to the correct level by multiplying the spectral values with the scaling coefficient.

To shape the current upper band to be similar as the original, a moving average is first

calculated of the copied upper band. The moving average is calculated fromN/64 spectral

values at a time, whereN is the length of the frame being processed. Result from this

calculation is a smoothed version of the upper band, which is used in the upper band level
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Figure 3.7:LPC-based method decoder.

adjustment asscopied. The level adjustment goes similarly to as in the MDCT-based method:

fadjusted(n) = fcopied(n) · sLPC(n)
scopied(n)

for 0 ≤ n < N − 1, (3.15)

wheresLPC(n) are the synthesized frequency envelope values,fcopied(n) the copied upper

band values andfadjusted(n) the final extended upper band spectral values.N is the total

number of spectral values on the upper band.

As the extension process is done in discrete frequency domain, an inverse fourier trans-

form (IFFT) is needed to get the signal back to the time domain. Resulting frame is then
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passed to the general processing part of the decoder.

Example figures of signals where the LPC-based method is used in the extension can be

found in appendixA. In the figures there is the frequency spectrum of the same frame when

7 and 20 coefficients are used for the LPC. Also included is a problematic situation for the

LPC-based method.



Chapter 4

Listening tests

In order to be able to reliably evaluate the sound quality produced by the extension meth-

ods, two listening tests were held by Nokia Research Center at Tampere. The first test

was performed with non-quantized bandwidth extension parameters, and the purpose of the

test was to find out how the copying parameters would affect the result of extension. For

the second test the best parameters were chosen, quantization schemes were optimized for

these, and the test was done with quantized parameter values. The author did not conduct

the tests or process the results, but participated in choosing the test samples, test conditions,

and test methods.

4.1 Listening test with non-quantized parameters

4.1.1 Test samples

Samples used in the test were 12 “usual” samples used by MPEG in listening tests. These

items are known to be very critical to audio coding [7, 33]. The samples are listed and

briefly described in table4.1.

The non-vocal –samples were shortened so that their length was between 6–8 seconds.

This was done to make sure that the test would not be too long for the listeners. However,

shortening was done carefully such that the samples remained long enough to give the

listener the possibility to hear the sample’s characteristics. The vocal (“es”) samples were

from 7.5 to 10.5 seconds long. All of the samples were single channel (mono) samples.

4.1.2 Test conditions

The test was done separately with 16 kHz and 32 kHz sampling rates. The higher sampling

rate represents a situation where BWE is used in high-quality audio coding. The lower

30
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Table 4.1:Samples used in listening tests.
Sample name Description

es01 Vocal (Suzanne Vega)

es02 German male speech

es03 English female speech

sc01 Trumpet solo and orchestra

sc02 Classical orchestral music

sc03 Contemporary pop music

si02 Castanets

si03 Pitch pipe

sm01 Bagpipes

sm02 Glockenspiel

sm03 Plucked strings

was chosen because informal test listening had proved that the differencies between the

methods are more audible at lower rates. In addition using two different sampling rates

provides information how BWE methods work with different rates.

10 conditions were selected to both tests. However, some of the methods used in the test

were not developed by the author, so they are left out from the lists and results. Methods

and their parameters used in 16 kHz and 32 kHz test are listed in tables4.2and4.3.

Table 4.2:Conditions in test, 16 kHz.
Condition name Method Parameters

direct No processing

lowpass4 Lowpass filter Cutoff at 4 kHz

lowpass6 Lowpass filter Cutoff at 6 kHz

MDCT8_full MDCT 8 bands, uniform scale, full copy

LPC7 LPC LPC order 7

LPC20 LPC LPC order 20

MDCT8_mirrorfull MDCT 8 bands, uniform scale, mirrored full copy

MDCT32 MDCT 32 bands, uniform scale, full copy

A couple of reference conditions were included in the test with the BWE methods. The

references were direct, where no processing was done for the test sample, and two lowpass

filtered references with different cutoff frequencies.

The 32 kHz sampling rate test also included a special reference, AAC+. AAC+ is an

existing codec, which uses SBR for bandwidth extension, and was included to give some

comparison between it and the new methods described in chapter3. However, as AAC+

is a real codec, all its coefficients are quantized, and the coefficients of the other methods
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Table 4.3:Conditions in test, 32 kHz.
Condition name Method Parameters

direct No processing

lowpass8 Lowpass filter Cutoff at 8 kHz

lowpass12 Lowpass filter Cutoff at 12 kHz

AAC+ AAC+ AAC+ at 64 kbit/s

LPC7 LPC LPC order 7

LPC20 LPC LPC order 20

MDCT8 MDCT 8 bands, uniform scale, mirrored full copy

MDCT32 MDCT 32 bands, uniform scale, mirrored full copy

were not, so complete comparison can not be done in this test. The AAC+ samples were

done at 64 kbit/s bitrate. 64 kbit/s is sufficiently high to keep the non-BWE –related coding

artifacts low enough, so they do not interfere with the characteristics tested here.

For the 32 kHz BWE methods, the limit frequency of the BWE was set to 9 kHz, which

is not in the middle of the 16 kHz audio bandwidth of that sampling rate. The limit was

chosen because AAC+ uses the same limit at 48 kHz sampling rate, from which the AAC+

samples were converted to 32 kHz. To make the comparison between AAC+ and the other

methods fair, the lower band of the AAC+ –coded samples were used in the generation of

the all 32 kHz output samples, which means that all the upper bands were generated using

the AAC+ –coded lower band.

For the 16 kHz methods, the limit frequency was 4 kHz, which is in the middle of the

8 kHz audio band, and the output samples were generated completely with the original

uncoded samples.

Different number of bands and coefficients were chosen to find out if and how much there

is difference in the methods when different parametrization is used for the upper band. In

the MDCT-method there also was the option to choose which part of the lower band was

copied to the upper band. Informal listening had proved that the copying type did not have

much effect, and as mirrored full was at least as good method as the others and also used

in the LPC-based methods, it was chosen to be used in the test. The full copying type was

also included in the 16 kHz test, as there was no AAC+ for that sampling rate. The MDCT

methods using ERBs were not tested, as the number of ERBs and their width was very close

to eight uniform width bands.

No quantization was done for any of the coefficients in the new BWE methods in this

test. The LPC7-condition used order 4 LPC for every short frame, other methods had half

the number of long frame coefficients during short frames. The limiting of the coefficients

during transients was chosen to be done to keep the bitrates of the methods lower, as one
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transient frame contains 8 short frames, and therefore requires 8 times more coefficients

than a normal frame if the number of coefficients per processed frame would be the same.

High bitrates would be acceptable in a synthetic test, but for real coders the bitrates are

required to be low. The lower number of coefficients during transients is possible because

those situations do not need very exact frequency resolution as the time resolution is more

important.

4.1.3 Test procedure

The listening was done according to the paired comparison method [15, 16, 27], and grading

was according to the degradation mean opinion score (DMOS) [19]. The subjects heard

two samples, the first was the original and the second was one of the 10 conditions. There

was no possibility to repeat the samples. As presented in section4.1.1, 12 different audio

samples were used. The subjects listened to either the 16 kHz or the 32 kHz samples, not

both. The test was designed such that its duration was less than 35 minutes. Three different

sets were generated for both sampling rates. 80 sample pairs were included in every set.

Every condition appeared 8 times in one set, and at the end of the set each audio sample had

been played 5–8 times. Because of the limited amount of time, every listener did not listen

to every sample-condition –pair. But the sets were generated so that after all three sets had

been listened, every pair had appeared twice.

The subjects graded the sample pairs with a scale presented in table4.4.

Table 4.4:DMOS grading scale.
Grade Difference between the second sample and the first sample

5 Inaudible

4 Audible, but not annoying

3 Slighly annoying

2 Annoying

1 Very annoying

4.1.4 16 kHz test results

In the 16 kHz test the differences between the original and the coded samples were quite

clear, and so it was not necessary to use expert listeners. In total 22 persons, of which 2

were expert listeners, participated in the test. The main test results and their 95% confidence

intervals are presented in figure4.1.

The sound samples are divided into four groups, each having distinguishable character-

istics. The “es” samples are all vocal samples. The “sc” samples are comprised of complex
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Figure 4.1:16 kHz listening test results.

sounds. The “si” samples are fairly simple sounds from single instrumets. In the “sm”

sounds there also is only one instrument, but the melodies played are more complicated.

Grouped test results can give more information from the performance of the methods, and

for the 16 kHz test, they are shown in table4.5.

Table 4.5:Average results at 16 kHz grouped by sample types. Two best scores are printed

in bold in each column.
Condition es sc si sm Grand total

direct 4.82 4.77 4.71 4.58 4.72

lowpass4 1.98 2.55 2.59 2.64 2.43

lowpass6 3.23 3.79 3.35 3.72 3.52

MDCT8_full 3.32 4.41 3.85 3.45 3.77

LPC7 3.63 3.96 3.69 3.40 3.67

LPC20 3.96 3.63 3.44 3.09 3.53

MDCT8_mirrorfull 3.73 3.98 3.96 3.44 3.78

MDCT32 4.36 4.43 3.61 3.52 3.98

4.1.5 32 kHz test results

It was known in advance that in 32 kHz test it is difficult to hear differences between sam-

ples, and therefore only experienced listeners were used. In total 15 expert listeners partic-
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ipated in the test. The main test results are shown in figure4.2.
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Figure 4.2:32 kHz listening test results.

As with the 16 kHz samples, the grouped test results for the 32 kHz conditions are shown

in table4.6.

Table 4.6:Average results at 32 kHz grouped by sample types. Two best scores are printed

in bold in each column.
Condition es sc si sm Grand total

direct 4.82 4.91 4.81 4.62 4.78

lowpass8 2.43 3.46 2.41 2.50 2.67

lowpass12 4.04 4.19 3.88 4.14 4.06

AAC+ 4.07 4.68 4.22 4.47 4.36

LPC7 4.35 4.04 4.13 3.96 4.13

LPC20 4.50 4.50 4.11 4.03 4.29

MDCT8 4.69 4.69 3.50 3.19 4.05

MDCT32 4.50 4.50 3.46 3.33 3.97
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4.2 Listening test with quantized parameters

From the results of the previous listening test, some BWE methods were chosen to be fur-

ther developed, and quantization for their parameters was implemented. The quantization

methods were not the work of the author, so their operation will not be described here. The

resulting bit consumption will be presented. The test also included some methods not done

by the author, so they are also left out from the results.

The methods selected for quantization are briefly described in table4.7.

Table 4.7:BWE methods for quantization.
Acronym Method Quantized parameters

mdct8 MDCT-based method with 8 sub-

bands, mirrored full copy, uniform

width subbands

One scaling factor for every subband

lpc7 LPC-based method with 7 LPC pa-

rameters

LPC parameters and scaling coefficients

4.2.1 Quantized parameters

The overall bit consumption of the methods used in this test is presented in table4.8. The

estimated average bit rates are given at 16 and 32 kHz sampling rates. The average bit rates

are estimated based on the assumption that 78% of 2048 sample windows consist of one

single window and 22% consist of eight short windows. These estimations are based on the

data used in training the quantizers. The data used in training was the 12 test samples at

16, 32 and 48 kHz sampling rates, and eight short samples of pop music, at 32 and 48 kHz

sampling rates.

Table 4.8:Bit consumptions and average bit rates for the methods.
Bits per 2048 sample windows Average bit rate (kbit/s)

Method Transients Normal 32 kHz 16 kHz

mdct8 112 28 1.45 0.73

lpc7 144 23 1.55 0.78

A more detailed description of the employed quantization methods is given in the fol-

lowing subsections.

Quantization of parameters in the MDCT-based extension method

The energy values of the MDCT-method are not bounded in any way, they are directly

proportional to the level of the original signal’s upper band. However, the energies have a
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tendency to decrease as the frequency of the subband rises, so that the second subband has

lower energy that the first and so on. This may be helpful in quantizing.

In the method there are energy values on 8 subbands to quantize in the long frames, and

on 4 subbands in frames that are considered transients. The energy values are quantized as

vectors of 8 samples in normal frames, and 4 samples in short frames. Bits used per sample

is shown in table4.9.

Table 4.9:Quantization of energy values in the MDCT-based method.
Method name Frame type Vector length Bits/sample

MDCT8
Transient

Normal

4

8

3.5

3.5

Both the 16 and 32 kHz sampling rates use the same quantizers.

Quantization of parameters in the LPC-based extension method

The linear predictor coefficients in the LSF-form are bounded to the range from0 to π, and

they are always in ascending order in the coefficient vector. This makes is possible to quan-

tize them with vector quantization very efficiently. However, the order of the coefficients

must be retained after quantization, otherwise the result from bandwidth extension may be

very erroneous. If the used vector quantization method is not foolproof, correction methods

must be used to ensure correct operation.

During normal frames, the LPC-based method produces 7 linear predictor coefficients.

In transient frames there are 4 coefficients per short frame. Bit usage of the quantizers is

shown in table4.10.

Table 4.10:Quantization of predictor coefficients in the LPC-based method.
Method name Frame type Vector length Bits/sample

LPC7
Transient

Normal

4

7

3

2.3

The LPC-based method also needs one scaling coefficient per frame. These are not

bounded, their value depends on the level of the signal being processed. The scaling coef-

ficients are quantized with a scalar quantizer, table4.11shows the used bits.

Table 4.11:Quantization of scaling coefficients in the LPC-based method.
Method name Frame type Bits/sample

LPC7
Transient

Normal

6

7
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The same quantizers are employed for the both sampling rates in the test, 16 and 32 kHz.

4.2.2 Listening test description

The test for the methods using quantized parameters was made as a multistimulus test with

hidden reference and anchors (MUSHRA, [17, 27]). The MUSHRA test can potentially

provide more reliable results than a DMOS test used in the previous test, but it also requires

more time. In the test the listeners compared multiple conditions of a sample at the same

time, and could repeat the samples. The listeners could also repeat the reference when they

so wanted. The test produces results for the conditions between 0 and 100, with 100 being

same quality as the reference.

Test samples were the same as in the previous test, as presented in section4.1.1. The test

was again done separately for 16 and 32 kHz samples. AAC+ was again used as a reference

method in the 32 kHz test. In both tests the BWE limit frequency was in the middle of the

audio band, at 4 kHz in the 16 kHz test and at 8 kHz in the 32 kHz test. This time that

AAC+ was operated at 32 kHz sampling rate, and its limit frequency was at 8 kHz instead

of the 9 kHz in the previous test. The lower band that the BWE methods used in the 32 kHz

test was the same as in the AAC+ samples, so the synthetic upper bands were also generated

using frequency data comparable with AAC+.

Conditions in the 16 and 32 kHz tests are shown in tables4.12and4.13. The total number

of conditions was eight in the 16 kHz test and nine in the 32 kHz test, so three conditions

have been left out from the descriptions and results.

Table 4.12:Conditions in second test, 16 kHz.
Condition name Description

direct No processing

lowpass4 Lowpass filter, cutoff at 4 kHz

lowpass6 Lowpass filter, cutoff at 6 kHz

mdct8 MDCT-based method with 8 subbands

lpc7 LPC-based method with order 7 coefficients

4.2.3 Test results

In this test there were 12 listeners in the 16 kHz test, and 11 in the 32 kHz test. All of the

listeners were experienced listeners. Main test results are shown in figures4.3and4.4. Test

results grouped as in the previous test can be found from tables4.14and4.15.
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Table 4.13:Conditions in second test, 32 kHz.
Condition name Description

direct No processing

lowpass8 Lowpass filter, cutoff at 8 kHz

lowpass12 Lowpass filter, cutoff at 12 kHz

mdct8 MDCT-based method with 8 subbands

lpc7 LPC-based method with order 7 coefficients

aacplus AAC+ at 64 kbit/s
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Figure 4.3:16 kHz second listening test results.

Table 4.14:Average results from the second test, at 16 kHz grouped by sample types. Two

best scores are printed in bold in each column.
Condition es sc si sm Grand total

direct 98.81 96.50 99.11 97.14 97.89

lowpass6 61.17 63.11 55.39 66.42 61.52

lowpass4 38.08 40.83 32.28 33.56 36.19

mdct8 40.61 59.83 50.44 50.78 50.42

lpc7 48.11 67.42 63.06 54.75 58.33
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Figure 4.4:32 kHz second listening test results.

Table 4.15:Average results from the second test, at 32 kHz grouped by sample types. Two

best scores are printed in bold in each column.
Condition es sc si sm Grand total

direct 95.45 92.67 96.55 94.15 94.70

lowpass12 77.55 83.21 74.15 71.73 76.66

lowpass8 44.27 60.42 37.91 43.03 46.41

mdct8 63.12 68.82 59.33 60.55 62.95

lpc7 67.30 69.76 74.03 69.88 70.24

aacplus 62.48 86.82 75.91 80.94 76.54
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Discussion

In the previous chapters the algorithms behind the new bandwidth extension methods were

presented, as well as the results of the listening tests. This chapter looks into the strengths

and weaknesses of the methods and discusses the test results.

5.1 New bandwidth extension methods

MDCT-based extension method

The MDCT-based extension method is fairly simple both computationally and on theoreti-

cal basis. The idea of copying the lower band of the frequency spectrum and adjusting its

level on several subbands is the same as in spectral band replication [7]. The parameters of

the copying were varied to find out if any of them could be better than others, but informal

test listening did not provide such results, so the mirrored full type of copying and energy

adjustment on eight subbands were chosen for the further development.

LPC-based extension method

The LPC-based extension method is somewhat more complicated than the MDCT-based

method, as the calculations require processing power in the filtering and moving average

computations. The method however can give theoretically more exact spectral informa-

tion on the upper band, as the resulting envelope is continuous, compared to the discrete

subbands of the MDCT-based method and SBR.

At first it was thought that the LPC-based method would provide much lower bitrate than

the MDCT-based method. This assumption was based on the thought that the quantization

of the LSFs is very efficient, but the comparation was made against scalar quantized MDCT-

based method’s energy values. Later is was found out that vector quantization could also

41



CHAPTER 5. DISCUSSION 42

be used on those, and the amount of bits the MDCT-based method needed dropped consid-

erably. The LPC-based method also needs the scaling coefficients during processing, and

quantizing those with scalar quantization is not very efficient, at least not yet.

Common for both methods

Both methods do only spectral level adjustment after the synthetic signal has appeared on

the upper band. In this sense they are inferior to SBR, which can at least add missing

sinusoids or noise to the upper band. Such extra processing could be beneficial for the

methods in some cases, but it would also mean that more data is needed to be transmitted

and the bit consumption of the methods would rise somewhat. This could perhaps move

the new methods away from their probably intended best purpose, bandwidth extension at

low bitrates. The effect of doing the additional processing on quality and bit consumption

should still be studied.

Another issue which may be a weak link for the new methods is the frame selection dur-

ing transients. Currently a very short transient requires two long frames to be converted into

16 short frames. The transient always appears in two frames, as they have the 50% overlap.

The transients require much more bits than normal frames as is shown on table4.8. The

position of the transients could be taken into account more accurately, and the windowing

selection done with the lowest possible amount of short windows. This could also mean

having different length transition windows, but the effect should anyway be looked into.

Third issue which might still need attention is the quantization. The quantization scheme

presented in the previous chapter is only the first version, and could be developed more.

Apparently prediction during quantization could be used, as the coefficients in concurrent

frames are often very similar, if the sound signal is mainly stationary. Also in the quantiza-

tion, the training data used for the quantizers should contain much more different samples

as was used here, to give more general result for the training. The quantization results used

for the second listening test are also a bit questionable, as the training data included all the

test samples, and not really that much more different sound samples.

5.2 Listening test results

Listening test with non-quantized parameters

For the 16 kHz samples, as seen in figure4.1, the confidence intervals of all the tested

methods overlap (except MDCT32 versus LPC20), so statistically the methods should be

considered equal. However, as the average scores for the LPC-based methods are slightly

lower than the scores of MDCT-based methods, the LPC-based methods may be though to
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provide lowest quality at this sampling rate. All the BWE methods rate better than the 4 kHz

low-pass filtered samples and are at least equal with the 6 kHz low-pass filtered versions, so

the bandwidth extension can be considered to work even at this low BWE limit bandwidth.

As for the differences between different versions of the methods, the MDCT-based meth-

od with 32 subbands obtains the highest score in the test, with 8 subbands the result is

slightly lower. For the different type of copying in the MDCT8-methods, the scores are

very even, so it should not matter much how the spectrum is copied to the upper band.

There are some differencies between the sample groups however, full copy getting better

results with the “sc” –type of samples, while mirrored full copy does a higher score with the

“es” samples. For the description of the sample groups, see table4.1and section4.1.4. With

the different LPC-based versions, the less accurately modeled LPC7 gets a slightly higher

average score than the 20-coefficient version, but with the confidence intervals overlapping,

no clear winner can be distinguished.

In the 32 kHz test the average results in figure4.2are again very close and the confidence

intervals overlap for all tested methods. This time, without taking into account the AAC+

score, the highest average is obtained by the LPC20, which has the lowest score in the 16

kHz test. LPC7 comes next, and then the MDCT-based methods. According to the results,

the new methods can produce quality comparable to the existing codec AAC+, but it must

be noted that the parameters of the other methods were not quantized. The best average

scores of the tested methods are also above 4, which is by the test definition considered

“audible, but not annoying (difference)”. However, it should be noted that the scores of the

MDCT-based methods for the “si” and “sm” –type of samples are quite low. And again,

the bandwidth extension is working, as the 8 kHz low-pass filtered samples get clearly the

lowest score.

Listening test with quantized parameters

The results for the quantized 16 kHz test can be found in figure4.3, and they are not espe-

cially good if the quality of the BWE methods is considered. These results are not directly

comparable with the non-quantized results, as the test was a MUSHRA test instead of paired

comparison, but it seems that quantized bandwidth extension for this sampling rate is not

very feasible. From the two BWE methods in test, the LPC-based method obtains a higher

score, and as the confidence intervals of the methods do not overlap, can be considered

better. However, the 6 kHz lowpass filtered samples get a better average score than the ex-

tended methods. Most of the problems for the methods seem to come from the “es” –type

of samples.

32 kHz test results in figure4.4look better, and at least for the LPC-based method, it can

be said that the quantization has not significantly reduced the quality. These results are also
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directly comparable with AAC+. The lower band of the signals is the same, it is used to

generate the upper band, and all coefficients are quantized. AAC+ get the highest average

score, but its confidence intervals overlap with the intervals of the LPC-based method, so

statistically they are equal in quality. The MDCT-based method gets the lowest average

score of the methods, and as both of the new methods require almost the same amount of

bits, the LPC-based method can be considered better of the two. The grouped results do not

vary much for the methods, but AAC+ seems to have a clear advantage in the more complex

and melodical groups “sc” and “sm”.

Common for both tests

If more tests were to be done for the bandwidth extension methods, the selection of the

test samples should probably be done again. The test samples may be critical for audio

coding, but not necessarily for bandwidth extension. Especially in the “sc01” and “sc02”

–samples there is not very much high-frequency information, so the samples could possi-

bly be removed from the test or at least changed. Also the length of the samples could

be considered again. Other MUSHRA tests have included even 31 seconds long samples

[30], using longer samples could give the listener more time to concentrate on the different

characteristics of the samples.
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Conclusions and future work

The aim in this thesis work was to study bandwidth extension in high-quality audio coding,

and develop new methods to perform the extension. The objective was achieved as two

working methods were implemented and tested.

From the methods the MDCT-based one basically just realizes the idea of SBR, but dif-

ferent ways to do the copying of frequency information and spectral envelope adjusting

were tested. Based on the listening test results, conclusions from these are that the larger

number of subbands where the spectral envelope is adjusted does not necessarily lead to

better quality, as the average scores of the different versions of the method are very close.

Also the use of ERBs as subbands is not clearly beneficial, as the number and width of

the subbands would be almost the same as with eight uniform width subbands. The effect

of which part of the spectrum is copied to the upper band was also tested. As informal

listening did not give much difference between the four different copying types, and the

difference between the two types in the 16 kHz sampling rate listening test was also very

small, it can be concluded that the full and mirrored full –types of copying provide results

of equal quality.

The LPC-based method provides a slightly different approach to the extension. The

processing is done in the discrete frequency domain, and the spectral information from

the upper band is saved as a continuous LPC envelope. The method was tested with 7

and 20 LPC coefficients, but according to the first listening test, either of those did not

appear to provide better quality and the other. As the 7 coefficient version requires less bits

in transmission, it can however be considered superior, and was selected to the test with

quantized parameters. In the quantized test the LPC-based method scored better results

than the MDCT-based one, but the confidence intervals have overlap. The conclusion is

that the methods provide at least equal quality at about the same bitrate. The quality of the

LPC-based method is also comparable with AAC+.

45
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Future work

As noted in chapter5, the new methods do not use any additional processing to add missing

sinusoids or noise to the upper band. Such feature could be useful in some situations and

should be tested. However, the functionality might not really be needed in low bitrate

bandwidth extension.

On the other hand the quantization is still only the first version, and could be made better.

Currently especially the scaling coefficients during transients in the LPC-based method may

use too many bits. Also the quantization does not use any prediction between the frames.

More advanced quantization methods could also save some bits. The training data used

in quantization should also be more diverse than it currently has been. Another object of

development could be the transient processing. Less short frames for the transients would

also mean less bits.

The bandwidth extension is a very good way to reduce bitrate for the current audio coders.

For example the mobile applications with limited transmission and storage capacity clearly

benefit from smaller data rate. However, the network speeds have been increasing steadily,

and in the future there might be a time when the limits are not a problem. At that time

the coding will be made differently, but until then bandwidth extension is very useful in

high-quality audio coding.
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Appendix A

Example figures

In this appendix some example figures are presented from the new bandwidth extension

methods. Spectrum figuresA.1 – A.8 show a situation where BWE should be working

well, as a strongly harmonic signal is being extended. From the figures slight differences

can be seen between the different methods and their parameters. In the figures using the

LPC-based method the LPC envelope is shown. In the MDCT-based methods using less

than 32 subbands the borders of the subbands are separated by vertical lines. A red vertical

line in every example denotes the limit frequency where the bandwidth extension starts. The

average levels of the original and processed signals are shown in the figures, as the local

differences of the signals can be quite large, but the average difference is mostly somewhat

small. Here it should be noted that the BWE methods are not trying to replicate the exact

frequency spectrum of the original signal. The average level is a moving average calculated

from 129 points, length of the whole frame in the figures is 2048 samples.

FiguresA.9 andA.10 present examples of BWE in time domain. In the transient exam-

ple there is a quite large difference between the original and processed signal during the

transient. In the tonal example the difference is fairly small for the whole duration of the

frame, but there is some error all the time.

Finally figuresA.11 andA.12 depict a situation where the BWE methods of this thesis

have some difficulties. In the original signal there are spectral peaks in the upper band,

which can not be transposed back in the decoder, as there are no peaks at suitable locations

in the lower band. The LPC-based method can recreate one of the peaks as the LPC en-

velope has a peak there itself, but the LPC of this order is not able to model all the peaks.

The MDCT-based method has similar problems, and in addition it has not diminished a

transposed peak in the lowest subband.
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Figure A.1:Example frame, “sm01”, LPC-based method, 7 coefficients.
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Figure A.2:Example frame, “sm01”, LPC-based method, 20 coefficients.
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Figure A.3:Example frame, “sm01”, MDCT-based method, 32 uniform subbands, mirrored

full copy.
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Figure A.4:Example frame, “sm01”, MDCT-based method, 7 ERB subbands, mirrored full

copy.
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Figure A.5:Example frame, “sm01”, MDCT-based method, 8 uniform subbands, mirrored

full copy.
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Figure A.6:Example frame, “sm01”, MDCT-based method, 8 uniform subbands, full copy.
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Figure A.7:Example frame, “sm01”, MDCT-based method, 8 uniform subbands, half copy.
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Figure A.8:Example frame, “sm01”, MDCT-based method, 8 uniform subbands, mirrored

half copy.
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Figure A.9:Example frame in time domain, “si02”, during a transient.
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Figure A.10:Example frame in time domain, “si01”, tonal situation.
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Figure A.11:Problematic situation, “sm02”, LPC-based method, 7 coefficients.
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Figure A.12: Problematic situation, “sm02”, MDCT-based method, 8 uniform subbands,

mirrored full copy.


