ADVANCED AUDIO CODING ON AN FPGA

By

Ryan Linneman

School of Information Technology and Electrical Engineering,

University of Queensland, Brisbane.

Submitted for the Degree of
Bachelor of Engineering (Honours)
in the division of

Computer Systems Engineering

October 2002

il

Cromwell College
Walcott St.
St. Lucia QLD 4067

16 October 2002

Professor Simon Kaplan
Head of School of Information Technology and Electrical Engineering
University of Queensland

St. Lucia, QLD 4072

Dear Professor Kaplan,

In accordance with the requirements of the Degree of Bachelor of Engineering
(Honours) in the division of Computer Systems Engineering, I present the following
thesis entitled “Advanced Audio Coding on an FPGA”. This work was performed under
the supervision of Dr Peter Sutton.

I declare that the work in this thesis is written with honesty and integrity, and is a true
report of the work I have undertaken. The work submitted is my own, except as
acknowledged, and has not previously been submitted for a degree at The University of

Queensland or any other institution.

Yours sincerely,

Ryan Linneman

il

v

Abstract

This thesis presents an investigation and partial implementation of the MPEG-2 AAC
decoding algorithm on a Field Programmable Gate Array (FPGA). Advanced Audio
Coding (AAC) is a state-of-the-art natural audio coding algorithm that is superior to
MP3 and is capable of producing better than CD quality audio. The algorithm
incorporates a number of decoding tools, most of which involve heavily repetitive

computations.

An official AAC conformance test bitstream was selected for decoding, and five of the
ten decoding tools are required to decode the bitstream. An in-depth analysis and partial
decoding of the bitstream was undertaken and the results provide the theoretical

foundation for the thesis.

The hardware environment for the thesis was a Xess XSV Development board housing
a Virtex XCV300 FPGA. The FPGA’s capacity to handle parallel processing and to
perform well with repetitive tasks suited it well to the AAC decoding algorithm.

An full implementation of the quantisation and scalefactor tools using fixed-point
arithmetic was written in VHDL and a partial implementation of the bitstream
demultiplexer was also written. The quantisation and scalefactor tools were synthesised
and implemented with Xilinx Foundation and when executed on the FPGA, showed

+1% accuracy compared to a floating-point software implementation.

Recommendations for future work and development for the MPEG-2 AAC algorithm on

an FPGA are made also.

Vi

Acknowledgements

This thesis could not have been completed without the guidance and encouragement of

many people. I would like to particularly acknowledge those below.

Dr Peter Sutton for his supervision and guidance throughout the project and his

commitment to meeting with me each week to encourage me and to offer me feedback.

Simon Leung, for his help with the VHDL implementation and taking the time to

respond to my bothersome emails.

My Mum and Dad for their continual encouragement and their wonderful parenting

over 21 years to put me in a place to write this thesis.

My friends at Cromwell, especially Mel Stuart, for sharing the load.

vii

viii

Contents

ADSTITACT ceeeeereceeeeeeeeeennnseceeeereesessssscecessessssssssssssesssnne \'%
Acknowledgements vii
COMLEINLES ..eeeeeeeeeeennnecceeeeeeeeeesessscccecsessssssssssssssscsssssssssssssssesssssssssssssssssssssssssssssssssasssssssssssssse ix
LSt Of FIUIES couuveriiiiirnniicsisnriecssssnnicssssansecsssssssesssssssssssssssssssssssssassssssssssssssssssssssssssssssnans xii
LLIST Of TADIES cuueeeeeeeeeeeeennnececeeeeeeeeeeeeseecceceeeesssssssescccsesssssssssssssssesssssssssssssssessssssssnssesssssas xiii
1 INTRODUCTION 1
1.1 THE INTERNET AUDIO MARKETuuvvviiiiieiieiiiirreeeeeeeeeeeeinrreeeeeeeeeenisrsreeseseeeennns 1
1.2 THE AAC STANDARD ISO/IEC 138187 .o 2
1.3 OBJECTIVES AND CONTRIBUTIONccetiiieiiiiiitirreeeeeeeeeeeninrreeeseeeeeeniinsnreeeeseeeennnns 4
1.4 OVERVIEW OF REMAINING CHAPTERS.....ccoiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e e e e ee e 5

2 REVIEW OF PREVIOUS WORK ...eeeeeeeececrrssssneeeeeecccsssssssssesessesssssossasssssascns 6
2.1 MP3 FPGA SOLUTIONScevtiiiiiieiecireteeeeeeeeeeeitireeeeeeeeeeseetnreeeeeseeeensnssseseseseeenns 6
2.2 LICENSED AAC DECODERScooiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee 7
221 Texas INSTFUMCIILS.........cccccoooiieeieeee it 7
22,2 PFUIFICEION ...t 7
2203 U TUS ottt ettt ettt et eaanaaeaane 7
224 MiICPONAS GIBDH ... 8
2.2.5 ARM MOVE™ Technology Audio Components..................oooeoeeeveeeeevne... 8
2.2.6 Comparison and CONCIUSION................ccc.eevueeeiieeeiiieeiieeeiie e 8

2.3 RESEARCH PUBLICATIONS AND IMPLEMENTATIONScccevvveieieeeieeeeeeeeeeeeeeeeeeee, 8
24 COMPARISON OF DSP WITHFPGA ..., 9
2.5 SOFTWARE IMPLEMENTATIONSccceeeiiiiitirreeeeeeeeeieiirreeeeeseeeensetrneeesseeeeesnennnnns 11
2.6 N 0 1Y 7N 2 PR 12

3 MPEG-2 AAC DECODING ALGORITHM 13
3.1 OVERVIEW OF THE MPEG-2 AAC DECODING ALGORITHMcccoeeeeeennnnnnnnnnn. 13
32 ISO/IEC 13818-7 AUDIO TEST BITSTREAMScccoiiurieeeecireeeeeiieeeeeeeiveeee e 17
33 EXTRAPOLATION OF BLOCK DIAGRAMcoooiiiiiiiiiiiiiiii 17
34 SUMMARY .oveiiiieeeeeieiitreeeee e e eeeeciareee e e e eeeesetarereeeeeeeeessassereeeseeeeesssssssreeseseesennnes 18

4 A CASE STUDY: ‘L1 S MOA’ ..ccueriirrrircricssnricsssricssseessssnessssssssssessssscssssssssssses 19
4.1 DECODING THE HEADERccooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 19
4.2 DECODING <DSE> ...t e e 21
4.3 DECODING <SCE> ... 21
4.3.1 Decoding iCS INfO()......cccouiiummiiaiiiiieeie et 21
4.3.2 Decoding section_data()cccccooveueemiuiieiiiieiiieeeiee e 24
4.3.3 Decoding scale factor dat@()..............ccccccouvimioiiiianiiiiiiiiiieeeieeeeen 25
4.3.4 Decoding spectral data().............ccccoovueemiimimiiiiiiiieiiiee e 27

4.4 DECODING <EIL™ ...ttt et a e e 27
4.5 DECODING <TERM> ... 28
4.6 INOISELESS CODINGcceiiieiiiiieiirteeeeeeeeeieseitireeeeeeeeeessiisrsreseseesessessrsreeseseessnnnnes 28
4.7 QUANTISATION ..eiiiiiiiiiiiiiieeeeeeeeeseitreeeeeeeeeeeatrtaseeeeeeeaesasasarasasaeseseesansrsrenesaaeens 29
4.8 SCALEFACTORStttrieeeeeeeeeeeiitereeeeeeeeeseeinsreeeeeeeeeesiissssseseeeeeessaisssreseeseesennanes 30
4.9 FILTER BANK ...coooiiiiiiiiiee 30

X

A.T0 SUMMARY oottt e et e e e e et e e e e e e e e e e e e e e e e eaeeeenaaeeeenanns 32

5 HARDWARE ENVIRONMENT 33
5.1 XILINX XCV300 FPGA ..ot 33
5.2 AKA4520A STEREO CODECceiiuiiteiiiieesiieeeniieeeiteeeiteeeiteesieeesisteesineeesaneeesanees 33
53 XCOST08 CPLD ...eiiiieiieeieeite ettt ettt et ebaesaa e e e snaeensees 34
54 VHDL AND ACTIVE-HDL.....cooiiiiiieee e 34
5.5 XILINX FOUNDATIONciiiiiiiiniieiieeeteeteee ettt 35
5.6 KISTOOLS .ttt et ettt et ettt e st e sbteesaeees 36
5.7 SUMMARY ..ottt sbe e sate e bt e et e sbeesateenaeeeane 37

6 ALGORITHM IMPLEMENTATIONcccciniiniesseissnnesssssssssssssssssossasssssssasssases 38
6.1 BITSTREAM DEMULTIPLEXERceiutttiiiieeniiieeniieeeniieeeiteesiteesieeesiieeesabeeenieeeens 38

O.1.1 THE REAAETcc.oooceeeeeeeeeeeeee e 40
0.1.2 SDSE™ ..ot 40
0.1.3 SSCE™> ..ottt 41
6.1.4 <FIL> and <TERM™cccccoeoiiieieieeeeeeee e 44
6.2 INOISELESS CODINGceutiiuiieiiinieenitesiteetee et esteesieeesiteseteebeesaseesneesaeesnneesaneens 44
6.3 QUANTISATION AND SCALEFACTORS.cettiieeeeeeeiiirrreeeeeeeeeeeirnreeeeeeeeeeesnssenens 44
6.3.1 Implementation of non-linear fUnCtionscccccevveeevenceeacvenieennns 44
0.3.1.1 FPU COTC.eoueiieiiieiiieeeeeeeeee ettt ettt e reesaaeeaneens 45
6.3.1.2 Fixed-point Arithmeticccccceeviieiiienieiiienieeieeee et 47
6.3.2 Implementation of CONtrol lOOPcccceeveeeeeciieiiiieiiieesiee e 48
0.3.3 DALAPALN ...t 48
0.3.4 CONIOLICE ... 51
6.4 FILTER BANK ..ottt 51
6.5 SUMMARY ittt ettt ettt e st e st e e st e e sabeeeeateeesateesnareesane 51

7 PROJECT EVALUATIONccoiniiniinnnicssensssiossssssssssssssssssssssssassssssssassssssssasssassse 53

7.1 EVALUATION OF PRODUCT PERFORMANCE.........ctiiiiiiaiiieniieeniieenieeeniee e 53

7.1.1 Bitstream Demultiplexer...............ccccoccveiiiioiinieiiieiieee e 53
7.1.1.1 Active-HDL Waveform and Testbench...........c..ccccoveercriieiieencieennnnn. 53
7.1.1.2 Xilinx Foundation Synthesis and Implementationc..cc.ccccueneee. 55

7 0 O T 1 01 0 1 USRS 57
7.1.2 Quantisation and SCAlEfaCtOTS...............cccccuivceiiiiiiiiieiiaiieeieeee e 57
7.1.2.1 Verification of Fixed-Point ACCUTaCYcceevvvierrcrieeiiieeciee e, 57
7.1.2.2 Active-HDL Waveform.........ccccceeeeiiiioiiiiieeeeeeeee e 60
7.1.2.3 Xilinx Foundation Synthesis and Implementationcc.ccn..... 60
7.1.2.4 Verification with XSV300 Development Boardc.ccceevvrenneen. 61
T.1.2.5 SUMIMATY .ccoiiiiieeeiiiiee ettt e eeieee e et e e e et eeeebeeeeesnaaeeesenseeeesennsneeeens 62

7.2 EVALUATION OF PERSONAL PERFORMANCEccevviiieniieeniieeniieenieeenireeeineens 62
7.2.1 Technical SKills.............ccccoooovveiiiiiiiiiiieeieeeeeeee e 63
7.2.2 Time Management SKills................cccccomiiiimiiiniiiiiieiieei e 64
7.3 SUMMARY ettt ettt ettt ettt e sttt e s bt e s bteesabeeesbeeesbeeesaseeenas 65

8 FUTURE DEVELOPMENTSuuitnniiniennissnnsssenssassssssssasssssssssssssssssassssssssasossasss 66

8.1 PRODUCT DEVELOPMENTSuutiiiitiniienieeniteeieenieesteesieesneesseesineesieessseenseesaneens 66
8.1.1 Controller IMplementationccceevcuveevueeeeiieeeiieeeieeesieeeeiee e 66
81,2 DALA STOFAZE........ccceeeeieieeieeee et 67
8.1.3 Filter BANK.........cc...oooooeiieaiiiie e 68
8.1.4 PC-FPGA COMMUNICALIONceveeeeeiiieeeeiieee e eeeieee e evaaeeesaaeae e 69

8.2 PROCESS DEVELOPMENTS ...ttt et e e e e e eeeeeeeeeeeeeeeeeaeeeeeaaeeeeneaeseenennns 71

8.3 SUMMARY ..oeoiiiiiieiiiieeeee e e e eeeeeierreeeeeeeesessistaeeeeeeeeeesesasareeeeeseesessissseseeseeseesnnares 71
9 CONCLUSION 73
RETEIEIICES «.uueeeeeeeeeeeeeieeeerereeeeeeesereeesesesssssssesse 74
APPENDIX A. LC CONFORMANCE BITSTREAMS......ccccccerrrrnnereercccccssonsannes 78
APPENDIX B. DETAILS OF ‘L1 _fS MO’ ...cccocerercercssnicssneicssnnecsssnssssassssnssssnns 80
APPENDIX C. VHDL SOURCE CODKE.........ccccorrrmmueeeeeeccccsscsnansesceccccsssssssasssssees 89
C.1 BITSTREAM TOP.VHDccutiiieeiiiieeeeirreeeesietneeeenareeeessnsseeesanssseessssseeessnsseeesanns 89
C.2 BITSTREAM.VHD ...ooiiiiiiiiiiiirieeieeeeeeeeiiteeeeeeeeeeeeettaereeeeeeeeeesasssreeeeeseeeenanrrneeeeeees 91
C3 (01018 N /=) 8074 5 10 T 96
C.4 SHIFT REGISTER.VHDcciiiiiiiiieeniiieeniteeeniteeeniteestteesateesseeessseessnseessnseessnseesnnne 97
C.5 SCALE FACTOR TABLE.VHDcctttiiiiiieeeniiieeeeiieeeeesnneeeeasnsneeessssneessssseessnnnns 98
C.0 FORLOOP.VHD ...uuvvveiiiieeeieiitireeeeeeeeeeieeisreeeeeeeeesesiistseseseseesesssssssesesssessnssssrneeens 99
C.7 QUANTISATIONTOP. VHDeuuiiiiiiiiiiiiieee ettt ee ettt e e e e e et it e e aeeees 101
C.8 INVQUANT.VHD ...oooiiiiiiiiiiii 102
C9 07N 527N o2 Va1 5 J 103
C.10 QUANTADJUST.VHD .cooiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 108
C.11 TESTBENCH.VHD.....iiiiiiieieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeseseseseeeaeaeeeeesesesesasenns 109
C.12 BITSTREAM_SOURCE.VHDccctteiuiieaireeaireenireessteenseeenseessiseesnsseessssessssseenns 110
APPENDIX D. XSV BOARD PINOUT FOR TESTING 112

xi

List of

Figures

Figure 1-1: Market GrOWth..........cccuiiiiiiiiiie e e e 1
Figure 2-1: Sanyo SSP-PD7ccuoiiiiieieeeee ettt 7
Figure 3-1: MPEG-2 AAC Decoder Block Diagramccceeevveeeiieencieeciie e 14
Figure 3-2: Block Diagram for Decoder Implementationcccceeeevevieneenieniennenne 17
Figure 4-1: L1 fs mod Hierarchyccoovieiiiiiiiiieeeceeceeee e 20
Figure 4-2: Window sequence for L1 S mod........cccoovieiieniiiiiiiiiiiicieceeeee e, 22
Figure 4-3: Spectral co-efficient ordering for the first raw data block...........c............... 23
Figure 4-4: Spectral co-efficient ordering for the second raw data block 23
Figure 4-5: Codebook sections for the first raw data blockcccceevveeiiieiciieennenee, 25
Figure 4-6: Codebook sections for the second raw data block...........cccceeviriiniinennnne. 25
Figure 4-7: FAAD?2 code for retrieving scalefactor data...........cccccveeevveenieeenieeeeeeee, 26
Figure 4-8: C-code for de-interleaving the spectral coefficients...........ccccceevverirenennee. 31
Figure 5-1: FPGA ATChItECIUICeeeeiiieciiieeiie ettt e 33
Figure 5-2: Synthesis FIOWChart...........cocooiiiiiiiiiiieee e 35
Figure 5-3: Implementation FIOWchart............cccoeoiiieiiiieiiiieeece e 36
Figure 5-4: GXSLOAD User INterfaceccocerierienieniieniiieeienieeeeseee e 37
Figure 6-1: State-machine and counter flowchartcccoeeiiieiiiiniiiieie e 39
Figure 6-2: <DSE> state diagram.........ccccecueriiniirienienienieniieneeee e 40
Figure 6-3: Ics_info() state diagramcceeeecuieeiiieeniie et 41
Figure 6-4: Example o1 100Dccoiiiiieiieiecieeeeee e 42
Figure 6-5: FOR LOOP SYNTAX......ccuieeiiieeiiieeiieeeiieesieeesieeesveeesveeeeaeesnaeesnaeeeneeeenns 42
Figure 6-6: Approximation of the quantisation function using polynomial regression . 45
Figure 6-7: Approximation of the gain function using polynomial regression.............. 46
Figure 6-8: Quantisation and scalefactor control 100pcccceevieviieriiniiiinienieeieeee, 48
Figure 6-9: Quantisation and scalefactor datapathccccoeviiiiiiniiniiiiieieeeee, 49
Figure 6-10: Scalefactor datapath...........cccoeeeiiieiiiiiiiie e 50
Figure 7-1: Waveform output when decoding the headercccccoveviiiiniiniincnnnnn. 54
Figure 7-2: Waveform output when decoding a <DSE>...........cccovviviiiiviiiineeeeeee 54
Figure 7-3: Waveform when decoding a <SCE>cccoviiiiiiiniiniiicncecee 55
Figure 7-4: Xilinx implementation output statistics for bitstream demultiplexer 56
Figure 7-5: Accuracy of fixed-point implementation compared to floating-point......... 58
Figure 7-6: Accuracy achieved using different multiplication factors...........ccccceuveene... 58
Figure 7-7: Accuracy improvement with a nested scalefactor tool.............ccccecevieneen 59
Figure 7-8: Waveform output of quantisation and scalefactor toolsc.cceeeeneennnee. 60
Figure 7-9: Xilinx implementation output statistics for quantisation / scalefactor tools 61

xii

List of Tables

Table 1-1:
Table 1-2:
Table 2-1:
Table 3-1:
Table 4-1:
Table 4-2:
Table 4-3:
Table 6-1:
Table 6-2:
Table 7-1:

Survey of Internet Audio Market...........cceevviiieiiiiiiiieeee e 2

Comparison of AAC and MP3coooiiiiiiiiceeeee e 3
Comparison of commercial AAC decoders.........ccvevviieecieeeiiieeeieeciee e 8
Summary of MPEG-2 AAC Decoder TOOIS........ccocuierieiciieniieiienieeieeeens 16
Summary of syntactical elements............cceeeeeieeciiieiiieeie e 20
Transform window for 48KHZccooiiiiiiiniiiiiieeeee 22
The interaction of spectral data() decoding and noiseless coding................ 29
Resource requirements of floating-point UNitscccceeeeveereeeeieeneenneennen. 46
Application of adjustment factor for lookup table valuesccceeunee..e. 47
Test vectors used for verification of datapathccccoeevveiiiniiiiiiennenn. 60

xiil

Xiv

1 INTRODUCTION

1.1 The Internet Audio Market

Internet Audio is one of the world’s fastest [o

growing markets (Figure 1-1). All analysts have

predicted dramatic growth over the next few Ea.m
k4

years, continuing the trend of the last few years

[1]. Many coding algorithms are available and .

1883 1938 2000 2002 2003
emerging, competing for their share in the Figure 1-1: Market Growth
market.

Currently, MP3 is the most popular format for Internet Audio distribution, though
RealNetworks G2 format is the undisputed leader in the streaming audio market. The
MP3 algorithm provides an 11:1 compression rate for “near CD quality” stereo audio,

with a sampling rate of 44.1kHz.

The growth of the Internet Audio market has been so rapid that the legal framework for
distribution is lagging behind. Copyright infringement and the distribution of Internet
Audio are the central issues in an ongoing court battle involving Napster Inc. and their
website that allows users to share and swap MP3s [2]. Thus, quality and compression
are not the only important considerations for new encoding algorithms; copyright

protection is in increasing demand.

Table 1-1 presents a brief survey of the Internet Audio market [3].

Format Developer Type Secure
WMA Microsoft Both Yes
G2 RealNetworks Streaming No
Music Codec | QDesign Streaming No
LiquidAudio | Liquid Audio Download Yes

TwinVQ Yamaha Download No
a2b AT&T Download Yes
AAC Fraunhofer Institute Download No
MP3 Fraunhofer Institute Download No

Table 1-1: Survey of Internet Audio Market

AAC (Advanced Audio Coding) is a state-of-the-art natural audio coding algorithm that
can handle 48 channels and sample at rates up to 96kHz. AAC is an advance of the
successful MP3 format and its superior performance arises from the efficient use of
existing coding tools and the introduction of new coding tools [4]. On average, AAC’s

compression rate is 30% higher than that of MP3 while providing better sound quality
[5].

The AAC standard itself is not secure, but “is only being licensed in the context of
secure distribution. Encoders and players each have their own Digital Rights
Management mechanisms, and interoperability between devices is not possible.”
(Andrew Fischer — Director of Licensing Business Development at Dolby Laboratories).

Thus AAC is also more secure than MP3.

1.2 The AAC Standard ISO/IEC 13818-7

Advanced Audio Coding was developed by AT&T Corporation, Dolby Laboratories,
the Fraunhofer Institute for Integrated Circuits and Sony Corporation. AAC was
standardised under the joint direction of the International Organisation of
Standardisation and the International Electro-Technical Committee as part of the

MPEG-2 specification in 1997 [6].

Initially, AAC was defined by 13818-3 [7] as a multi-channel extension to MPEG-1
(the standard defining MP3) and was backwards compatible with MPEG-1. However,
AAC was limited by the MPEG-1 standard, and 13818-7 was introduced. This standard
defines AAC audio that is incompatible with MPEG-1.

AAC is defined by three different profiles — Main Profile, Low Complexity (LC) Profile
and Scalable Sample Rate (SSR) Profile. The Main Profile includes the full set of
coding tools and produces the highest quality output. The LC profile limits some coding
tools (TNS) and excludes others (Prediction and Pre-programming). The SSR profile is
the least complex of the three, using a crippled filter bank [8].

The difference in the performance and the quality of the Main Profile compared to the
LC profile is small. However, the encoding and especially the decoding complexity of

the Main Profile compared to the LC profile is significant [9].

Table 1-2 is a comparison of MPEG-2 AAC coding and MPEG-1 MP3 coding. AAC
can handle more channels than MP3 and higher sampling frequencies. In two channel
listening tests, it has been demonstrated that AAC at 96 kb/s can provide slightly better
audio quality than MP3 at 128 kb/s, and MP2 at 196 kb/s [10].

AAC MP3
Channels 48 5
Sampling Rate 96kHz 48kHz
Comparison Ratio 15:1 11:1
Kilobytes / minute 670kB 900kB

Table 1-2: Comparison of AAC and MP3

Besides its strong near-term market in Internet Audio, AAC currently has two other
major area of application. The Japanese Association of Radio Industries and Businesses
has selected MPEG-2 AAC as the only audio coding scheme for all of Japan's digital
broadcast systems, including standard-definition television (SDTV), high-definition
television (HDTV), digital radio, and new multimedia services. As well, the Digital
Radio Mondiale organisation has selected an extended version of MPEG-2 AAC for the

Digital Broadcasting on short-, medium-, and longwave (AM) in the United States [11].

1.3 Objectives and Contribution

The objective of this thesis project is to investigate, and implement, an audio coding
algorithm on an FPGA. As the basis for the project, an MPEG-2 AAC decoder for real-
time decoding of an AAC LC bitstream has been selected. Such an implementation
could be suitable for use as the primary processing core of a portable Internet Audio
player, and could also find application in a standalone network device for decoding

audio files remotely.

As stated, the processing core of the hardware environment in which the
implementation will take place is a Field Programmable Gate Array (FPGA). FPGAs
are a relatively recent technology (first introduced in 1989) and differ significantly in
architecture from the more widely used architectures that have fixed CPUs [12].
Traditional CPUs are largely sequential in operation, but FPGAs offer substantial

parallel processing power.

The implementation of repetitive algorithms using FPGAs aims to take advantage of the
parallel processing power of the FPGAs. In this thesis, the tools of the AAC decoding
algorithm were investigated and an attempt to implement the tools on an FPGA was
made. In doing so, this thesis made original contributions to the audio coding field in

the following areas.

e A survey of the developments using the MPEG-2 AAC coding standard that
revealed the absence of any implementations of the MPEG-2 AAC decoding
algorithm using FPGA technology as either the central processing core or as a
CO-processor.

e A full fixed-point VHDL implementation of two of the five required decoding
tools (quantisation tool and scalefactor tool) and partial VHDL implementation
of the bitstream demultiplexer tool.

e An evaluation of the suitability of the use of an FPGA as the processing core,
and recommendations for future developments with the AAC decoding

algorithm using FPGA technology.

1.4 Overview of remaining chapters

The first step toward an FPGA implementation of an AAC decoder was an investigation
of the commercial applications and academic research involving hardware and software
implementations of the algorithm. Chapter 2 details the findings of this investigation

and explains why the MPEG-2 AAC algorithm was chosen.

The AAC algorithm is complex and involves many decoding tools. Chapter 3 provides
an overview of the algorithm and coding tools, as well as the available conformance test

bitstreams, and extrapolates a block diagram for the FPGA implementation.

Before proceeding to a hardware description of the AAC decoder, a thorough
investigation of the conformance test bitstream gives a deep understanding of the
MPEG-2 AAC algorithm. Chapter 4 presents the findings of this investigation and the

details and results of a hand-calculated partial decode of the bitstream.

Together with an understanding of the algorithm, a good understanding of the hardware
environment of the AAC decoder is essential. Chapter 5 surveys the hardware used for

prototyping and the software used for coding the hardware description of the decoder.

With a broad foundation of knowledge of the algorithm and the hardware, the actual
hardware description of the decoder is detailed in Chapter 6. VHDL coding techniques

and implementation difficulties and solutions are included.
An evaluation of the implementation described in previous chapters is the basis of
Chapter 7. The final product is evaluated and the overall performance of myself as an

engineer is evaluated.

In light of the product evaluation, future work and developments on the topic are

suggested and elaborated upon in Chapter 8.

Chapter 9 draws together the main conclusions of the thesis.

2 REVIEW OF PREVIOUS WORK

This chapter reviews the relevant hardware and software implementations of the most
recent audio coding algorithms, especially AAC, with the goal of highlighting the
significance of the contribution of this thesis project. Also, some reasoning for selecting
the MPEG-2 AAC algorithm is given, and the use of an FPGA as the processing core is

investigated.

2.1 MP3 FPGA Solutions

The most dominant algorithm in the rapidly expanding field of Internet Audio is the
MPEG-1 Layer III (MP3) standard [13]. Accordingly, the MP3 standard has been
widely investigated and hardware implementations of encoders and decoders are well

documented. Two of these are outlined below.

Xilinx have entered the portable Internet Audio player market with a combination
solution of an FPGA and a microcontroller [1]. The Spartan FPGA provides high
performance as well as quick time to market. The VHDL source code is freely available
at the Xilinx website, and Xilinx are regularly developing new FPGA solutions for

Internet Audio.

Celoxica, in an attempt to demonstrate the power of their Handel-C programming
language, implemented a fully functional MP3 encoder on an FPGA [14]. Line by line,

software source code (written in C) was translated to Handel-C in less than eight weeks.

In summary, implementations of the MP3 standard are too well common for MP3 to be
the base algorithm of this thesis. Such a topic would fail to make an appropriate
contribution to the subject area. This information, together with advice from Dr Peter
Sutton, led to choosing the more recent and largely unimplemented AAC coding

algorithm.

2.2 Licensed AAC decoders

At the time of writing, only a handful of AAC licensees had announced a decoder
implementation for consumer electronic applications. These products are reviewed and

compared below.

2.2.1 Texas Instruments

The TMS320C54x series of DSPs [15] are the basis of Sanyo’s new
SSP-PD7 Internet Audio player [16] (Figure 2-1). The player is
extremely low power, running for 5 hours on a single AAA battery.

The maximum sampling rate is 96kHz and the LC profile is used

(both ADIF and ADTS — see section 4.1 for more information).

The TMS320C67x series [17] can also be used and includes Figure 2-1: Sanyo
SSP-PD7

floating-point capabilities.

2.2.2 Princeton

The PT8402 [18] (released November 2001) is capable of decoding an AAC bitstream
(either ADIF or ADTS) at sampling frequencies up to 24kHz. The 100-pin chip requires
a 2.5V power source and has an in-built D/A converter. The bitstream is delivered via a
serial bit stream interface. The PT8402 also decodes MP3 and its main application is in

portable MP3 players.

2.2.3 Cirrus

The CS49400 family [19] of multi-standard audio decoders (released 2002) is designed
for use with DVD players and similar entertainment systems. Along with AAC, it
decodes Dolby Digital EX™ (DVD), MP3 and a host of other standards. The chip
requires no external logic or memory despite its compatibility with all three AAC

profiles.

2.2.4 Micronas GmbH

The MAS3509F [20] decodes the AAC LC Profile at a maximum sampling rate of
48kHz. The DSP core runs on a 2.5V power supply and has a D/A converter for a PCM
output. The chip is an “all-in-one” solution but requires a small microcontroller for

controlling communications.

2.2.5 ARM MOVE™ Technology Audio Components

ARM have implemented a complete codec for an AAC decoder that is optimised for
their 32-bit RISC processors. The ARM7TDMI, ARMI9TDMI, ARMYE and
StrongARM can run MOVE™ Technology [21] and decode with sampling frequencies
up to 48kHz. The processor cores are embedded in emerging portable Internet Audio

devices.

2.2.6 Comparison and Conclusion

Table 2-1 summaries the commercial market for AAC decoders. The current
technologies are implemented with either specific DSP cores or microprocessor cores.
No AAC licensees have released any products that use either an FPGA core or an FPGA

CO-processor.

Producer Processing Core | Max Sampling Frequency Profiles
Texas Instruments Fixed/Float DSP 96kHz LC
Princeton Fixed-point DSP 24kHz LC
Cirrus Fixed-point DSP 48kHz LC
Micronas Fixed-point DSP 48kHz All
ARM MOVE Tech RISC Processor 48kHz All

Table 2-1: Comparison of commercial AAC decoders

2.3 Research publications and implementations

Several papers address implementations of the AAC LC profile with a fixed-point DSP.

Lee, Jeong, Bang and Youn [22] designed a real-time system with a sampling rate of

48kHz but required that two external hard-wired logic modules be added for the
Huffman decoding and prediction modules. These two compensations were required
because of the high computational load of the Huffman decoding and the use of floating

point arithmetic by the prediction tool.

Similarly, Chen and Tai [9] implemented an AAC LC encoder on a fixed-point
TMS320C62x DSP. At a sampling rate of 48kHz, 9.2MIPS and 1.6M RAM were
required for the full implementation — both within the capabilities of the C62x. The
encoder was successful, but much time was spent to ensure that the fixed-point
calculations were accurate. Modifications to some tools and approximations of
algorithms in several tools were necessary to reduce memory and runtime demands

while maintaining the integrity of the output bitstream.

In summary, the availability of research publications and implementations of the AAC
algorithm in a hardware-based solution is limited. Some solutions built around DSPs
provide some preliminary information about the advantages and difficulties of AAC
decoding, but no relevant information on an FPGA-based solution, either as the core or

as a co-processor, is available.

2.4 Comparison of DSP with FPGA

It is worthwhile to briefly introduce DSP technology and compare DSPs with FPGAs to
give insight into the contexts that DSPs and FPGAs are used. The following comparison
shows the strengths and weaknesses of an FPGA-based approach to decoding media
such as an AAC bitstream, and why, to date, DSPs are more often chosen as the

processing core for AAC decoders.

DSPs are specialised microprocessors used for signal processing applications. They are
well suited to complex mathematical tasks and programs that require much conditional

processing. DSPs are typically programmed using C or assembler.

DSP chips have dedicated arithmetic units that can be used as required such as adders
and multipliers. Like regular microprocessors, DSPs run on a system clock, and the
clock rate therefore limits the number of instructions and operations that can be carried

out in any given time period.

Architecturally, FPGAs are very different from DSPs [23]. FPGAs consist of a “sea of
gates”, uncommitted in function, that can be configured into specific hardware blocks.
Blocks range from simple registers, adders and multipliers to more complicated units
that perform FIR filtering and FFTs. Instantiating multiple instances of the same units
provides great scope for hardware solutions with large bandwidths and extensive

parallel processing capabilities.

FPGAs offer many advantages over DSPs [24]. FPGAs have more internal multipliers
than DSPs, and are able to handle higher sampling rates. FPGAs’ capacity for parallel
processing makes them clearly beneficial for high repetition tasks, such as multiply-
accumulates (MACs). Good design can ensure that FPGAs have low power dissipation

in comparison to DSPs offering a clear advantage for portable hardware devices.

FPGAs, however, are not entirely superior to DSPs. For programs that involve extensive
conditional evaluations, FPGAs may require dedicated hardware resources for each
possible configuration and datapath whereas DSPs can re-use processing units such as
multipliers regardless of the system flow. DSPs are more efficient at implementing
floating point arithmetic. DSPs’ architectures make the translation of a software
solution to a hardware solution easier. DSPs are optimised for the use of external
memory, whereas FPGAs have only small internal memories and require additional

external memory modules for large data sets.

Most of today’s emerging digital audio processing applications, especially in the area of
portable Internet Audio, are DSP based due to the strong software influence in coding
the algorithms. FPGAs are more suited to simple, repetitive operations, while DSPs
handle complex software problems to which they are more suited. In addition, small

RISC microcontrollers are often required to handle communications and system control.

10

An ideal solution would consist of a hybrid of DSP, FPGA and microcontroller with

each component dedicated to its area of strength [24].

2.5 Software Implementations

Though the objective of the project is to implement an algorithm in hardware, a survey
of software implementations of AAC encoders, decoders, recorders and players is
beneficial. Ensuring that the subject of AAC decoding has been considered in an
appropriate scope provides a firm foundation for achieving the project objective. Both

commercial and open source implementations are outlined.

In the commercial arena, Mayah Communications was the first company to release an
AAC player and recorder [25]. The ‘AAC-Recorder’ performs WAV to AAC recording
and Mayah mention that, as an outstanding product feature, AAC-Recorder is “fully

software, no additional hardware necessary.”

Apple Computers have recently adopted the MPEG-4 AAC standard into their
QuickTime 6 media player [26]. The software is capable of a dull encode and decode of

AAC. However, AAC’s development in the commercial market is still in its early days.

There is also little development of the AAC algorithm in open source circles.
Audiocoding.com [27] provide open source codecs for Advanced Audio Coding (MP4
and AAC). Their FAAC and FAAD?2 programs encode and decode all profiles of AAC
with “great accuracy”. The code is written in C++ for compilation under either
Windows or Linux, and is well linked to the ISO/IEC standards that it was based upon.
Each module is individually coded and assembled into a LIB file that can be accessed
by a command line front end. The source code is free and published for developers and

other interested parties to enhance and modify.

In summary, FAAD2 provides a useful secondary reference to the ISO/IEC 13818-7
standard, but does redeem the relatively undeveloped field of software implementations

of AAC to great usefulness.

11

2.6 Summary

This chapter has provided the details of the literature review carried out for the project.
A survey of the well-known MP3 standard, and its well-documented successes in FPGA
implementations, concluded that AAC, as an advancement over MP3, would be the
most suitable algorithm to use as the basis of the project (section 2.1). Accordingly, the
commercial (section 2.2) and academic (section 2.3) implementations of hardware-
based AAC decoders were investigated, concluding that no details of implementations
incorporating an FPGA core or FPGA co-processor were available. DSP technology
was introduced and compared to FPGAs (section 2.4) to show why DSP-based solution
are prevalent, and for completeness, a survey of software implementations of AAC was

carried out (section 2.5).

12

3 MPEG-2 AAC DECODING ALGORITHM

This chapter overviews the MPEG-2 AAC decoding algorithm and tools as well as the
official conformance test bitstreams and details the extrapolation of a block diagram for
the decoder implementation. The block diagram provides the conceptual basis for the

project.

3.1 Overview of the MPEG-2 AAC Decoding Algorithm

The MPEG-2 decoding algorithm consists of a number of coding tools that decode a
13818-7 AAC bitstream to its corresponding PCM values. Following is a brief
description of the function of these tools, and Figure 3-1 shows the block diagram of the

decoder.

The bitstream demultiplexer tool reads in a 13818-7 AAC bitstream and separates the
data stream into the relevant sections for each of the decoding tools. Both control and
data information are sorted, and information concerning the bitstream, such as profile

type, sampling frequency index and copyright ID, is obtained.

The noiseless decoding tool reconstructs the quantised spectral data by parsing the
information received from the bitstream demultiplexer and Huffman decoding it. The
Huffman and DPCM (Differential Pulse Code Modulation) coded scalefactors are also

reconstructed.

The inverse quantiser tool processes the quantised values of the spectral data and

converts these integer values to the non-scaled, reconstructed spectra.

The scalefactor tool changes the integer representations of the scalefactors to their
actual values (by a non-linear transformation) and scales the un-scaled inversely

quantised spectra according to their respective scalefactors.

13

Legend

Data =
Control—

13818-7 Coded

Audio Stream

Bitstream
Demultiplex

y

Noiscless
Decoding

|

[nverse
Quantizer

v

Scale
Factors

L 4

v

Prediction

!

Intensity/

Coupling

B!

TNS

h 4

l

Filter

L4

Bank

!

Output
Time
Signal

Figure 3-1: MPEG-2 AAC Decoder Block Diagram

14

The M/S tool decodes paired spectral values from Mid/Side to Left/Right. This is done

under the control of the M/S decision information extracted from the bitstream.

The prediction tool reverses the prediction process carried out in the encoder. Prediction
is a complicated and demanding encoder tool that, in simple terms, removes redundancy
from the spectral data. This redundancy is re-inserted under the control of the predictor

state information extracted from the bitstream.

The intensity stereo / coupling tool reinstates information that was coupled during the
encoding process. When multiple channels are present and are similar, they are encoded
as a single channel. Under the guidance of the coupling control information extracted

from the bitstream, intensity stereo decoding is implemented.

The temporal noise-shaping (TNS) tool restores the actual shape of the temporal
envelope that was flattened out in the encoding process. This reduces coding noise and

1s done under the control of the TNS information extracted from the bitstream.

The filter bank tool applies an inverse modified discrete cosine transform (IMDCT) to
the spectral data to map the frequency values back to the time domain. This
transformation is carried out according to the shape and sequence of the windows as

extracted from the bitstream.

The gain control tool can be used in conjunction with the filter bank tool to apply
separate time domain gain control to distinct frequency bands. This tool is used only for

the scaleable sampling rate (SSR) profile.

The usage of these tools is determined by which profile is used for the encoded
bitstream. The standard defines three profiles:

1. The main profile uses the full set of encoding and decoding tools and provides

the best data compression possible. It is the most complex of the three profiles

and is best suited to applications where memory cost is not significant, and

where substantial processing power is available.

15

2. The low complexity profile (LC) does not allow the use of the prediction and
gain control tools, and uses a limited TNS order. The LC profile is suited to
applications where RAM usage, processing power and compression
requirements are restricted.

3. The scaleable sampling rate profile (SSR) requires the gain control tool but does
not permit prediction or coupling. The SSR profile is most appropriate in

applications with a reduced audio bandwidth.

Table 3-1 summaries the use of the decoder tools.

Tool Name Required/Optional Main LC SSR
Bitstream Formatter Required v v v
Noiseless Decoding Required v v v

Inverse Quantiser Required v v v

Scalefactors Required v 4 v

M/S Optional v v /x Vv /x
Prediction Optional v x x
Intensity/Coupling Optional v v/x x
TNS Optional v v v
Filter bank Required v v v
Gain Control Optional x x v

Table 3-1: Summary of MPEG-2 AAC Decoder Tools

The profile that is best suited for the project is the low complexity profile (LC). This
profile offers high audio quality but makes smaller demands on processing resources
than the main profile. As audio bandwidth will not be an issue, the SSR profile is not

appropriate.

16

3.2 ISO/IEC 13818-7 Audio Test Bitstreams

AT&T Corporation has written audio conformance bitstreams for AAC developers [28].
These bitstreams are available for all three AAC profiles and come in multiple

configurations. The configurations for the LC profile are tabled in Appendix A.

A suitable audio conformance bitstream is chosen for the practical purposes of testing
the decoder. The selected bitstream satisfies one primary condition — that it can test the
functionality of the decoder’s tools in small increments. Accordingly, ‘L1 fs’ was
chosen as the test bitstream. L1 fs is encoded with only the required tools, and an
implementation of an AAC decoder capable of decoding L1 fs would provide the best
foundation for incorporating the remaining LC profile tools (TNS, intensity, M/S). The
sampling frequency of L1 _fs can range from 8kHz to 96kHz.

3.3 Extrapolation of Block Diagram

From an examination of the decoding tools of the AAC algorithm and the elements
within the L1 fs conformance stream, a block diagram of the required decoder is
extrapolated. The implementation contains the minimum number of decoding tools but

will successfully decode the L1 _fs bitstream. Figure 3-2 shows the block diagram.

Noiscless
» Decoding

l

Inverse
Quantizer

13818-7 Coded Bitstream
Audio Stream Demultiplex 1

Scale
Factors

v
Filter Output
* Bank —— Time
Signal

Figure 3-2: Block Diagram for Decoder Implementation

17

3.4 Summary

This chapter has outlined the MPEG-2 AAC decoding algorithm by surveying each of
the decoding tools and each of the three profiles (section 3.1). Also, the official
conformance bitstreams provided by AT&T were surveyed (section 3.2). In
consideration of the decoding profiles and the conformance bitstreams, the conformance
bitstream ‘L1 s’ was chosen as the bitstream for decoding, and a block diagram of the

decoder was extrapolated (section 3.3).

18

4 A CASE STUDY: ‘L1_fs_mod’

To provide a greater understanding of the decoding algorithm, the conformance
bitstream ‘L1 _fs’ was partially decoded by hand. A record of the decoding of the first
411 bytes is included as Appendix B and is a vital reference for checking the results of
the output of the various stages of the decoder implementation. This chapter details the

processes and results of decoding the AAC bitstream ‘L1 _fs mod’.

4.1 Decoding the header

The header determines the structure of an AAC audio bitstream. There are two basic
formats for the bitstream — Audio Data Interchange Format (ADIF) and Audio Data
Transport Stream (ADTS) — and the use of a particular format is determined by the
application. ADIF is used when decoding only occurs from the start of the bitstream and
never from within, such as decoding from a disk file. Thus ADIF contains one header at
the start of the file. ADTS, on the other hand, contains multiple headers that change
from frame to frame to allow the bitstream to be decoded from any point within it.
ADTS is suited to streaming applications. L1 fs mod is an ADIF bitstream, and the
hierarchy of L1 fs mod as an ADIF bitstream is shown in Figure 4-1.

Adif sequence()
Adif header()
Program config element()
Byte alignment()
Raw_data_stream()
Raw_data block()
Data_stream_element()
Single channel element()
Individual channel stream()
Ics_info()
Section_data()

19

Fill element()

Terminator()

Byte alignment()
Raw_data block()

Scale factor data()
Spectral data()

Data_stream_element()

Single channel element()

Individual channel stream()

Terminator()

Byte alignment()

Ics_info()
Section_data()
Scale factor data()
Spectral data()

Figure 4-

1: L1_fs_mod Hierarchy

Decoding the header reveals that L1 fs mod is indeed a 48kHz LC profile bitstream.

There is a single front channel element that will map to a centre front speaker for audio

playback.

The syntactical elements of the partial bitstream are <DSE> <SCE> <FIL> <TERM>

<DSE> <SCE> <TERM>. Table 4-1 summarises these elements.

Element Abbrev Description

Single Channel Element | <SCE> Contains coded data for a single audio channel
Data Stream Element <DSE> Contains extra data not related to the audio
Fill Element <FIL> Contains fill data to adjust the data rate
Terminator <TERM> | Indicates the end of a data block

Table 4-1: Summary of syntactical elements

20

4.2 Decoding <DSE>

‘A data element contains any additional information, e.g. auxiliary information, that is
not part of the audio information itself,” [6, p32] and can contain up to 512 bytes of
data. The decoding process for a <DSE> is described clearly by subclauses 6.3 (Table
6.20) and 8.6 of ISO/IEC 13818-7. The two data elements within L1 fs mod (one
<DSE> in each raw data block) each contain two bytes of data [00 AB and 00 9D].

4.3 Decoding <SCE>

‘A single channel element is composed of an element instance tag and an individual
channel stream’ [6, p25]. It is the most complex syntactical element in L1 fs mod and
contains all the data necessary to decode one channel. A <SCE> comprises of four main
sections — ics_info(), section data(), scale factor data() and spectral data() — but also
makes provision for some optional sections — tns data(), pulse data() and
gain_control data(). The decoding process for a <SCE> is described by subclauses 6.3
(Tables 6.9, 6.12) and 8.3 of ISO/IEC 13818-7. The separate processes for decoding the

sections within a <SCE> follow.

4.3.1 Decoding ics_info()

Ics_info() carries window information associated with an individual channel stream
(ICS). The need for windowing arises from the use of the quantisation encoding tool.
Quantisation is done in the frequency domain, but obviously, the sampled signal is
represented in the time domain. Under the control of a modified discrete cosine
transform (MDCT), the encoder can change its time/frequency resolution by using two
different windows — a LONG_WINDOW and a SHORT WINDOW. A long window
comprises of 1024 coefficients and a short window comprises of 128 coefficients. A
raw data block always contains data representing 1024 coefficients, and accordingly,

one long window is equivalent to eight short windows.

21

Table 4-2 shows the transform windows for 48kHz [6, p33]. Note the inclusion of
LONG WINDOW_START and LONG_WINDOW _STOP that provide meaningful

transitions between the long and short windows.

Window Looks like...

SHORT WINDOW /\

LONG_START WINDOW /—\

LONG_STOP_WINDOW N

Table 4-2: Transform window for 48kHz

Along with providing the window_sequence, ics_info() carries information about the
window_shape. The window shape is used by the IMDCT, together with the window
sequence, to select the window configuration. When the window shape is 1, the IMDCT
employs a Kaiser-Bessel derived (KBD) window, and when window shape is 0, the
IMDCT uses a sine window. The decision on window shape is made during encoding,
and the decoder does not need to know why a particular window configuration has been

chosen.
The first raw data block of L1 fs mod has a long start window sequence and uses a sine

shaped window. The second raw data block has an eight short window sequence and

also uses a sine shaped window. Figure 4-2 shows the combination of these two blocks.

— XXX\

Figure 4-2: Window sequence for L1_fs mod

Aside from describing the window sequence and shape, ics _info() contains vital

information concerning scalefactor bands. Simply, a scalefactor band is a group of

22

consecutive spectral values, with the width of the grouping calculated from the critical
bands of the human auditory system. Thus, the number of scalefactor bands in a
spectrum depends upon the sampling frequency (in this case, 48kHz) and the transform

length (1024 or 128).

Ics_info() specifies the maximum number of scalefactor bands to reduce the
transmission of spectral data relating to inactive scalefactor bands. Ics info() also
specifies window grouping for short window sequences. Windows that are grouped
together have the same scalefactors applied to them in order to reduce the amount of

side information transmitted.

The first raw data block of L1 fs mod has a maximum of 41 scalefactor bands, and has
no window grouping because it is a long window sequence. The second raw data block
has a maximum of 11 scalefactor bands, and its eight short windows are grouped
together {3, 1, 4}. Subclause 8.3.5 of ISO/IEC 13818-7 clearly describes how the
spectral coefficients are ordered according to scalefactor bands and windows groupings,

and Figures 4-3 and 4-4 show the ordering for the two raw data blocks.

stb 0 sfb 1 stb 2) . . sfb 39 stb 40

Figure 4-3: Spectral co-efficient ordering for the first raw data block

Lo stb0 -——-- R stbl = ———e- >
win0 | winl | win2 win0 | winl | win2
D stb 10 -—--—--- > stb 0 sfb 1 stb 10
win0 | winl | win2 win 3 win 3 ' ' win 3
Lo stb0 - > | <o stbl = - >
win4 | win5 | win6 | win7 win4 | win5 | win6 [win7
Lo sftb 10 - >
win4 | win5 | win6 | win4

Figure 4-4: Spectral co-efficient ordering for the second raw data block

23

The final set of information retrieved from ics_info() is derived from the sampling
frequency, the window sequence, the scalefactor grouping and the maximum number of
scalefactor bands. These derived ‘help’ variables and arrays are required to further
describe the scalefactor band arrangement for all tools using scalefactor information.
Subclause 8.3.4 of ISO/IEC 13818-7 clearly describes how the additional variables are

derived.

In summary, ics_info() provides information regarding the window shape and sequence
as well as information on scalefactor bands and window grouping. The decoding

process is according to subclauses 6.3 (Table 6.11) and 8.3 of ISO/IEC 13818-7.

4.3.2 Decoding section_data()

Section_data() describes the Huffman codes that apply to the scalefactor bands in the
individual channel stream. The sectioning data describes firstly the codebook that is
used, and then the length of the section that is coded with that codebook, starting from
the first scalefactor band and continuing until all scalefactor bands are completed.

Subclauses 6.3 (Table 6.13) and 8.3.2 of ISO/IEC 13818-7 describe this decoding.

Huffman coding is a form of lossless entropy encoding based on the probabilities of
certain data inputs occurring. It takes a block of input data of fixed length and produces
a block of output data of variable length. Short codewords are assigned to data that
occurs frequently, and longer codewords are assigned to data that occurs less frequently.
Thus, a Huffman ‘code tree’ is constructed and this is the basis for a Huffman

codebook.

MPEG-2 AAC uses eleven spectral Huffman codebooks for encoding the spectral data.
Codebooks can be signed or unsigned, and be of two or four dimensions. The encoder
makes the decisions about which codebook to use for which spectral values, and the
section_data() simply carries the information regarding these decisions so that the

Huffman codewords can be decoded.

24

The first raw data block of L1 fs mod is encoded entirely with Huffman codebook
zero. Therefore, no scalefactor data or spectral data is transmitted. The second raw data
block is encoded in many different sections and with many different codebooks. Figures

4-5 and 4-6 show the codebook sections for the two raw data blocks.

0 < codebook 0 >
8 sfb 0 sfb 1 stb 2 . . stb 39 sfb 40
Figure 4-5: Codebook sections for the first raw data block
_ < codebook 0 >
g=0

stb0 | sfb1 [stb2 | stb3 | stb4 [stb5 | stb6 | stb7 | stb8 | stb9 | sfb 10

~1 cb 10 | < codebook 4 >
g stb0 | sfb1 [stb2 | stb3 | stb4 [stb5 | stb6 | stb7 | stb8 | sb9 | sfb 10

codebook 11 codebook 6 cb 8 codebook 6
stb0 | sfb1 | stb2 | stb3 | stb4 | stb5 | stb6 | stb7 | stb8 | sb9 | sfb 10

g=2

Figure 4-6: Codebook sections for the second raw data block

4.3.3 Decoding scale_factor_data()

For each scalefactor band that is not coded with the zero codebook, a scalefactor is
transmitted. (Direct quote). Scalefactors are used to further shape the noise injected by
quantisation. They change the amplitude of all the spectral coefficients within a
scalefactor band. Like the spectral data, the scalefactors are Huffman coded to increase
the data compression, and for this purpose there is a special scalefactor Huffman

codebook.

As well as being Huffman coded, the scalefactors are also differentially coded. The
global gain (a variable retrieved at the start of the individual channel stream) is the first
active scalefactor; the second scalefactor encoded is encoded relative to the first, the

third to the second and so on.

The process for decoding scale factor data() is described in subclauses 6.3 (Table
6.14), 8.3.2 and 11.3.2 of ISO/IEC 13818-7. However, the description is not entirely

explicit, and an examination of the source code of the FAAD2 decoder provides a more

25

intuitive explanation of how the scalefactor data is retrieved. The following code

segment (Figure 4-7) shows how

codewords.

FAAD?2 [27] identifies and decodes the Huffman

int i, j;
unsigned long cw;
codebook *h;

h = book tablelcb];
i = h->len;
cw = faad getbits(1d,

while

{

(cw != h->cw)

h++;
j = h->len-i;
i = h->len;
if (3!=0) {
while (j--)
cw = (cw<<l)
}
}

return h->scl;

i DEBUGVAR(0,0,"™));

| faad getlbit (ld DEBUGVAR(0,0,"™));

Figure 4-7: FAAD?2 code for retrieving scalefactor data

Briefly, the code segment steps through the consecutive entries of the scalefactor

codebook and tries to match the codeword to the bitstream. When a matching codeword

is found, the differentially coded scalefactor is retrieved and the scalefactor is calculated

relative to the previous (not shown). The bitstream is examined until all the scalefactor

codewords have been read.

Only groups one and two of the second raw data block of L1 _fs mod have scalefactors

transmitted because group zero, and the entire first block, are encoded with the zero

codebook. For details on how the scalefactors are applied to the spectral data, see

section 4.8.

26

4.3.4 Decoding spectral_data()

Spectral data() consists of all the non-zeroed coefficients remaining in the spectrum and
is ordered as described in ics_info(). (Direct quote). Like scale factor data(), the first
task is to retrieve the Huffman codewords. To do this, the sectioning information from
section_data() regarding the codebook number and section length is used. Depending on

the codebook, two or four spectral coefficients are decoded.

The second decoding task is setting the sign magnitude and is dependent upon the
spectral values and the codebook used. For unsigned codebooks, sign bits are decoded
following the codeword and applied to the spectral values. No sign bits are transmitted

when the spectral values are zero, or a signed codebook is used.

The third decoding task is related only to the use of codebook eleven. Codebooks one
through ten allow the encoding of spectral values with an absolute value no greater than
12. By using codebook eleven (the ESCAPE codebook), the largest absolute value is

increased to 8191 through the addition of an escape sequence.

Though this decoding process is described in subclauses 6.3 (Table 6.16), 8.3.2 and 9.3
of ISO/IEC 13818-7, it is beneficial to supplement the description with the relevant
source code from the FAAD2 decoder. The details of the decoded, signed spectral

values are included in the Appendix B.

4.4 Decoding <FIL>

Fill elements have to be added to the bitstream if the total bits for all audio together with
all additional data is lower than the minimum allowed number of bits in the frame
necessary to reach the target bitrate. (Direct quote) More simply, a fill element is
included to adjust the instantaneous bitrate for a constant rate channel. Practically, in
L1 fs mod, a <FIL> element in included when an entire <SCE> is encoded with the
zero Huffman codebook (ZERO HCB). Elements encoded with ZERO _HCB are not
transmitted with any spectral data or scalefactor data, and hence are transmitted with a

<FIL> element to compensate for their relatively small size.

27

The original 13818-7 specification of the <FIL> element was relatively simple, but was
revised by 13818-7 Technical Corrigendum 1 to include Dynamic Range Control
(DRC). The DRC model increases the complexity of decoding a <FIL> element, and
this decoding process is now described by subclauses 6.3 (Tables 6.22, 6.24-26) and 8.7
of ISO/IEC 13818-7/Cor.1.

The single <FIL> element in L1 fs mod is 1300 bits long — 868 bits less than the
maximum size for a <FIL> element. Its configuration does not use DRC, but is rather
the default <FIL> element format. By comparison, the 1300 bits of <FIL> in the first
raw data block that is included to compensate for the ZERO HCB coded <SCE> is
equivocated by the 1250 bits (approx) of spectral data and scalefactor data in the second
raw data block. Thus, the <FIL> element’s role in adjusting the instantaneous bitrate is

demonstrated.

4.5 Decoding <TERM>

The terminator element is transmitted to signal the end of a raw data block. It is decoded
simply according to subclause 6.3 (Table 6.8) of ISO/IEC 13818-7. There is exactly one
<TERM> element per raw data block.

4.6 Noiseless Coding

Noiseless Coding is the term given to the process of constructing of the spectral
coefficients from the spectral data components in the bitstream. Noiseless coding
requires the Huffman coded spectral values, the sign bits and any escape sequences to
produce two or four (depending on the codebook number) spectral coefficients. This

decoding procedure is described by subclause 9.3 of ISO/IEC 13818-7.

Noiseless coding is done in tandem with decoding spectral data(), and this is essential.
The two processes are distinctly defined, but in practice, are done dependently upon one

another. Table 4-3 attempts to show the manner in which they interact. Note particularly

28

that the magnitude of the coefficients must be known before the bitstream decoder can

make a decision about how many sign bits to look for.

Spectral_data() decoding Noiseless Coding

Read Huffman codeword

\ Decode Huffman codeword and get the

magnitude information of the coefficients

For each non-zero value, get a sign
bit (if using an unsigned codebook)
If using cbl1, get escape sequence

information

\ Apply sign information to coefficients

Apply escape sequence information

Table 4-3: The interaction of spectral_data() decoding and noiseless coding

Inspection of the FAAD?2 decoder source code sheds further light on the interaction of
the spectral data() decoding and the noiseless coding. One notable difference in the
FAAD2 implementation is the rearrangement of the Huffman codebooks. ISO/IEC
13818-7 specifies the 11 codebooks using four variables: dim (the dimension of the
codebook — either two or four), /av (the largest absolute value that the codebook can
encode), unsigned (whether or not the codebook is signed) and idx (the codeword
index). An algorithm is then required to translate this code to the spectral coefficients.
In contrast, the FAAD2 decoder stores the Huffman codebooks with index, codeword,
codeword length and the actual spectral coefficients. The FAAD2 implementation
requires more memory resources but saves on computation time. However, this does

demonstrate the interdependence of the two decoding processes.

4.7 Quantisation

During encoding, the spectral coefficients are encoded with a non-uniform quantiser.

Therefore it follows that this quantisation must be reversed in decoding, and this is done

29

after the Huffman decoded spectral values are obtained. Inverse quantisation is done

according to the following formula:

4
X _invquant = Sign(x_quant)-|x_quant|5 vV k

The value of x_quant is determined by systematically stepping through the interleaved
array of spectral data — each coefficient in each scalefactor in each window band in each

group. Clause 10 of ISO/IEC 13818-7 describes this decoding process.

4.8 Scalefactors

Scalefactors are transmitted as Huffman coded, differentially coded integers. Once
decoded to their integer values (see section 4.3.3), the scalefactors undergo a non-linear
transformation before being applied to the inversely quantised spectral data. As
mentioned in section 4.3.1, scalefactors are applied to scalefactor bands, and the

formula for this non-linear transformation reflects this and is as follows:

gain= 20.25-(sf[g][sfb]7SF7OFFSET)

The constant SF OFFSET 1is always set to 100. Using the same systematic stepping
through the interleaved array as for the quantisation decoding, the spectral values are
multiplied by the gain to give a rescaled set of data. Subclause 11.3.3 of ISO/IEC
13818-7 describes the application of the scalefactors.

4.9 Filter Bank

The final step in decoding is the transformation of the time-frequency signal back to the
time domain, and this is done under the control of an inverse modified discrete cosine
transform (IMDCT) in the Filter Bank tool. There are a number of considerations that
must be taken into account for this transformation, and these will be highlighted. The

decoding process is described in subclauses 9.3 and 15.3 of ISO/IEC 13818-7.

30

Before the IMDCT can begin, the spectral coefficients, having been inversely quantised
and scaled, must be arranged in a non-interleaved fashion. Previous decoder tools have
used a four dimensional interleaved array (see Figure 4-3, 4-4 in section 4.3.1) based on
group, scalefactor band, window and coefficient. The IMDCT requires that the spectral
coefficients be arranged according the their window number and frequency within the
window. The C-code section [6, p42] in Figure 4-8 shows the separation of the

interleaved coefficients x _quant[][][][] to a non-interleaved format spec[][].

void quant to spec (void) {

unsigned int g,sfb,width,win,bin,j,k = 0;

k = 0;
for (g = 0; g < num window groups; g++) {
J = 0;
for (sfb = 0; sfb < max_sfb; sfb++) {
width = (swb_offset[g][sfb + 1] - swb offset[g][sfb]);
for (win = 0; win < window group len[g]; win++) {
for (bin = 0; bin < width; bin++) {
spec[win+k] [bin+j] = x quant[g] [sfb] [win] [bin];
}
}
j += width;

}
k += window group len(g];

Figure 4-8: C-code for de-interleaving the spectral coefficients

The non-interleaved array spec[][] is the basis for the IMDCT. The analytical
expression of the IMDCT is:

N
X, = %:Z;spec[i][k]cos(% (n +n,)(k + %D for 0<n<N

where n = sample index
N = transform block length
1= block index
k = spectral coefficient index

ng=(N2+1)/2.

31

Once the complete set of values x;, are obtained, a window function is applied — either
KBD (Kaiser-Bessel derived) or SINE — according to the window sequence and window
shape retrieved from ics_info(). These window functions are complicated and will not

be detailed. Full details are found in subclause 15.3.2 of ISO/IEC 13&818-7.

Finally, an overlap/add function is used to produce the PCM output values. These
values can be passed directly to a 16-bit digital-to-analog (D/A) converter. Full details
are found in subclauses 15.3.3 and 8.3.6 of ISO/IEC 13818-7.

4.10 Summary

This chapter has briefly outlined the decoding procedure and results of decoding
L1 fs mod — the first 411 bytes of conformance bitstream L1 fs (sections 4.1-4.9).
These results are documented in Appendix B and are a useful reference for
understanding the algorithms and tools as well as for testing the integrity of the output

values of an implementation.

32

5 HARDWARE ENVIRONMENT

This chapter provides a survey of the hardware environment of the project. The
hardware allocated for the project was a Xess XSV300 board [29]. The main features of
this board that are used for the project are the Xilinx XCV300 FPGA, the AK4520A
stereo A/D & D/A converter, and the XC95108 CPLD and parallel port. The board was
interfaced to the PC and configured using the XSTools package and the hardware
description was written using VHDL. Simulation, synthesis and implementation of the
VHDL source code were done using Active-HDL and the Xilinx Foundation F3.11

software package.

5.1 Xilinx XCV300 FPGA

The XCV300 FPGA [30] is a member of Xilinx’s

Routing tracks
Logic module) 10 module

ooy oo 0|

Virtex series of FPGAs. It is the main repository =u
. . . Ol O
of reprogrammable logic for the implementation 0 0
OJ O
of the decoder, and has 323K system gates. These o 0
system gates are arranged in logic modules i e o] |I1B
M g g g 0 0
Figure 5-1) in the form of combinational and 0 0
(Figure 3-1) = :
sequential circuits that implement logic functions
pohogiiogihono

[31]. Logic modules are routed to /O modules Figure 5-1: FPGA Architecture
using pre-fabricated wire segments and
programmable switches. The Xilinx Foundation software package (see section 5.5) is

used to configure the FPGA’s programmable logic.

5.2 AK4520A stereo codec

The AK4520A stereo codec [32] is used to convert a serial digital audio stream to an
analog signal and vice versa. The AK4520A is controlled by the FPGA, requiring three
clocks to function — MCLK, SCLK and LRCK. The datasheet specifies that MCLK and

33

SCLK are a function of the sampling frequency, in this case, 256fs and 64fs

respectively.

The oscillator on board the XSV board is 100MHz. Using a simple divisor of 2048 (or
2'"), the sampling frequency will be 48.828kHz. This determines MCLK to be 12.5MHz
and SCLK to be 3.125MHz.

The AK4520A was not used in the implementation due to the progress on the decoder.
However, James Brennan’s audio interface [33] would have been adapted to control the

chip for D/A conversion of the output signal.

5.3 XC95108 CPLD

The XC95108 CPLD (Complex Programmable Logic Device) [34] is used to manage
the configuration of the XCV300 FPGA. Programming is done via the parallel port. It is
possible to alter the configuration of the CPLD to load a bitstream from the onboard
Flash RAM and program the FPGA with the loaded bitstream [35]. This overcomes the
problem of the FPGA losing its configuration each time that it is turned off, but such an
alteration is unnecessary for the project at this stage. (See section 8.1.4 for more

details.)

5.4 VHDL and Active-HDL

VHDL (Very High Speed Integrated Circuit Hardware Description Language) is a
language for describing the structural and behavioural characteristics of a digital system
[36]. A structural description is defined using component instantiation and mapping the
I/O ports of components together. A behavioural description is described by writing
processes on both a sequential and concurrent level. VHDL, in combination with
Programmable Logic Arrays (PLAs), allows for rapid prototyping and reconfiguration

of hardware devices, reducing time and effort.

34

There are two main reasons why VHDL was chosen as the programming language for
the project. Firstly, previous subjects have provided a strong introduction to VHDL.
Secondly, all the resources required to program in VHDL (Active-HDL, Foundation
etc.) are readily accessible in the school laboratories. Though other HDLs (e.g. Verilog)
and alternate languages (Handel-C) do exist, VHDL is used to write code for the FPGA
for the project.

Active-HDL was the VHDL development environment used. Active-HDL provides
control tools for design management, design entry tools for VHDL modules and test
benches, debugging tools for monitoring the source code execution and powerful

simulation tools for producing waveforms and verifying the code’s functionality.

5.5 Xilinx Foundation

The Xilinx Foundation F3.1i software package “converts” a hardware description into a
bitstream that is used to configure the system gates on an FPGA or CPLD. The two
important functions of Foundation concerning the project are the synthesis and
implementation functions. These functions are very complicated and will only be

overviewed briefly.

Synthesis (Figure 5-2) is the process of translating

Synthesis
Libraries

Synthesis

the design (VHDL description) into gates and

optimising it for the specific target architecture (in

this case, a Virtex XCV300) [37]. A structural

netlist is created and is used as the basis of

implementation. Additional constraints can be

MGC XNF vi &

specified such as mapping constraints — how the (XST Netlist) Constraints

blocks are mapped to the logic modules, block

I MGDEuild

placement constraints — where the blocks can be

placed, and timing constraints — set timing Figure 5-2: Synthesis Flowchart

requirements for particular data paths.

35

Implementation (Figure 5-4) has three major

NGDBuild

functions — fitting the design into the
¢ ¢ (w0)
[mar]

specified device, routing the physical design

and generating a bitstream [38]. NGDBuild

FPGA Editor
TRACE &
Timing Analyzer

NCD & PCF

accomplishes the first function by reading
the netlist from synthesis and creating a
logical design in terms of logic elements
such as AND gates, OR gates, decoders and
flip-flops etc. The NGD output file is then

mapped on to the FPGA. The mapping

output is a Native Circuit Description Figure 5-3: Implementation Flowchart

(NCD) file.

The second function of implementation is placement and routing. It adds information to
and modifies the NCD file by placing the logical elements and routing the logical

design.

The third function of implementation is to generate a bitstream for the configuration of
the FPGA. BitGen takes a fully routed NCD file and creates a .bit file containing all the
configuration information defining the internal logic and interconnections of the FPGA.
The bitstream file is then ready for download to the XCV300 FPGA using the XSTools’
GSXLOAD.

5.6 XSTools

The XSTools package [39] is used to provide access to the XSV board’s programmable
components (FPGA, CPLD, Oscillator, RAM etc.) using the PC parallel port. There are

four basic tools that each performs a useful function:
e GXSLOAD: Loads configuration bitstreams (for more details, see section 5.5)
into the FPGA or the CPLD through the parallel port. Without a JTAG interface,

this program replaces the ‘program’ function in Xilinx Foundation. Also

36

provides access to either upload or download the RAM and Flash RAM on the
board. (See Figure 5-5)

e GXSSETCLK: Sets the frequency of the oscillator on the board.

e GXSPORT: Used to send a byte of data through the PC parallel port to the XSV
Board.

e GXSTEST: Runs a diagnostic test on the XCV300 FPGA and XC95108 CPLD.

Also tests the parallel connection.

i

Board Type [X5Y-300 =] Load |
Part ILF'T1 'I / it

FPGA/CPLD Rk Flazh/EEFROM

|

High Address I I

Low Address I I
Upload Farrmat IHEx j 3 IHEx j 3

Figure 5-4: GXSLOAD User Interface

5.7 Summary

This chapter has provided an overview and explanation of the hardware components
(sections 5.1-5.3) of the AAC decoder and the software packages used to design and
implement the hardware description of the AAC decoder’s functionality (sections 5.4-
5.6). The XSV-300 board is well suited as a prototyping environment for the decoder,
with the XCV300 FPGA, AK4520A stereo codec and parallel programming capacity of
the XC95108 CPLD all ideal for the VHDL implementation.

37

6 ALGORITHM IMPLEMENTATION

The tools required in the decoder’s datapath were outlined in chapter three — the
bitstream demultiplexer tool, the noiseless coding tool, the quantisation tool, the
scalefactor tool and the filter bank tool. The tools’ application to a specific conformance
bitstream — ‘L1 fs mod’ — was detailed in chapter four. The hardware environment for

the implementation of the algorithm was outlined in chapter five.

This chapter details the work done toward an implementation of the AAC decoding
algorithm with VHDL. In consideration of the hardware environment, the techniques for
coding the required tools are discussed. When difficulties are encountered, design

decisions are justified and when appropriate, solutions are presented.

6.1 Bitstream Demultiplexer

The bitstream demultiplexer was designed to decode the L1 fs mod bitstream as
detailed in chapter four. The bitstream consists of a header followed by the syntactical
bitstream elements <DSE> <SCE> <FIL> <TERM> <DSE> <SCE> <TERM>. A
further constraint on the demultiplexer is that the bitstream should be decoded in real-

time, and at 48.8kHz, a data bit arrives every 20.48us.

The complexity of the 13818-7 bitstream is in its dynamic coding. On many occasions,
information describing the format of the next bits is gathered from the values of the bits
currently being processed. The vast number of decisions and computations made in
between receiving bits complicates a state machine implementation of the

demultiplexer.

The approach implemented to handle the dynamic bitstream was coupling the state
machine with a programmable counter. The counter has a countdown range of 2048
(11-bit) given that the largest single block of data of L1 fs mod to be received at once
is the 1300 bit payload of the <FIL> element. The maximum payload for a <FIL>

38

element is 2168 bits, and a full implementation of the bitstream demultiplexer would

require a 12-bit counter. However, for the chosen context, 11 bits is sufficient.

Figure 6-1 shows the general flowchart for the state machine’s interaction with the

counter.

Set Counter e

'

—®| Read input bitstream

'

Decrement Counter

Read Counter
count =0

count # 0

Figure 6-1: State-machine and counter flowchart

The third component of the bitstream demultiplexer is a simple SIPO (serial in, parallel
out) shift register. The shift register is 32 bits long. The length of the register was
determined by the maximum size data variable arriving in the bitstream that was
required to be stored or used in a computation. The escape sequence data variables
associated with Huffman codebook eleven have a maximum length of 31 bits. A 32-bit
shift register will accommodate a variable of such length. While other data variables are
longer than 32 bits (e.g., the <FIL> element payload is 1300 bits), they are not required

for any computation and therefore are not necessary to retain.

Following is a description of the approaches incorporated while coding the individual

syntactic elements of the bitstream demultiplexer in VHDL. The VHDL source code

39

files (bitstream_top.vhd, bitstream.vhd, counter.vhd and shift register.vhd) are included

as Appendices C.1, C.2, C.3 and C.4.

6.1.1 The header

A minimalist approach was taken for coding the header decoder. For the purposes of
implementing the basic AAC decoder with L1 fs mod as the input bitstream, none of
the header information needs to be retained as it is already known from the results of the
work outlined in chapter four and the syntactical description of the file outlined in
chapter three. The state machine counter simply counts through the header (608 bits)

and the state machine then begins decoding raw data blocks.

6.1.2 <DSE>

The data stream element was coded in three states. There is one decision that must be
made while decoding <DSE>. After an examination of the 8-bit variable count, a
decision must be made to determine whether the following bits are either esc_count or

the first of the data_stream_bytes. Figure 6-2 shows the <DSE> state diagram.

lid_syn_ele = ID_DSE|

Figure 6-2: <DSE> state diagram

Adding to the complexity of decoding a <DSE> element is the presence of a
byte alignment() function. Simply, the function checks whether the next bit will be the

start of a byte, and if not, packs in redundant data until it is. To incorporate the

40

capability to perform byte alignments, the 32-bit shift register was modified to include a
counter of its own. Together with the parallel output of data, the register has a
countdown counter indicating how many bits remain until the start of a new byte.
Practically, starting from seven, the counter counts down to zero and then starts
counting again from seven. In the case that a byte alignment() is required, the state
machine simply adds to the programmable counter the value of the alignment counter

produced by the shift register.

6.1.3 <SCE>

The single channel element is by far the most complicated element to decode in the
L1 fs mod bitstream. As outlined in chapter four, the <SCE> has four main sections —
isc_info(), section data(), scale factor data() and spectral data(). Of these four
sections, only the decoding of ics_info was described in VHDL. An explanation of the

difficulties encountered in coding the other three sections also follows.

Isc_info() was coded in three states because it requires one decision to be made.
Global_gain, ics_reserved_bit, window_sequence and window_shape are all decoded
at one time, and based on the value of window_sequence (either a long window or a
short window), the size of max sfb is determined as is the presence of
scale factor_grouping information. Figure 6-3 shows the state diagram for decoding

ics_info().

id_syn_ele = ID_SCE]| |LONG_wiNDOwW]

ra| data_blpock single_lement

[SHORT WINDOWY|

Figure 6-3: Ics_info() state diagram

41

To complete the decoding of ics_info(), the ‘help’ variables that detail the scalefactor
bands and the scalefactor grouping (discussed in section 4.3.1) must be calculated, and
the process for calculating these variables is run concurrently with the continuing
decoding of the bitstream. At this point however, difficulties in describing the process in
VHDL arise due to the presence of a ‘for loop’. Figure 6-4 shows the code for one of
the “for loops’ [6, p28].

for(i = 0; 1 < max sfb + 1; i++) {
sect sfb offset[0] [i] = swb _offset long window[i];
swb offset[i] = swb offset long window[i];

Figure 6-4: Example 'for loop'

The variable swb_offset long window][] is implemented in VHDL as a lookup table in
the file scalefactor table.vhd (Appendix C.5). Thus whenever the variable ‘i’ is
presented to the table’s input, the value appears on the output. This implementation
presents no problem — it is the controller implementation that causes difficulty, and the

attempted controller description is included as forloop.vhd (Appendix C.6).

VHDL has two solutions for writing ‘for loops’ — the concurrent statement GENERATE
and the sequential statement FOR LOOP. The GENERATE statement is used mainly
for component instantiation and is not suitable for executing the ‘for loop’ in case. The
FOR LOOP statement is sequential, meaning that it must be run from within a
PROCESS statement. The syntactical expression for writing a FOR LOOP [40] is
shown in Figure 6-5.

[loop label:]

FOR variable name IN range LOOP
statement ;
{statement ;}

END LOOP [loop label] ;

Figure 6-5: FOR LOOP syntax

42

The variable name is implicit to the FOR LOOP — it is the value of the range that is
important. In the example ‘for loop’ (Figure 6-4), the range is from 0 to max_stb + 1.
Therefore, the range in the VHDL code would be ‘0 TO max_sfb + 1°. Assuming that
max_sfb is defined as a VARIABLE and not as STD LOGIC, the syntax is correct and

the ‘for loop” will loop for the correct number of iterations.

The statements within the ‘for loop’ that store the value from the scalefactor table in
the local arrays sect sfb offset[0][] and swb_offset is the source of the problems with
the implementation. This only becomes explicitly obvious with an understanding of

how VHDL executes a PROCESS statement.

A PROCESS statement runs a series of sequential statements, and the values assigned to
variables and signals within a process only take effect when the process is completed.
Simply, this implies that the variable used in the FOR LOOP statement cannot be used
to ‘load’ a value from the scalefactor table. Only when the process is completed will
this value be assigned, and since the FOR LOOP requires a new value for each iteration,

the ‘for loop’ does not evaluate in the desired manner.

At this point it is obvious that a solution for evaluating ‘for loops’ is required. Apart
from the case in question, section data(), scale factor data() and spectral data() all
have complicated looping requirements (including ‘while loops’ and nested ‘for loops’).
As well, scale factor data() and spectral data() require more rigorous access to tables

(similar to the scalefactor table needed in this case).

With these considerations, work on the decoding of a <SCE> was halted. The state
machine required to describe the decoding process of a <SCE> would be very
complicated without a well-designed solution to handle loops. The time available did
not yield a solution and a VHDL description was not attempted. Also, work on coding
the Huffman tables was halted because without a looping solution, the time required to

implement them using VHDL was better used elsewhere.

Section 8.1.1 makes some recommendations about a workable controller solution.

43

6.1.4 <FIL> and <TERM>

The <FIL> and <TERM> elements of the L1 fs mod bitstream were not described in
VHDL primarily due to the incomplete description for a <SCE>. The presence of ‘for
loops’ in the decoding procedure of a <FIL> element was a secondary deterrent. The

decoding procedure for <TERM> is simply to look for the next syntactic element.

6.2 Noiseless Coding

In section 4.6 (particularly Table 4-3), the relationship between noiseless coding and
spectral data() decoding was explained. These two processes are entirely dependent
upon one another; the noiseless coding tool cannot be coded separately to the
spectral data() decoder. Thus the decision to abandon the VHDL description of the
spectral data() decoder (section 6.1.3) forces the abandonment of the VHDL

description of the noiseless coding tool.

6.3 Quantisation and Scalefactors

There are two reasons that the quantisation tool and the scalefactor tool were considered
together. The first is that they both apply non-linear transformations to all the Huffman
decoded spectral values (see section 4.7 and 4.8). The second is that both tools can be

applied within the same control loop.

6.3.1 Implementation of non-linear functions

The quantisation and scalefactor tools are very easy to implement in software because
the inputs and the outputs for the calculations can be specified as floating point
numbers. However, VHDL does not incorporate a standard floating-point arithmetic
library, leaving two options for the implementation of non-linear functions. Firstly, a
FPU (floating-point unit) core could be imported and used as the arithmetic core, or

alternatively, a fixed-point approximation of the functions could be used.

44

6.3.1.1 FPU Core

An implementation based on an FPU core would require a floating-point adder and a
floating-point multiplier. Both the quantisation and scalefactor tools are based on

#3). For a simple

functions that involve an integer raised to the power of a fraction (e.g. x
FPU core to execute these non-linear functions, polynomial regression must be used to
change the exponential functions into polynomial functions that can be evaluated with

standard multiplication and addition.

Figure 6-6 shows a graph of the output values (x invquant) of the quantisation tool
plotted against a range of input values (x_guant between 0 and 32). This function can be
approximated using second order polynomial regression, and the approximating
equation is:

x_inquant =0.04-x quant® +1.98-x quant —1.77

Quantisation

120.00

100.00 1 /
€ 80.00
1]
=
S 60.00
=
><| 40.00 /

0.00 T T T T T T

0 4 8 12 16 20 24 28 32

X_quant

Figure 6-6: Approximation of the quantisation function using polynomial regression

Figure 6-7 shows a graph of the output values (gain) of the scalefactor tool plotted
against a range of input values (sf between 0 and 252). Also shown is an approximation
of the function using fifth order polynomial regression. It stands to reason that while the

quantisation tool can be approximated with polynomial regression, the scalefactor tool

45

cannot. Therefore, it would have been impractical to implement the scalefactor tool

using an FPU core.

Scalefactors

3.0E+11

2.5E;HAiE
2.0E+11
1.5E+11

gain

1.0E+11 /

5.0E+10 -
0.0E+00 -

1
sogsi0d 32 64 96 128 160 192 224 256

Figure 6-7: Approximation of the gain function using polynomial regression

As well as accuracy, it was also important to consider the resources required for
importing an FPU core and a paper on FPU optimisation by Irvin Ortiz Flores gave
relevant insight into an FPU core’s resource requirements. Table 6-1 summarises the
FPGA resources (slices and lookup tables) used by his optimised FP adder and

multiplier. These units conform to the IEEE standard for single precision floating-point

numbers.
Operation Exponent Size | Mantissa Size Slices Used LUTSs Used
FP Add 8 bits 23 bits 424 2402
FP Multiply 8 bits 23 bits 398 1062

Table 6-1: Resource requirements of floating-point units

The XCV300 has 3072 slices and 6144 LUTs. Using the two FP units would require
that 26.8% of the FPGA’s slices and 56.4% of the FPGA’s LUTs be dedicated to the

FPU arithmetic core. Though these results offer only an approximation, they are

46

sufficient to conclude that it is inappropriate to dedicate this much resource to FP

arithmetic in light of the complexity (and resource required) of the AAC decoder itself.

6.3.1.2 Fixed-point Arithmetic

The alternative to an FPU core is a fixed-point approximation, and this was the option
chosen for the quantisation and scalefactor tools. A fixed-point approximation uses only
integer values and can therefore be implemented using either the standard VHDL
arithmetic operators contained in the STD LOGIC ARITH package or by storing the

integer values in lookup tables.

The non-linear functions used in the two tools are approximated using lookup tables.
The output values are stored and indexed according to their corresponding input values.
To overcome the inaccuracy introduced by fixed-point arithmetic, the stored values
were all multiplied by eight before rounding occurred, and the scalefactor tool was
nested within the quantisation tool (section 6.3.2). Were the scalefactor tool not nested
within the quantisation tool, it would be unnecessary to multiply the values in the

quantisation lookup table by eight.

Table 6-2 shows the steps involved in calculating the values stored in the lookup tables.

Quantisation
Step | Action Result
1. Apply Quantisation function (e.g. value =9) 18.72
2. Multiply result by 8 149.76
3. Round to nearest integer and store in lookup table 150
Scalefactors
Step | Action Result
1. Apply Scalefactor gain function (e.g. value = 118) 22.63
2. Multiply result by 8 181.04
3. Round to nearest integer and store in lookup table 181

Table 6-2: Application of adjustment factor for lookup table values

47

6.3.2 Implementation of control loop

The control loops for the quantisation and scalefactor tools are complicated, consisting
of four nested ‘for loops’. The combination of these two loops results in the pseudo-
code shown in Figure 6-8. An examination of the structure of the code indicated that
considering the two tools together may yield a more optimised solution, and this was the

casc.

for (g = 0; g < num_window groups; g++) {
for (sfb = 0; sfb < max_sfb; sfb++) {
width = (swb_offset[g][sfb + 1] - swb offset[g][sfb]);

for (win 0; win < window _group len[g]; win++) {
gain = 2”(sf[g]l[sfb] * 0.25f - 25);
for (bin = 0; bin < width; bin++) {
x_invquant[g] [win] [sfb] [bin] =
sign(x_quant[g] [win] [sfb] [bin]) *
abs (x_quant[g] [win] [sfb] [bin]) "~ (4/3);
x rescal[g] [win] [sfb] [bin] =
x_invquant[g] [sfb] [win] [bin] * gain;

Figure 6-8: Quantisation and scalefactor control loop

The effectiveness and accuracy of the implementation of the integer lookup tables and
the hybrid control loop is discussed in section 7.something; an explanation of the

VHDL coding of the implementation — both datapath and controller — is included here.

6.3.3 Datapath

The datapath design for the quantisation and scalefactor tools is shown in Figure 6-9.
The datapath does not require an external clock as concurrent assignment statements are
used for all the events in the VHDL description. Similarly, no reset function is required
as all the logic is combinational. The VHDL source files — quantisationTop.vhd,
invquant.vhd, scaleapp.vhd and quantadjust.vhd — are listed as Appendices C.7, C.8,
C.9 and C.10.

48

X_quant

]

2's Complement

9

9

vauat. whed

B scale

Factor

50
scaleapp whd

bit shaft == 3

-

47 2's Complement

47

multiplesx

adjustouant vhed

X rescal

Figure 6-9: Quantisation and scalefactor datapath

The data input for the datapath is the spectral value x guant. The maximum absolute

value for x_guant is 8191, but for decoding L1 fs mod, the maximum absolute value is

49

32. The x_quant input must therefore be of a bit magnitude high enough to represent a
two’s complement range including +32. Seven bits are required since six bits only

provide a range from —32 to +31.

The file invquant.vhd describes the use of the quantisation lookup table. To halve to
size of the Q LUT, only the positive values (0 to 32) were used as indexes. Thus the
first operation in the datapath prepares the two’s complement of x guant and uses the
MSB of x_quant to determine whether the original value or the two’s complement value
is the absolute value of x_guant. The absolute value is then multiplexed into the Q LUT,
which contains an x_invquant value for each x_quant 0 to 32. [Note: The value stored is

eight times the floating-point value for x_invquant and rounded to the nearest integer.]

The scalefactor tool is nested inside the quantisation tool, and the tool’s datapath
(described by scaleapp.vhd) is shown in Figure 6-10. A gain factor is retrieved from the
SF LUT and multiplies with x_invquant to give x rescal. As the tool is nested, this
multiplication is done before the sign is reinstated to x_rescal and before the value of

x_rescal is adjusted by the divisor of eight.

X_Invquant

B SF
scalefactor| LUT

43 ~[10

e/
multiply

53

bit shift »= 3

50

x_rescal

Figure 6-10: Scalefactor datapath

50

A design assumption was made in regard to the width of the scalefactor input. For
L1 fs mod, the largest scalefactor value is 125, requiring 7 bits. However, the first
active scalefactor is the 8-bit value global gain, and so an 8-bit input was used. It is

assumed that no scalefactor in any encoded bitstream will exceed 255.

The final function in the datapath is adjusting the 53-bit value for x rescal by dividing it
twice by eight (once in scaleapp.vhd and once in adjustquant.vhd) and reinstating the
sign. The result is a 47-bit two’s complement value x_rescal. An array of these values is

ready for transformation under the IMDCT in the Filter Bank tool.

6.3.4 Controller

As introduced in section 6.3.2, the control of the quantisation and scalefactor tools is
done by a hybrid block of four nested ‘for loops’ (see also sections 4.7 and 4.8). Work
done on the implementation of the bitstream demultiplexer to decode a <SCE> (section
6.1.3) was halted due to an inadequate method for encoding ‘for loops’. As the hybrid
controller for the quantisation and scalefactor tools has four nested ‘for loops’,
implementation in VHDL was not begun. However, section 8.something gives

consideration to how the controller for these tools could be implemented.

6.4 Filter Bank

Some investigation of the Filter Bank tool was carried out but the tool was not
implemented in VHDL. Instead, considerations for an implementation of the tool are

presented in section 8.1.3.

6.5 Summary

This chapter has addressed the work done on the coding of the AAC decoder in VHDL
for implementation on an FPGA. The bitstream demultiplexer was partially decoded,
but a full VHDL implementation was not attempted due to the lack of a well-designed

solution for handling loops (section 6.1). The noiseless coding tool was not described

51

because the bitstream demultiplexer was incomplete (section 6.2). A fixed-point
implementation of the quantisation and scalefactor datapath was realised, but the

controller was not implemented (section 6.3). Finally, no work was done on coding the

filter bank in VHDL.

52

/7 PROJECT EVALUATION

This chapter evaluates the performance and results of the work undertaken toward a
VHDL implementation of an AAC decoder as well as the personal performance of the
engineer — the processes and methodologies used. The evaluation compares the final

results of the thesis project with the project objectives.

7.1 Evaluation of Product Performance

The objective of the project was to investigate, and implement, an MPEG-2 AAC
decoder for real-time decoding of an AAC LC bitstream. The conformance bitstream
‘L1 _fs” was selected; the tools required for a full decoding the bitstream are the
bitstream demultiplexer tool, the noiseless coding tool, the quantisation tool, the

scalefactor tool and the filter bank tool.

Implementations of the noiseless coding tool and the filter bank tool were not
attempted. Therefore, a full decoding of the L1 fs bitstream was impossible. However,
significant work was carried out with the bitstream demultiplexer tool (section 6.1) and
the quantisation and scalefactor tools (section 6.3). An evaluation of the performance of

the three tools implemented follows, and conclusions are drawn.

7.1.1 Bitstream Demultiplexer

The bitstream demultiplexer was evaluated in two stages. Firstly, the correctness of the
VHDL implementation was tested using Active-HDL’s waveform editor and a
testbench. Secondly, the design was synthesised and implemented with Xilinx

Foundation.

7.1.1.1 Active-HDL Waveform and Testbench

As detailed in section 6.1, the bitstream demultiplexer was only partially implemented

in VHDL. The implementation decodes the header followed by the <DSE> and up to

53

the end of ics_info() in the first <SCE>. The integrity of this implementation was
observed using a VHDL testbench and a memory block (written in VHDL) dedicated to
streaming the L1 fs mod bitstream into the decoder. The VHDL descriptions
testbench.vhd and bitstream source.vhd are included as Appendices C.11 and C.12.

The waveform in Figure 7-1 shows that the header is the first element decoded by the
VHDL model. The value of the counter count data is set to 25Fh to count down from
607 to zero. The input data available(0) is the most recent bit that was shifted into the
decoder, and the header data is not stored, but is simply allowed to shift in and out of

the shift register.

or preszent_state idle_state }'{header

nr clock 48kHz L L L L

B data_available() [|
B |atch |

® count_data 003 K25F ¥25E ¥25D ¥25C ¥25B

Figure 7-1: Waveform output when decoding the header

Following the header is a <DSE>. The first objective when decoding the <DSE> is to
determine the number of data stream bytes in the element. Dse count is read as 001h,
indicating that two bytes follow. As dse_count is less than 255, the data bytes are read
but not stored during data stream element3. The data correlates to the values
determined in section 4.2, and the waveform for the decoding of the <DSE> is shown in

Figure 7-2.

r prezent_state }{data_stream_element data_stream_slement?

™ clock_d8kHz mnnnnnnnnnnnnLnnnnnnnnnm
o data_avaiablel] | || [] [LITLI L

ar dze_count st Kot o0 'l

® byte_data 2080020080000200000008 0000000000

Figure 7-2: Waveform output when decoding a <DSE>

54

Also of note is the correct implementation of the byte alignment() function. The red
vertical line in Figure 7-2 indicates that the byfe data value to the left of the line was
added to the counter value (not shown) on the transition to the data stream element3
state. There are eight clock cycles while dse count is equal to one, confirming that zero

was added for the byte alignment().

The next syntactical element in L1 fs mod is a <SCE>. Figure 7-3 shows the waveform
for decoding this element up to the end of ics info(). The global gain is 64h, the
window _shape 1is Oh, the window sequence is 0lh and the max sfb is 29h. The
scale factor grouping remains undefined because the window sequence is not
EIGHT SHORT WINDOWS. There five values are the same as the values obtained in

section 4.3. The state transition within ics_info() was also correctly evaluated.

o present_state ;J{Eingle_channel_element }‘.:icg_infc-_l-:-ng b

™ clock_48kHz A e e A T T N e
o data_avalable(0] 1] BEREREE

ar global_gain 54 i

ar window_zhape |

T indow_seguence }{1

%Fﬁ‘lﬁﬁ

T max_sfh 249

r scale_factor_grouping

Figure 7-3: Waveform when decoding a <SCE>

7.1.1.2 Xilinx Foundation Synthesis and Implementation

The four VHDL files describing the bitstream demultiplexer (bitstream top.vhd,
bitstream.vhd, counter.vhd and shift register.vhd) were sythesised in Xilinx Foundation
for the XCV300PQ240 FPGA with a speed grade of 6. The synthesis generated seven
warnings that a “variable is being read (inside a state machine) but is not in the process
sensitivity list of the block which begin there (HDL-179)”. These warnings were
ignored, as the functionality of the state machine requires the variables to be omitted

from the sensitivity list, and are not detrimental to the implementation.

55

A detrimental warning did occur however during mapping (FPGA-PADMAP-2). The
synthesiser optimised the design by removing the input port bits in, indicating that the
port was not attached to a net and that it was redundant. Clearly, bits in is not a
redundant port — it is the input port for the AAC bitstream — but much investigation and
debugging did not remedy the warning.

The implementation of the bitstream demultiplexer was successful, but the
implementation did not include the input port bits _in. This ruled out any opportunity to
develop a testing procedure for running the tool on the FPGA. However, the
implementation results for the bitstream demultiplexer are available and included below

as Figure 7-4.

Xilinx Mapping Report File for Design 'bitstream top'
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.

Design Information

Command Line : map -p xcv300-6-pg240 -o map.ncd decoder.ngd decoder.pcf
Target Device : xv300

Target Package : pg240

Target Speed : -6

Mapper Version : virtex -- D.27

Mapped Date : Fri Oct 11 13:27:51 2002

Design Summary

Number of errors: 0
Number of warnings: 1
Number of Slices: 7 out of 3,072 1%
Number of Slices containing

unrelated logic: 0 out of 7 0%
Number of Slice Flip Flops: 12 out of 6,144 1%
Number of 4 input LUTs: 0 out of 6,144 0%
Number of bonded IOBs: 2 out of 166 1%
Number of GCLKs: 1 out of 4 25%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design: 159
Additional JTAG gate count for IOBs: 144

Figure 7-4: Xilinx implementation output statistics for bitstream demultiplexer

In addition to the above results, the post-layout timing analysis showed a maximum
clocking frequency of 215.8MHz. The implementation could be run on the XCV300 at
the maximum clocking frequency while making very small demands on the FPGA’s

resources.

56

7.1.1.3 Summary

The partial implementation of the bitstream demultiplexer behaves correctly in a VHDL
testbench. The first 688 bits of L1 fs mod can be decoded in accordance with the
documented standard ISO/IEC 13818-7. The FPGA implementation of the VHDL code
does not function and was not tested due to an FPGA-PADMAP-2 warning.

7.1.2 Quantisation and Scalefactors

The quantisation and scalefactor tools were evaluated in four stages. Firstly, the
accuracy of the fixed-point implementation was compared to alternate approximations
and to the original floating-point calculations. Secondly, the correctness of the VHDL
implementation was tested using Active-HDL’s waveform editor. Thirdly, the design
was synthesised and implemented with Xilinx Foundation. Finally, the design was run

and verified on the FPGA.

7.1.2.1 Verification of Fixed-Point Accuracy

Section 6.3 explained that the quantisation and scalefactor tools used lookup tables to
implement fixed-point arithmetic. Moreover, the values stored in the tables were
multiplied by eight before rounding and the scalefactor tool was nested within the

quantisation tool in an effort to increase the accuracy of the fixed-point approximations.

The accuracy of the implemented datapath was compared with some alternatives using
Microsoft Excel. A spreadsheet was created that calculated the results of the
quantisation and scalefactor tools, and three analysis tests were carried out with these

results.

The first test compared the accuracy of the implemented fixed-point lookup tables with
the original floating-point functions. The scalefactor value of 137 was used, and the
results were calculated over the range 0 to 32 for x quant. Figure 7-5 shows the
percentage difference resulting from the implemented quantisation-scalefactor datapath

replacing the floating-point calculations. The accuracy is excellent, within +1%.

57

Fixed-point Accuracy

10

5 4
S
'6 0 N " T ; ;
X) 4 8 12 16 20 24 28 32

-5

-10

X_quant

Figure 7-5: Accuracy of fixed-point implementation compared to floating-point

The second test was carried out to determine whether a multiplication factor of eight
was ideal for the stored lookup table values of the scalefactor tool. Figure 7-6 shows the
percentage error of using one, eight and sixteen as multiplying factors. It is conducted

over the range of 85 to 125; outside of these values, the error is negligible.

Multiplication Factor Comparison

100

o \
S \

S
o
=
(]
X 40 -
- \//\\/A A
0 W MW
85 95 105 115 125
scalefactor
—— Factor of 1 ——Factor of 8 —— Factor of 16

Figure 7-6: Accuracy achieved using different multiplication factors

58

The accuracy improvement of using a multiplication factor is clear. However, the
difference between using sixteen in comparison with eight is small. Using sixteen
instead of eight would increase the size of the lookup table and increase the complexity
of the multiplier in the scalefactor datapath (Figure 6-10). Both of these tradeoffs are
more significant than the resulting increase in accuracy, and a multiplication factor of

eight is the ideal value.

The third test was carried out to determine the benefit of nesting the scalefactor tool
within the quantisation tool. Figure 7-7 shows the percentage error of using a nested
datapath versus a sequential datapath for each value of x quant. It is clear that the
performance increase due to nesting is significant, and verifies that it is the ideal

solution.

Nested Scalefactor Tool

20

10

% error
o
D
%
)

T TN ¥
) 8 -% 16 20 24 28 32
-10
X_quant
—— Sequential —— Nested

Figure 7-7: Accuracy improvement with a nested scalefactor tool

59

7.1.2.2 Active-HDL Waveform

The correctness of the VHDL implementation was verified using the waveform editor
of Active-HDL. Table 7-1 summarises the test vectors used for the verification and
Figure 7-8 shows the waveform output of the nested datapath. The results from the

datapath are as expected using the given vectors.

INPUT OUTPUT
X_quant scalefactor x_rescal
Decimal Hex Decimal Hex Decimal Hex

0 00 0 00 0 000000000000
32 20 137 &9 61876 00000000F1B4
-32 60 137 89 -61876 7FFFFFFFOE4C
32 20 118 76 2299 0000000008FB
-4 7C 118 76 -144 7FFFFFFFFFEF70

Table 7-1: Test vectors used for verification of datapath

B 4 quant [Han {60 20 ¥7c
B scalefactor 300 Jiag 7e
© u rescal §0000DO0DOOOD 4{00000000F 14 “TFFFFFFFUE4C 40DO0DDOODEFE #7FFFFFFFFFTD

Figure 7-8: Waveform output of quantisation and scalefactor tools

7.1.2.3 Xilinx Foundation Synthesis and Implementation

The VHDL files quantisation_top.vhd, invquant.vhd, scaleapp.vhd and adjustquant.vhd
were synthesised and implemented using Xilinx Foundation. No errors or warnings
were encountered in either process, and a transcript of the implementation results is

included as Figure 7-9.

60

Xilinx Mapping Report File for Design 'quantisation top'
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.

Design Information

Command Line : map -p xcv300-6-pg240 -o map.ncd g.ngd g.pcf
Target Device : xv300

Target Package : pg240

Target Speed)

Mapper Version : virtex -- D.27

Mapped Date : Tue Oct 08 15:17:23 2002

Design Summary

Number of errors: 0
Number of warnings: 1
Number of Slices: 479 out of 3,072 15%
Number of Slices containing
unrelated logic: 0 out of 479 0%
Total Number 4 input LUTs: 937 out of 6,144 15%
Number used as LUTs: 936
Number used as a route-thru: 1
Number of bonded IOBs: 60 out of 166 36%

Total equivalent gate count for design: 9,081
Additional JTAG gate count for IOBs: 2,880

Figure 7-9: Xilinx implementation output statistics for quantisation / scalefactor tools

The post-layout timing analysis reported that the maximum delay in the datapath was
34.89ns, indicating that the quantisation and scalefactor tools could produce 28.7
million results per second without pipelining the implementation. The timing
performance and resource requirements of the tools are well within the capability of the

FPGA.

7.1.2.4 Verification with XSV300 Development Board

Finally, the quantisation and scalefactor tools were verified on the XSV300
development board. Some modifications were made to the VHDL code for the purposes

of testing and for allowing the inputs and outputs to be easily mapped on the board.

The datapath inputs were mapped to push buttons and switches. The x guant input was
reduced to a 4-bit input and mapped to the active-low pushbuttons. The upper three bits
were tied low, reducing the range of testable x _quant values to 0 to +15. The scalefactor
input was mapped to the eight-position DIP switch (ON = logic low, OFF = logic high)

and retained its full range.

61

The datapath output, x rescal, was mapped to the left and right expansion headers.
These expansion headers are used to access the SRAM chips on the XSV Board, but can
be used for general I/O if the SRAM chips are disabled. Therefore, two extra output
signals were incorporated into quantisation top.vhd that tied the SRAM chip enable
pins high.

A UCEF constraints file (see Appendix D) was written for the implementation that maps
the synthesised I/O pads to the FPGA’s pins. Xilinx Foundation was used to re-
implement the synthesis with the constraints file and GSXLoad was used to download
the bitstream ‘q.bit’ to the XSV Board. The design was tested and verified using a

multimeter to check the response of the output pins to given input values.

7.1.2.5 Summary

The implementation of the quantisation and scalefactor tools is completed. The
accuracy of the tools is *1% compared to a floating-point implementation, and
considering the tools together optimises the datapath. A full VHDL description behaves
correctly under testing in Active-HDL, and synthesises and implements without errors
or warnings in Xilinx Foundation. Finally, the design displays accuracy, robustness and

soundness when executed on the XSV Board.

7.2 Evaluation of Personal Performance

Each stage of the project required the employment of technical skills and time
management skills. This section evaluates the processes that resulted in the final product
and design. For suggestions on how to improve the employed methodologies for future

projects, see chapter eight.

62

7.2.1 Technical Skills

The major components of the technical skill set required for the project were research
skills, digital design skills, VHDL coding skills, reporting skills and presentation skills.

A critical evaluation of this skill set follows.

The process of researching the topic of audio coding algorithms, collaborating data in a
meaningful manner and making informed decisions based on the collaborated data was
done well. Many sources — technical books, journal articles, conference papers, Internet
publications and technical documents — were accessed to provide the project with
foundation and scope. The main deficiency in research methodology was the late
acquisition of the ISO/IEC 13818-7 standard document. Originally, it was decided that
this document would not be essential reading, but as the project progressed, the

necessity of the document became glaringly obvious.

The process of digital design is a skill that was acquired in subjects studied previously,
notably COMP3100 and COMP4100. Having gained a thorough understanding of the
AAC decoding algorithm, state machines, counters, registers, adders and other logic
units were used to implement a data path and control unit for sections of the decoder.
The complexity of the AAC decoder required more precise design decisions — decisions
that, in the end, were unable to be made to an optimal level (e.g. ‘for loop’ design

solution).

Experience with the VHDL language in previous studies was sufficient to code the
included parts of the decoder, but not sufficient to code the solution optimally. Notably,
state machine coding and concurrent process coding were done with a functional goal in

mind, not a performance goal.

Experience in reporting on large projects was minimal, and the reporting process was
neglected until the end of the project. A workbook was kept throughout, making
information integration a little easier, but at all points during the project when reporting
was taking place, technical progress stopped. Similarly, though presentation skills had

been acquired in previous studies, the presentations were always at the conclusion of the

63

project. Preparation for presentations was at the expense of progress on the technical

aspects of the project.

7.2.2 Time Management Skills

The thesis project, due to its duration and complexity, requires good time management
skills in order for the project to be a success. Time management can be divided into two

main categories, internal and external.

Internal time management refers to how the allocated time for the project was spent. To
organise this time, a project plan was included with the project progress report and
submitted on 19™ April 2002. Since that submission, the project plan has not been
referred to, indicating clearly that it was non-functional. The project plan was
exceedingly optimistic, and even ignorant of the requirements of the project. It was

written hastily and without a thorough consideration of the project’s demands.

A critical evaluation of internal time management for the project concludes the
following. Too much time was wasted before research commenced, and the research
required much more time than was first thought. A seven-week delay on the delivery of
the ISO/IEC 13818-7 standard (requested May 22, received July 19) pushed the whole
project schedule back a number of weeks, resulting in implementation commencing on
9™ September — six weeks later than an ideal date in early August. Contingency
decisions were made to compensate for this unforseen delay, with the decoder

implementation suffering as a result.

External time management refers to how the allocated time for the project was
scheduled among the other demands on a 4 year engineering student. There is always
the possibility of spending more time on the project, but from the outset it was decided
that it was important to maintain a balanced academic, extra-curricular, social and
spiritual life. Accordingly, the relative quality of the product is lower, but the relative

quality of all other aspects of life is higher.

64

A critical evaluation of external time management for the project concludes the
following. During first semester, too much time was given to other university subjects
(particularly COMP4102) at the expense of time spent on the thesis project. This was
detrimental to progress, and increased the second semester workload (alongside the
above mentioned delay in document delivery). During second semester, the intentional
decision to maintain a balanced lifestyle did not provide time to make up for the time

lost in first semester.

7.3 Summary

This chapter evaluated the partial implementation of the bitstream demultiplexer
(section 7.1.1) and the full implementation of the quantisation and scalefactor tools
(section 7.1.2). The results of the evaluation show that the work done during the project
is a solid foundation for a full implementation of an AAC decoder capable of decoding
the conformance bitstream L1 fs and eventually, any AAC LC bitstream. Also, the
processes and methodologies used in achieving the final results were evaluated (section

7.2).

65

8 FUTURE DEVELOPMENTS

This chapter provides suggestions for future work on the implementation of an AAC
decoder. Also, suggestions for improvements regarding the approach to a similar project

are made.

8.1 Product Developments

Four main areas of further work and development have been identified at the conclusion
of this project. Firstly, the implementation of an adequate controller for the bitstream
demultiplexer and the noiseless coding tool must be developed, as well as the
quantisation and scalefactor tools. Secondly, work must be done on a complete
approach to data storage during decoding. Thirdly, the filter bank tool must be
developed. Finally, the FPGA’s interaction with the PC — both for bitstream decoding

and configuration programming — requires work.

8.1.1 Controller Implementation

The main conclusion drawn from the partial VHDL implementation of the bitstream
demultiplexer (section 6.1.3) was that a method for implementing complicated ‘for
loops’ and table accesses must be engineered. Similarly, the VHDL implementation of a
controller for the quantisation and scalefactor tools (section 6.3.4) was abandoned due
to the four nested ‘for loops’ required for processing. A recommendation is made for an

approach toward a controller implementation that would solve the problem.

The control needed to demultiplex an AAC bitstream is not well suited to an FPGA
implementation. As detailed in section 2.4, DSPs excel and FPGAs do not excel when
extensive evaluations of conditional statements are required, and this is surely one
reason why DSPs have been preferred for all the current commercial implementations
of hardware-based AAC decoders. DSPs can be programmed with the C programming
language (or equivalent) — a language much more proficient in dealing with conditional

statements than VHDL. Similarly, the nested ‘for loops’ used for the quantisation and

66

scalefactor controller are much better suited to a more traditional hardware architecture

and implementation.

A combination DSP/FPGA solution for the decoder controller would be inappropriate if
the DSP was used primarily as a decision maker. Perhaps the best solution for
controlling the AAC decoder would be to use a small microcontroller. The bitstream
demultiplexer could be controlled using code almost identical to the syntax descriptions
in ISO/IEC 13818-7, and hence the noiseless coding tool could also be controlled using

the microcontroller (see Table 4-3.)

A microcontroller could also handle the transfer of any externally stored data (Huffman
tables, spectral values etc — see section 8.1.2) between the storage device and the FPGA.
Certainly the controller for the quantisation and scalefactor tools only needs to ensure
that the correct values in the interleaved array are modified and updated in a systematic

manner.

A feasibility assessment of this recommendation for the incorporation of a
microcontroller is beyond the scope of this project, as is any development of this

recommendation. It is suggested for future work.

8.1.2 Data Storage

No formal work was done during the project on the issue of data storage. At many
stages in the decoder’s datapath, information is required to be retained. Whether this is
the static storage of the Huffman tables, the storage of the spectral values attained from
the noiseless coding tool, the various storage requirements within the filter bank or the
storage of control information gathered from the bitstream demultiplexer, appropriate

decisions about data handling must be made.

The storage requirements for the Huffman tables will be determined primarily by the
manner in which the tables are coded. If simple lookup tables are used, the data will be
‘stored’ within the logic on the FPGA and consume chip area and resources. If a

controller is used to access some external storage device, latency will be introduced.

67

After Huffman decoding has occurred, each raw data block yields 1024 samples of
spectral data, and the trade-off between speed and area must again be considered when

choosing the data storage method for these values.

The XSV board has on-board SRAM, but no work was done with the SRAM during this
project. However, previous work has been done with the SRAM [41] and could form
the basis for the data storage scheme. Alternatively, other implementations for external

storage may need to be considered.

In summary, the data storage issues require more detailed attention than they were given
in this project. A suitable solution for retaining data from the input to the output must be

achieved if a full implementation of an AAC decoder is to be realised.

8.1.3 Filter Bank

An implementation of the filter bank tool was not attempted as part of this project, and
only preliminary work was done toward such an implementation. However, the work
did uncover challenges that would need to be overcome in order to make an FPGA

implementation of the tool possible.

That the filter bank is suitable for implementation on an FPGA is beyond doubt; many
multiply-accumulate (MAC) tasks are frequently done using FPGAs. Furthermore,
Xilinx has published an application note [42] describing the implementation of an
Inverse Discrete Cosine Transform (IDCT) for a Virtex FPGA. The IDCT is part of the
MPEG video decoding standard and the implementation of the IDCT is appropriate for

use in a real-time MPEG video decoder.

The main challenge is the same challenge that was faced in the design and
implementation of the quantisation and scalefactor tools. By nature, the filter bank
requires the incorporation of floating-point arithmetic, and as a further challenge, the
incorporation of trigonometric functions, division, and square root. The cosine function
is required for the IMDCT itself, the sine function is required for the application of the

sine window, and division and square root are required for the application of the KBD

68

window. Though the filter bank would be supplied with integer value inputs, a great
deal of work and modification to the filter bank algorithms would be required to retain

accurate integer outputs after the computational functions had been applied.

A popular method for implementing trigonometric functions on FPGAs is to use
CORDIC (Coordinate Rotation Digital Computer) algorithms. Ray Andraka has
published a survey of CORDIC algorithms [43] for FPGA-based computers and
explains how vector rotation functions are applicable to hardware blocks such as DFTs
(Discrete Fourier Transforms) and DCTs. Also, Vladimirova and Teggeler have
published a paper [44] on fast, efficient implementations of CORDIC algorithms on
FPGA. However, these papers deal with implementations using n-bit binary fractions,
and insufficient work has been done to conclude whether or not they are suitable for use

in the AAC decoder.

As an alternative to using trigonometric functions, Duhamel, Mahieux, and Petit have
presented work [45] that equivocates an FFT-based algorithm using complex number
arithmetic with the standard IMDCT. This alternate algorithm has been used in a VLSI
implementation [22] of an AAC decoder with results indicating that the computational
load of the filter bank was reduced by a factor of ten. However, the processing core was
a DSP, and comment on the usefulness of using the alternate algorithm in this case

cannot be made.

In summary, the filter bank tool is very appropriate for implementation on an FPGA,
but due to its complex base algorithms, only preliminary work could be done during this
project. An entire thesis could be written on the implementation of the filter bank tool
alone, and this section included information that would be helpful for beginning such a

project.

8.1.4 PC-FPGA Communication

There are two instances when the PC is required to communicate with the FPGA. In the
first instance, the PC must transfer an AAC LC bitstream to the FPGA so that a

48.8kHz bitstream can be processed serially. However, this does not imply that the

69

communication link between the PC and the FPGA must be a serial link. A suitable
communication protocol detailing both the PC side of communication and the FPGA
side of communication needs to be developed before the functionality of the decoder

can be fully tested.

Previous work with the XSV Board has seen the development of a communication link
between the PC and the board’s SRAM chips via the parallel port [41]. Both the PC
software (written in Visual Basic) and the FPGA configuration (in VHDL) are
documented and freely available. This work could provide a starting point for the final

PC-FPGA communication link.

The last stage of work on this project will be an attempt to adapt the PC-SRAM
interface to demonstrate the functionality of the completed quantisation and scalefactor
tools. PC software will be written and incorporated into the FAAD2 decoding
algorithm, and VHDL files will be added to the implementation to provide capability
for the FPGA to communicate with the PC.

In the second instance, the PC programs the FPGA with the configuration bitstream via
the parallel port. A final improvement to the design of the decoder would be the

incorporation of standalone operation.

Standalone operation is achieved by downloading the configuration bitstream into the
on board Flash RAM and programming the CPLD to load the configuration bitstream
from the Flash instead of the parallel port. Such a modification would negate the need

for the FPGA to be reprogrammed each time it was powered down.

Standalone operation was successfully incorporated using the XSV Board by Jorgen
Pedderson and is detailed as part of the thesis project he completed in 2001 [35]. This
reference gives sufficiently detailed information for standalone operation to be

incorporated into the AAC decoder.

70

8.2 Process Developments

Overall, as outlined in section 7.2, the technical skills and time management skills
employed during the project worked with some success. However, many lessons were

learned, and suggestions for improving technical abilities and time management follow.

With regard to technical skills, little can be done other than to anticipate the problems
that may arise and take pre-emptive action. As a specific example, while the project was
being delayed by the document delivery problems, reading about VHDL programming
skills would have resulted in better preparation for the implementation of the decoder.
As another example, recognising the need for the ISO/IEC 13818-7 document earlier —
i.e., anticipating that it might be necessary — would cut down on the time spent
researching for information on implementational approaches. In a future project, greater

anticipation would result in better application of the required skill set.

With regard to time management, a more realistic project plan would have helped
achieve a more successful product. The lack of small milestones in the plan lessened the
plan’s motivational capacity and usefulness. As a specific example, a task such as
‘Implement bitstream module’ could be broken down further into a number of
achievable milestones such as ‘Understand algorithms involved’, ‘Complete paper
design’, ‘Write VHDL code’, ‘Simulate and debug code’ and ‘Test implementation’.

Progress is then measurable and the plan is then useful.

In summary, a future project would require more thorough planning, both in time
scheduling and contingency, to be successful. Also, setting time aside to review
progress and involving someone else in that process, i.e. the supervisor, would facilitate

a more purposeful approach to the project.

8.3 Summary

This chapter has made recommendations for future work and development in four main

areas pertaining to an implementation of an AAC decoder (section 8.1). The primary

71

recommendation was that a microcontroller be used to control the now implemented
decoding tools. Also, the developments to the processes involved throughout the project

were suggested to improve the performance of the engineer in the future (section 8.2).

72

9 CONCLUSION

The goal of the project was to investigate and implement an audio coding algorithm on
an FPGA. For these purposes, the MPEG-2 AAC decoding algorithm was chosen, and
the implementation environment centred around the Virtex XCV300 FGPA. The
algorithm was analysed and an appropriate block diagram including the essential
decoding tools was extrapolated. A modified conformance bitstream — L1 fs mod —

was selected for decoding and this finalised the design constraints for the decoder.

The L1 fs mod bitstream was decoded manually by hand to provide the thesis with a
foundational theoretic understanding of the decoding algorithm and as well as a
comprehensive set of data that was used for testing purposes. The listing of the
decoding is included with this thesis and will provide an excellent foundation for future

work with the algorithm.

With a thorough understanding of the algorithm, an implementation of the decoder
using VHDL was undertaken. Two of the five essential decoding tools were fully
described and another was partially described. The final product is incapable of

decoding an AAC bitstream, but is a first step toward a fully-functional implementation.

An evaluation of the implemented tools returned excellent results. The fixed-point
implementation of the quantisation and scalefactor tools is robust, small in area and is
accurate to within £1% of a floating-point implementation. The bitstream demultiplexer

also returned encouraging results after implementation.

An analysis of the problems encountered during the thesis project led to four major
recommendations for future work and development with the implementation of the

MPEG-2 AAC decoding algorithm.

73

References

[1]

2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

“Internet Audio — MP3”, Xilinx Web Page,
http://www.xilinx.com/esp/technologies/consumer/mp3_audio.htm (Last
accessed 15 Oct. 02)

“Napster’s Day in Court”, C/NET News.com,
http://news.com.com/2009-1023-252407.html (Last accessed 15 Oct. 02)

“Xilinx High Volume Programmable Logic Applications in Internet Audio
Players” Xilinx Web Page, 17 January 2000,
http://www.xilinx.com/publications/whitepapers/wp_pdf/wp103.pdf (Last
accessed 15 Oct. 02)

Bauvigne G, 2002. “MPEG-2/MPEG-4 AAC”, MP3 Tech Web Site,
http://www.mp3-tech.org, (Last accessed 19 Apr. 02)

Purnhagen H, 2002. “MPEG Audio FAQ”, The MPEG Audio Web Page,
http://www.tnt.uni-hannover.de/project/mpeg/audio/fag/mpeg2.html (Last
accessed 18 Apr. 02)

“ISO/IEC 13818-7: Information technology. generic coding of moving pictures
and associated audio information. Part 7, Advanced audio coding (AAC)”,
International Standards Organisation, Geneva, 1997.

“ISO/IEC 13818-3: Information technology: generic coding of moving pictures
and associated audio information. Part 3, Audio”, International Standards
Organisation, Geneva, 1998.

Jansson D, 2001. “What is AAC?”, DJ-Media Web Site, http://www.dj-
media.com/doc/what_is_aac.asp (Last accessed 19 Apr. 02)

Chen J, Tai H, 1999. “MPEG-2 AAC Coder on a fixed-point DSP”, I[EEE
International Conference on Consumer Electronics, June 22-24, 1999. p. 24-5.

Kirby, D. & Watanabe, K, 1996. “Report on the Formal Subjective Listening
Tests of MPEG-2 NBC multichannel audio coding.” TNT Institute Web Site,
http://www.tnt.uni-hannover.de/project/mpeg/audio/public/w1419.pdf (Last
accessed 15 Oct. 02)

2000. “AAC — Applications”, Advanced Audio Coding Web Site,
http://www.aac-audio.com/applications/ (Last accessed 2 Oct. 02)

74

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Brosch, O, 2002. “Introduction to FPGA Processors”, The FPGA Processors
Group Homepage, http://www-1i5.ti.uni-mannheim.de/fpga/?group/intro (Last
accessed 15 Oct. 02)

“ISO/IEC 11172-3: Information technology: coding of moving pictures and
associated audio for digital storage media at up to about 1,5 Mbit/s. Part 3,
Audio”, International Standards Organisation, Geneva, 1993.

2001. “Converting MP3 Software to Hardware”, Celoxica Web Site,
http://www.celoxica.com/products/technical papers/case_studies/cs_001.htm
(Last accessed 15 Oct. 02)

TMS320VC5401 Data Manual, Texas Instruments Web Site,
http://www-s.ti.com/sc/ds/tms320ve5401.pdf (Last accessed 15 Oct. 02)

“Dolby Announces Sanyo’s Support for AAC in New Portable Internet Player”,
AAC Audio Web Site,
http://www.aac-audio.com/pdf/aac.pr.0101.AACSanyo.pdf, (Last accessed 15
Oct. 02)

TMS320C6712 Data Manual, Texas Instruments Web Site,
http://www-s.ti.com/sc/ds/tms320c6712.pdf (Last accessed 15 Oct. 02)

PT8402 Datasheet, Princeton Web Site,
http://www.princeton.com.tw/english/pdfile/dsp/8402s.pdf (Last accessed 24
Sep. 02)

CS49400 Datasheet, Cirrus Web Site,
http:// www.cirrus.com/pubs/cs49400-2.pdf?DocumentID=893 (Last accessed 24
Sep. 02)

MAS3509F Datasheet, Micronas Web Site,
http://www.micronas.com/products/documentation/consumer/mas35x9f/downlo

ads/mas35x9f 1pd.pdf (Last accessed 24 Sep. 02)

“Move Technology Audio Components”, ARM Web Site,
http://www.arm.com/armtech.nsf/iwpList73/C24352A48BSEE70580256B81005

6BA30?0OpenDocument&style=IP_Solutions (Last accessed 24 Sep. 02)

Lee, K. & Jeong, N. & Bang, K. & Youn, D. “4 VLSI Implementation of MPEG-
2 AAC Decoder System”, http://www.ap-asic.org/1999/proceedings/8-2.pdf (Last
accessed 15 Oct. 02)

Dick, C. “FPGAs: The High-End Alternative for DSP Applications.” Hunt
Engineering Web Site, http://www.hunteng.co.uk/pdfs/tech/DSP1736FPGA.pdf
(Last accessed 15 Oct. 02)

75

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

“Choosing DSP or FPGA for your application”, Hunt Engineering Web Site,
http://www.hunteng.co.uk/info/fpga dsp.htm (Last accessed 15 Oct. 02)

“Mayah AAC Recorder”, Mayah Communication Web Site,
http://www.tranzicom.se/mayah-products/aac_recorder.html (Last accessed 21
Sep. 02)

“QuickTime 6: The Digital Media Standard”, Apple Web Site,
http://a720.g.akamai.net/7/720/51/4c19caa9c78f5d/www.apple.com/quicktime/p
roducts/pdf/[.L19086B_QT6_DS.pdf (Last accessed 15 Oct. 02)

“FAAC and FAAD2 AAC software”, Audiocoding.com Web Site,
http://www.audiocoding.com (Last accessed 15 Oct. 02)

“MPEG-2 Audio Conformance Bitstreams”, AT&T Labs Web Site,
http://www.research.att.com/projects/mpegaudio/mpeg2.html (Last accessed 15
Oct. 02)

“XSV Board v1.1 Manual”, Xess Corporation Web Site,
http://www.xess.com/manuals/xsv-manual-v1l_1.pdf (Last accessed 13 Oct. 02)

“Virtex 2.5V Field Programmable Gate Arrays”, Xilinx Web Site,
http://direct.xilinx.com/bvdocs/publications/ds003.pdf (Last accessed 15 Oct.
02)

Chang, Y. & Wong, D. & Wong, C. “Programmable Logic Devices”,
http://cc.ee.ntu.edu.tw/~ywchang/Papers/pla.ps (Last accessed 15 Oct. 02)

AK4520A Datasheet, AKM Web Site,
http://www.asahi-kasei.co.jp/akm/usa/product/ak4520a/ek4520a.pdf (Last
accessed 19 Apr. 02)

Brennan, J. 2001. “Audio Project”,
http://www.itee.uq.edu.au/~peters/xsvboard/audio/audio.pdf (Last accessed 21
Sep. 02)

“XC95108 In-System Programmable CPLD”, Xilinx Web Site,
http://direct.xilinx.com/bvdocs/publications/95108.pdf (Last accessed 15 Oct.
02)

Pedderson, J. 2001. “Hardware Implementation of Video Streaming”,
http://innovexpo.itee.uq.edu.au/2001/projects/s369604/thesis.pdf (Last accessed
15 Oct. 02)

Khosravipour, M. “VHDL Introduction”,
http://www.ecsi.org/earnest/digests/ VHDL _intro/VHDL-Intro.pdf (Last
accessed 15 Oct. 02)

76

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

“Synthesis”, Xilinx Web Site,
http://toolbox.xilinx.com/docsan/xilinx4/data/docs/xug/flow5.html (Last
accessed 21 Sep. 02)

“Design Implementation”, Xilinx Web Site,
http://toolbox.xilinx.com/docsan/xilinx4/data/docs/dev/dsgnflow4.html (Last
accessed 21 Sep. 02)

XSTools. Available at http://www.xess.com/ho07000.html (Last accessed 19
Apr. 02)

“VHDL Reference”, http://www.itee.uq.edu.au/~comp3100/vhdl/vhdlref.pdf
(Last accessed 16 Oct. 02)

Brennan, J. & Pedderson J. 2001. “SRAM Interface Project”,
http://www.itee.uq.edu.au/~peters/xsvboard/sram/sram.pdf (Last accessed 15
Oct. 02)

“An Inverse Discrete Cosine Transform Implementation in Virtex for MPEG
Video Applications”, Xilinx Web Site, http://www.xilinx.com/xapp/xapp208.pdf
(Last accessed 14 Oct. 02)

Andraka, R. “4 survey of CORDIC algorithms for FPGA based computers”,
http://www.andraka.com/files/crdcsrvy.pdf (Last accessed 14 Oct. 02)

Vladimirova, P. “FPGA Implementation of Sine and Cosine Generators using
the CORDIC Algorithm”,

http://klabs.org/richcontent/MAPLDCon99/Papers/A2 Vladimirova P.pdf (Last
accessed 14 Oct. 02)

Duhamel, P. & Mahieux, Y. & Petit, J. “A fast algorithm for the implementation
of filter banks based on "time domain aliasing cancellation"’, Proc. ICASSP,
IEEE, Toronto, 1991, vol 3, p2209-12.

77

APPENDIX A. LC CONFORMANCE BITSTREAMS

SLAv

SOX

suonIsuer) [NJSuIueawuo N

9IN}10} ONQWYILLY

SOX

1591 I9png

SOA

ejep os[ng

SOA

SOA

SN.L

SOA

adeys mopurpy

SOA

SOA

S/

SOX

Kysuojuy

SOA

SJUQWIJLY Weans ele(J

spouueyd urdnod do(q #

spouueyd 47 #

I

!

syjuowdd Jred [duueyd #

I

0

SJUQWIDLO [ouueyd J[3UIS #

¢61/0C1

8CI1/08

v9/0¥

¥9/0v

¥9/0v

v9/0¥

ojenIq

Sy 9

NS |

S; V1

Sy €1

4|

I I'T

78

SOX

SLAv

suonIsuer) [NJSuIueawuoN

SOX

9IN}10} ONOWYILLY

SOX

1591 Iopng

ejep os[ng

SOA

SOX

SN.L

adeys mopurpy

SOA

SOX

S/

Kysuojuy

SOA

SOA

SJUQWIJLY Weans Ble(J

spouueyd urdnod do(q #

sfouueyd 47 #

91

syjuowd[d Jred [duueyd #

91

SJUQWIDLO [ouueyd J[3UIS #

¥9/0v

v9/0¥

v9/0v

¢LOE/0CO61

08¢/0vC

oenig

SYIT'T

SEOI'T

Sy 61

s; 81

Sy LT

79

APPENDIX B. DETAILS OF ‘L1_fs_mod’

ADIF_SEQUENCE()

ADIF_HEADER()

Variable Name Value Comment
adif id 44 41 49 46 (hex) ADIF
copyright id present 0 No
original copy 1 Yes

home 0

bitstream type 0 Constant Rate
bitrate 000 1111 1010 0000 0000 | 64kbits/sec
num program config elements 0000 None

adif buffer fullness 0001 0000 0010 0000 4136
PROGRAM_CONFIG_ELEMENT()

Variable Name Value Comment
element instance tag 0000

profile 01 Low Complexity
sampling frequency index 0011 48kHz
num_front channel elements 0001 Single

num side channel elements 0000

num_back channel elements 0000

num Ife channel elements 00

num_assoc data elements 001

num valid cc elements 0000

mono mixdown present 0

stereo mixdown present 0

matrix_mixdown idx present 0

front element is cpe[0] 0

front element tag select[0] 0000

assoc data element tag select[0] 1111

byte alignment() 00

comment field bytes 0011 1011 59 bytes

comment field data[]

Encoded by AT&T Laboratories, GMT Fri Dec 21

14:30:29 2001 <CR>

RAW_DATA_STREAM()

80

RAW_DATA_ BLOCK()

Variable Name Value Comment

id syn ele 100 ID DSE

DATA STREAM _ELEMENT()

Variable Name Value Comment

element instance tag 1111 15

data byte align flag 1 Yes

count 0000 0010 2

data_stream byte[15][0] 0000 0000 Zero

data stream byte[15][1] 1010 1011 171

RAW_DATA BLOCK() (continued)

Variable Name Value Comment

id syn ele 000 ID SCE

SINGLE _CHANNEL_ELEMENT()

Variable Name Value Comment

element instance tag 0000 Zero

INDIVIDUAL_CHANNEL_STREAM]0]()

Variable Name Value Comment

global gain 0110 0100 100

ICS_INFO()

Variable Name Value Comment

ics_reserved bit 0

window sequence 01 long_ start seq

window shape 0 sine

max_sfb 10 1001 41

predictor data present 0 No
Additional Information

Variable Name Value Comment

num_windows 1

num window groups 1

window group length[0] 1

num_swb 49

sect stb offset[0][i]

See table 8.4 [6, p33,34]

swb_offset[i]

See table 8.4 [6, p33,34]

81

SECTION_DATA()

Variable Name Value Comment
sect cb[0][0] 0000 ZERO HCB
sect len incr 11111 31
sect_len incr 01010 10

- Result: stb cb[0][0> 40] is ZERO HCB
SCALE_FACTOR DATA()
INDIVIDUAL_CHANNEL_STREAM]0]() (continued)
Variable Name Value Comment
pulse data present 0 No
tns data present 0 No
gain_control data present 0 No
SPECTRAL_DATA()
RAW_DATA BLOCK() (continued)
Variable Name Value Comment
id syn ele 110 ID FIL
FILL_ELEMENT()
Variable Name Value Comment
count 1111 15
esc_count 1101 0101 149
extension type 0101 Default
other bits[0 = 1299] 01 x 162.5 Lots of fill bits
RAW_DATA BLOCK() (continued)
Variable Name Value Comment
id syn ele 111 ID TERM
byte alignment()
RAW_DATA BLOCK() (NEW)
Variable Name Value Comment
id syn ele 100 ID DSE

82

DATA_STREAM_ELEMENT()

Variable Name Value Comment

element instance tag 1111 15

data byte align flag 1 Yes

count 0000 0010 2

data stream byte[15][0] 0000 0000 Zero

data_stream byte[15][1] 1001 1101 157

RAW_DATA_ BLOCK() (continued)

Variable Name Value Comment

id syn ele 000 ID SCE

SINGLE_CHANNEL_ELEMENT()

Variable Name Value Comment

element instance tag 0000 Zero

INDIVIDUAL_CHANNEL_STREAM]0]()

Variable Name Value Comment

global gain 01110110 118

ICS_INFO()

Variable Name Value Comment

ics_reserved bit 0

window sequence 11 eight short

window shape 0 sine

max_sfb 1011 11

scale factor grouping 1100111 103
Additional Information

Variable Name Value Comment

num_ windows 8

num_ window groups 1

window_group length[0] 3

window_group length[1] 1

window group length[2] 4

num_swb 14

sect stb offset[g][i] See table 8.5 [6, p33,34]

swb_offset[i] See table 8.5 [6, p33,34]

83

SECTION_DATA()

Variable Name Value Comment
sect cb[0][0] 0000 ZERO HCB
sect len incr 111 7
sect_len incr 100 4
- Result: stb cb[0][0> 10] is ZERO HCB
sect cb[1][0] 1010 HCB 10
sect len incr 001 1
-> Result: sfb cb[1][0] is HCB 10

sect cb[1][1] 0100 HCB 4
sect len incr 111 7
sect_len incr 011 3

- Result: stb cb[1][1> 10] is HCB 4
sect cb[2][0] 1011 HCB 11
sect len incr 011 3

- Result: stb cb[2][0> 2] is HCB 11
sect cb[2][1] 0110 HCB 6
sect_len incr 100 4

-> Result: stb cb[2][3> 6] is HCB 6
sect cb[2][2] 1000 HCB 8
sect len incr 001 1

- Result: sfb cb[2][7] is HCB 8

sect cb[2][3] 0110 HCB 6
sect len incr 011 3

-> Result: stb cb[2][8> 10] is HCB 6
SCALE_FACTOR DATA()
Variable Name Value Decoded Value

sf[0][0 = 10] 0

hcod sfl[dpecm sf[1][0 = 10]] 0 sf[1][0 = 10] 118
hcod sf[dpem sf][2][0]] 0 sf[2][0] 118
hcod sf[dpem sf[2][1]] 1100 sf[2][1] 120
hcod sf[dpem sf[2][2]] 1011 sf[2][2] 118
hcod sf[dpem sf][2][3]] 0 sf]2][3] 118
hcod sf[dpem sf][2][4]] 111 1010 sf[2][4] 125
hcod sf[dpem sf]2][5]] 1011 sf]2][5] 123
hcod sfl[dpem sf[2][6]] 100 sf[2][6] 122
hcod sf[dpem sf][2][7]] 100 sf[2][7] 121
hcod sf[dpem sf]2][8]] 0 sf]2][8] 121
hcod sf[dpcm sf[2][9]] 0 sf[2][9] 121
hcod sf[dpcm sf]2][10]] 1100 sf[2][10] 123

84

INDIVIDUAL_CHANNEL_STREAM]0]() (continued)

Variable Name Value Comment
pulse data present 0 No
tns data present 0 No
gain_control data present 0 No
SPECTRAL_DATA()
g =0, ZERO_HCB - no spectral data
g=1 HCB 10
hcod[10][y][z] pair_sign_bits y z
11 1110 0000 11 -9 -8
101 0110 11 -5 -3
g=1 HCB4
hcod|[4]]y][z] quad_sign bits w X y zZ
11111 0000 0000 1 2 2 1
1110 1111 00 0 0 1 2
110 1000 0000 2 1 1 1
110 1011 0000 1 1 1 2
111110001 0000 2 2 1 1
0001 111 0 -1 -1 -1
0100 100 -1 0 1 1
0100 011 1 0 -1 -1
0000 1111 -1 -1 -1 -1
110 1101 110 -2 -1 0 1
0000 0000 1 1 1 1
0010 001 1 1 0 -1
0000 1100 -1 -1 1 1
0010 000 1 1 1 0
0001 111 0 -1 -1 -1
0101 1 -1 0 0 0
0000 1111 -1 -1 -1 -1
0011 111 -1 -1 -1 0
10110 1 0 0 0 -1
g=2 HCB1II
hecod[11][y]lz] pair_sign_bits y Y/
11111100111 10 -12 12
1011 1000 10 -2 8
11000 1111 01
- with escape sequence 10 0000 32 -15
1001 1110 00 5 5

85

1 1011 0000 00 10 4
1011 0000 10 -6 3
1001 0111 00
- with escape sequence 0000 16 4
111101 1111 1 0 -9
11 1010 0000 10 -11 1
00111 00 2 1
11 1100 1100 11 -15 -4
0001 00 1 1
11 1001 0100 11 -13 -4
01 1000 11 -2 -3
111001 0111 10 -13 5
011 1100 1 -3 0
0 1001 10 -2 2
1010 1011 11 -7 -1
0 1000 01 1 -2
0111010 00 4 3
0001 00 1 1
0110111 11 -1 -4
0 1000 11 -1 -2
1011 1100 10 -8 3
g =2, HCB 6 (entire left column first then entire right column — even over the page...)
hcod[6][y][z] y z hcod[6][y][z] y z
110010 -2 -2 0000 0 0
0110 -1 -1 0100 -1 0
101111 0 2 101111 0 2
0100 -1 0 100101 2 1
0111 1 -1 0100 -1 0
1000 -1 -1 10 1010 2 0
0101 1 1 0010 -1 1
1110 1011 -2 3 0100 -1 0
111 0001 3 3 101110 -1 -2
0010 0 -1 1000 -1 -1
0010 0 -1 100110 -2 1
0110 -1 1 0011 0 1
0100 -1 0 10 1010 2 0
0110 -1 1 1110010 0 -3
1000 -1 -1 1000 -1 -1
1000 -1 -1 0110 -1 1
1000 -1 -1 0010 0 -1
0100 -1 0 111110011 -2 -4
1000 -1 -1 0111 1 -1
0111 1 -1 10 1100 1 2
0101 1 1 101111 0 2
100101 2 1 0011 0 1

86

0110 -1 1 10 1010 2 0
0001 1 0101 1 1
g=2 HCBS
hcod|[8][y]|z] pair_sign bits y y/
0110 10 -2 2
11 0010 01 3 -4
111 0011 00 6 2
0010 01 2 -1
10 1011 00 4 1
0110 01 2 -2
0110 10 -2 2
000 01 1 -1
10011 00 3 2
0100 11 -1 -2
1 0000 1 0 -2
000 10 -1 1
111 0011 00 6 2
000 00 1 1
10010 00 1 3
0101 1 0 -1

g =2, HCB 6 (entire left column first then entire right column — even over the page...)

hcod|6][y][z] y z hcod(6][y][z] y z
0111 1 -1 0100 -1 0
0000 0 0 0100 -1 0
1000 -1 -1 111110110 4 -2

110 1110 1 -3 0100 -1 0
11 0001 -2 2 101011 1 -2
0110 -1 1 0000 0 0
11 0001 -2 2 0110 -1 1
100101 2 1 0111 1 -1
0110 -1 1 0101 1 1
0110 -1 1 11110 1000 -1 -4
0110 -1 1 1000 -1 -1
11 0000 2 -2 110 1000 -3 1
0110 -1 1 0001 1 0
10 1000 -2 0 10 1100 1 2
101111 0 2 0111 1 -1
0010 0 -1 0100 -1 0
1101110 1 -3 0110 -1 1
1000 -1 -1 100100 2 -1
0011 0 1 0001 1 0
1000 -1 -1 10 1001 -1 2
11 0010 -2 -2 0001 1 0
1110 1110 2 -3 1101110 1 -3
0111 1 -1 0001 1 0

101010 2 0 0010 0 -1
0010 0 -1 0001 1 0
0111 1 -1 0001 1 0
0111 1 -1 0100 -1 0
0010 0 -1 0000 0 0
100110 -2 1 10 1101 0 -2
100101 2 1 101111 0
11 0000 2 -2 100110 -2 1
110010 -2 -2 0010 0 -1
10 1011 1 -2 1000 -1 -1
0010 -1 1101111 -1 -3
0010 0 -1 0111 1 -1
11 0001 -2 2 1000 -1 -1
RAW_DATA BLOCK() (continued)
Variable Name Value Comment
id syn ele 111 ID TERM

byte alignment()

88

APPENDIX C. VHDL SOURCE CODE

This appendix contains selected code samples showing the functionality

C.1 bitstream_top.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity bitstream top is
port (
clk: in STD LOGIC;
reset: in STD LOGIC;
bits in: in STD LOGIC;
clock 48: out STD LOGIC
)

end bitstream top;

architecture bitstream top of bitstream top is

component shift register 32 is
port (
clk: in STD_LOGIC;
reset: in STD LOGIC;
shift in: in STD LOGIC;
shift data: out STD LOGIC VECTOR(31 downto 0);
byte data: out STD LOGIC VECTOR(2 downto 0)
)i

end component;

component bitstream counter is
port (
clk: in STD_LOGIC;
reset: in STD LOGIC;
latch: in STD LOGIC;
latch data: in STD LOGIC VECTOR (10 downto 0);
count data: out STD LOGIC VECTOR (10 downto 0)
)i

end component;

component bitstream state machine is
port (
clk: in STD_ LOGIC;
reset: in STD LOGIC;
count latch: out STD LOGIC;
count value: in STD LOGIC VECTOR(10 downto 0);
count set: out STD LOGIC VECTOR (10 downto 0);
byte value: in STD LOGIC VECTOR (2 downto 0);

&9

end co

-- Clo
signal
signal

signal
signal
signal
signal
signal

begin

end bi

data available: in STD LOGIC VECTOR (31 downto 0)
):
mponent;

ck generation signals
clock count: STD LOGIC VECTOR(10 downto 0);
clock 48kHz: STD LOGIC;

count latch: STD LOGIC;

count value: STD LOGIC VECTOR(10 downto 0);
count set: STD LOGIC VECTOR(10 downto 0);

byte value: STD LOGIC VECTOR(2 downto 0);

data available: STD LOGIC VECTOR (31 downto 0);

Ul: shift register 32 port map (
clk => clock 48khz,

reset => reset,

shift in => bits in,

shift data => data available,
byte data => byte value

)i

U2: bitstream counter port map (
clk => clock 48khz,

reset => reset,

latch => count latch,

latch data => count_set,

count data => count value

)7

U3: bitstream state machine port map (
clk => clock 48kHz,

reset => reset,

count latch => count latch,

count value => count value,

count set => count_set,

byte value => byte value,

data available => data available

):

clock 48 <= clock 48kHz;

process (clk, reset)

begin
if (reset = '0') then
clock 48khz <= '0';
clock count <= "00000000000";
else
if (clk'event and clk = '1l') then
clock count <= clock count + 1;
clock 48khz <= clock count (10);
end if;
end if;

end process;
tstream top;

90

C.2 bitstream.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity bitstream state machine is
port (
clk: in STD LOGIC;
reset: in STD LOGIC;
count latch: out STD LOGIC;
count value: in STD LOGIC VECTOR (10 downto 0);
count set: out STD LOGIC VECTOR (10 downto 0);
byte value: in STD LOGIC VECTOR(2 downto 0);
data available: in STD LOGIC VECTOR(31 downto 0)
);

end bitstream state machine;
architecture bitstream state machine of bitstream state machine is

type state type is

(header, raw _data block,

data stream element, data stream element2, data stream element3,
single channel element, ics _info long, ics_info_ short,

section data,

error_state, idle state);

signal present state: state type;
signal next state: state type;

-- data_stream element signals

signal data byte align flag: STD LOGIC;

signal dse count: STD LOGIC VECTOR(8 downto 0);
signal temp: STD LOGIC;

-- single channel element signals

signal global gain: STD_ LOGIC VECTOR(7 downto 0);

signal window sequence: STD LOGIC VECTOR(1 downto 0);
signal window_ shape: STD LOGIC;

signal max sfb: STD LOGIC VECTOR(5 downto 0);

signal scale factor grouping: STD _LOGIC VECTOR (6 downto 0);

begin

process (clk, reset)

begin

if(reset = '0') then
present state <= idle state;

else
if (clk'event and clk = '1l') then

present state <= next state;

end if;

end 1if;

91

end process;

process (present state, count value, data available, byte value)
begin

case present state is

when idle state =>
next state <= header;
count set <= "01001011111"; -- 608 bit header
count latch <= '1"';
data byte align flag <= 'X';
dse count <= "XXXXXXXXX";
global gain <= "XXXXXXXX";
window sequence <= "XX";
window_ shape <= 'X';
max_ sfb <= "XXXXXX";
scale factor grouping <= "XXXXXXX";

when header =>

data byte align flag <= 'X';

dse count <= "XXXXXXXXX";

global gain <= "XXXXXXXX";

window sequence <= "XX";

window shape <= 'X';

max sfb <= "XXXXXX";

scale factor grouping <= "XXXXXXX";

if (count _value = "00000000000") then
count latch <= '1';
next state <= raw data block;
count _set <= "00000000010";

else

count latch <= '0';

next state <= header;

count set <= "XXXXXXXXXXX";
end 1if;

when raw data block =>

data byte align flag <= 'X';

dse count <= "XXXXXXXXX";

global gain <= global gain;

window sequence <= window_ sequence;

window shape <= window_shape;

max sfb <= max sfb;

scale factor grouping <= scale factor grouping;

if (count value = "00000000000") then
count latch <= '1"';
case data available (2 downto 0) is

when "000" => -- ID_SCE
next state <= single channel element;
count set <= "00000001111"; -- 16
when "100" => -- ID DSE
next state <= data stream element;
count _set <= "00000001100"; -- 12

when "111" => -- ID _END

next state <= raw _data block;

count set <= "00000000010"; --
when others =>

next state <= error_ state;

count set <= "XXXXXXXXXXX"; -=

end case;
else
-- Wait for the counter to get to zero.
next state <= raw_data block;
count set <= "XXXXXXXXXXX";
count latch <= '0';
end if;

when data stream element =>

global gain <= global gain;

window_ sequence <= window_ sequence;

window shape <= window_ shape;

max_ sfb <= max sfb;

scale factor grouping <= scale factor grouping;

if (count value = "00000000000™) then
data byte align flag <= data_available(8);
count latch <= '1"';
dse count (7 downto 0)

<= data_ available (7 downto 0) - 1;

dse count(8) <= '0';

if (data_available (7 downto 0) = "11111111")
next state <= data_ stream element2;
count set <= "00000000111"; -= 7

else
next state <= data stream element3;
-— Check the byte alignment
if (data byte align flag = 'l') then

count set <= "00000000110" + byte value;
else
count set <= "00000000110"; -=

end 1f;

end 1f;

else

next state <= data stream element;

count set <= "XXXXXXXXXXX";

count latch <= '0';

dse count <= "XXXXXXXXX";

data byte align flag <= 'X';

end 1if;

when data stream element2 =>

global gain <= global gain;

window sequence <= window sequence;

window shape <= window_ shape;

max_sfb <= max sfb;

scale factor grouping <= scale factor grouping;

if (count value = "00000000000™) then
dse count <= "100000000" +
data available (7 downto 0) - 1;

data byte align flag <= data_available(16);

93

next state <= data stream element3;
count latch <= '1';
—— Check the byte alignment
if (data _byte align flag = 'l') then
count set <= "00000000110" + byte value;

else
count set <= "00000000110"; -= 7
end if;
else
next state <= data stream element2;
count set <= "XXXXXXXAXXXX";
count latch <= '0';
data byte align flag <= 'X';
dse count <= "XXXXXXXXX";
end 1f;

when data stream element3 =>

data byte align flag <= 'X';

global gain <= global gain;

window sequence <= window sequence;

window shape <= window_ shape;

max_ sfb <= max sfb;

scale factor grouping <= scale factor grouping;

if (count value = "11111111111") then
count latch <= '1';
if (dse_count = "000000000") then
next state <= raw _data block;
count set <= "00000000010"; -- 2
dse count <= "XXXXXXXXX";
else
next state <= data_ stream element3;
count_set <= "00000000110"; -—= 7
dse count <= dse count - 1;
end 1if;
else
next state <= data_ stream element3;
count set <= "XXXXXXXXXXX";
count latch <= '0';
dse count <= dse count;
end 1f;

when single channel element =>

data byte align flag <= 'X';

dse count <= "XXXXXXXXX";

max_ sfb <= max sfb;

scale factor grouping <= scale factor grouping;

if (count value = "00000000000™) then
count latch <= '1';
global gain <= data available (1l downto 4);
window sequence <= data available (2 downto 1);
window shape <= data_available (0);
if (window sequence = "10") then
—-— EIGHT SHORT SEQUENCE
next state <= ics_info_short;
count set <= "00000001010"; -- 10

else
—-— LONG WINDOWS
next state <= ics_info long;
count set <= "00000000110";
end 1if;
else

next state <= single channel element;

count set <= "XXXXXXXXXXX";
count latch <= '0';
global gain <= global gain;
window_ sequence <= window sequence;
window_ shape <= window_ shape;
end if;

when ics info long =>

data byte align flag <= 'X';

dse count <= "XXXXXXXXX";

global gain <= global gain;

window sequence <= window_ sequence;
window shape <= window shape;

scale factor grouping <= scale factor grouping;

if (count value = "00000000000") then
next state <= section data;
count latch <= '1"';
count set <= "00000000010"; -- 2

max_sfb <= data_available (6 downto 1);

else
next state <= ics_info long;
count latch <= '0';
count set <= "XXXXXXXXXXX";
max_sfb <= max sfb;

end 1if;

when ics info short =>

data byte align flag <= 'X';

dse count <= "XXXXXXXXX";

global gain <= global gain;

window_ sequence <= window_ sequence;
window_ shape <= window_ shape;

if (count value = "00000000000") then
next state <= section data;
count latch <= '1';
count set <= "00000000010"; -—- 2

max_sfb (3 downto 0) <= data available (10 downto 7);

max_ sfb (5 downto 4) <= "00";

scale factor grouping <= data_available (6 downto 0);

else

next state <= ics info long;

count latch <= '0';

count set <= "XXXXXXXXXXX";

max_ sfb <= max sfb;

scale factor grouping <= scale factor grouping;
end 1f;

when section data =>

95

next state <= idle state;

count latch <= '0';

data byte align flag <= 'X';

dse count <= "XXXXXXXXX";

count set <= "XXXXXXXXXXX";

global gain <= "XXXXXXXX";
window_sequence <= "XX";

window_ shape <= 'X';

max_sfb <= "XXXXXX";

scale factor grouping <= "XXXXXXX";

when error state =>
next state <= idle state;
count latch <= 'X';
data byte align flag <= 'X';
dse count <= "XXXXXAXXXX";
count set <= "XXXXXXXAXXXX";
global gain <= "XXXXXXXX";
window sequence <= "XX";
window_shape <= 'X';
max sfb <= "XXXXXX";
scale factor grouping <= "XXXXXXX";

end case;
end process;
end bitstream state machine;

C.3 counter.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity bitstream counter is
port (
clk: in STD LOGIC;
reset: in STD LOGIC;
latch: in STD LOGIC;
latch data: in STD LOGIC VECTOR (10 downto 0);
count data: out STD LOGIC VECTOR(10 downto 0)
)i
end bitstream counter;

architecture bitstream counter of bitstream counter is
signal data: STD LOGIC VECTOR(10 downto 0);

begin
count data <= data;
process (clk, reset)
begin
if (reset = '0') then
data <= "00000000011"™;

96

else
if (clk'event and clk = '1l') then
if (latch = '1'") then
data <= latch data;

else
data <= data - 1;
end if;
end 1if;

end if;
end process;
end bitstream counter;

C.4 shift_register.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity shift register 32 is
port (
clk: in STD LOGIC;
reset: in STD LOGIC;
shift in: in STD LOGIC;
shift data: out STD LOGIC VECTOR(31 downto 0);
byte data: out STD LOGIC VECTOR(2 downto 0)
):
end shift register 32;

architecture shift register 32 of shift register 32 is

signal data: STD LOGIC VECTOR (31 downto O0);
signal byte: STD LOGIC VECTOR (2 downto 0);

begin

shift data <= data;
byte data <= byte;

process (clk, reset)

begin

if (reset = '0') then
data <= (others=>'0");
byte <= (others=>'0");

else
if (clk'event and clk = '1l') then
data (31 downto 1) <= data (30 downto O0);
data(0) <= shift in;
byte <= byte - 1;
end if;
end if;

end process;
end shift register 32;

97

C.5 scale _factor_table.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity scalefactor_ table is
port (
index: in STD LOGIC VECTOR(5 downto 0);
window: in STD LOGIC VECTOR (1 downto 0);
swb_offset: out STD LOGIC VECTOR (10 downto 0)
);

end scalefactor table;
architecture scalefactor table of scalefactor table is

begin
process (window, index)
begin
case window is
—— SHORT_ WINDOW
when "10" =>
case index is
when "000000" => swb offset <= "00000000000";
when "000001" => swb offset <= "00000000100";
when "000010" => swb offset <= "00000001000";
when "000011" => swb_offset <= "00000001100";
when "000100" => swb _offset <= "00000010000";
when "000101" => swb _offset <= "00000010100";
when "000110" => swb offset <= "00000011100";
when "000111" => swb offset <= "00000100100";
when "001000" => swb offset <= "00000101100";
when "001001" => swb offset <= "00000111000";
when "001010" => swb offset <= "00001000100";
when "001011" => swb offset <= "00001010000";
when "001100" => swb offset <= "00001100000";
when "001101" => swb_offset <= "00001110000";
when "001110" => swb_offset <= "00010000000";
when others => swb offset <= "XXXXXXXXXXX";
end case;

-- LONG_WINDOW, LONG START WINDOW, LONG STOP_ WINDOW
when others =>
case index 1is

when "000000" => swb _offset <= "00000000000";
when "000001" => swb offset <= "00000000100";
when "000010" => swb offset <= "00000001000";
when "000011" => swb offset <= "00000001100";
when "000100" => swb offset <= "00000010000";
when "000101" => swb offset <= "00000010100";
when "000110" => swb offset <= "00000011000";
when "000111" => swb offset <= "00000011100";
when "001000" => swb_offset <= "00000100000";
when "001001" => swb_offset <= "00000100100";

98

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

end case;

end case;
end process;
end scalefactor table;

C.6 forloop.vhd

"001010" =
"001011" =

"001100"
"001101"
"001110"
"ool111"
"010000"
"0l10001"
"01l0010™
"010011™
"010100"

"010101" =
"010110"™ =
"010111" =

"011000"
"011001"
"011010"
"011011"
"0l1100"
"0l1101"

"01l1110"™ =

"O0l1l111"
"100000"
"100001"
"100010"
"100011"
"100100"
"100101"
"100110"
"100111"
"101000"
"101001"
"101010"
"101011"

"101100" =
"101101" =

"101110"
"101111"
"110000"

"110001" =

swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb offset
swb offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset
swb_offset

= "00000101000";
= "00000110000";
= "000o00111000";

"00001000000";
"00001001000™;
"00001010000";
"00001011000";
"oooo1l1100000";
"0oool101100";
"0ooo0l111000";
"00010000100";

= "00010010000";
= "0o0l10100000";
= "000l0110000";

"00011000100";
"00011011000";
"00011110000";
"00100001000";
"00100100100";
"00101000000";

= "00101100000";

"00110000000™;
"00110100000";
"00111000000";
"00111100000";
"01000000000™;
"01000100000";
"01001000000";
"01001100000";
"01010000000";
"01010100000";
"01011000000";
"01011100000";
"01100000000";

= "01100100000";
= "01101000000";

"01101100000";
"01110000000";

= "01110100000";
= "10000000000";

others => swb offset <= "XXXXXXXXXXX";

library IEEE;

use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity forloop is

99

port (

clk: in STD LOGIC;

reset: in STD LOGIC;

window sequence: in STD LOGIC VECTOR(1 downto 0);

scale factor grouping: in STD LOGIC VECTOR (6 downto 0);
max sfb: in INTEGER;

index: out INTEGER;

sf table value: in STD LOGIC VECTOR(10 downto 0)

)

end forloop;
architecture forloop of forloop is

type LONG _ARRAY is array (48 downto 0) of STD LOGIC VECTOR (10 downto
0);
type SHORT ARRAY is array (13 downto 0) of STD LOGIC VECTOR (10 downto
0);

signal num windows: INTEGER;

signal num window groups: INTEGER;
signal window group length: INTEGER;
signal num swb: INTEGER;

signal sect sfb offset: LONG ARRAY;
signal swb_offset: LONG_ARRAY;

begin

process (clk, reset)
begin
if (reset = '0') then

num windows <= 0;

num_ window_ groups <= 0;

window_group length <= 0;

num_swb <= 0;

for i in 0 to 48 loop
sect sfb offset (i) <= "00000000000";
swb_offset (i) <= "00000000000";

end loop;

else
if (clk'event and clk = '1l') then

case window_sequence is

when "10" =>
-— EIGHT SHORT WINDOWS

when others =>

—-— LONG WINDOWS

num windows <= 1;

num window_groups <= 1;
window group length <= 1;
num_swb <= 49;

for i in 0 to 48 loop
index <= i;
sect sfb offset (i)
<= sf table value;

100

swb offset (i) <= sf table value;
end loop;

end case;

end 1f;
end 1if;
end process;
end forloop;

C.7 quantisationTop.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity quantisation top is
port (
x quant: in STD LOGIC VECTOR(6 downto O0);
scalefactor: in STD LOGIC VECTOR(7 downto 0);
x _rescal: out STD LOGIC VECTOR(46 downto 0)
)i

end quantisation top;
architecture quantisation top of quantisation top is
-— Component declarations

component inverse quantisation is
port (
x_quant: in STD LOGIC VECTOR(6 downto O0);
X _invquant: out STD LOGIC VECTOR (9 downto 0)
):
end component;

component apply scalefactors is
port (
x _invquant: in STD LOGIC VECTOR (9 downto 0);
scalefactor: in STD LOGIC VECTOR(7 downto 0);
x _rescal: out STD LOGIC VECTOR(49 downto 0)
);

end component;

component quantisation adjustment is
port (
sign bit: in STD LOGIC;
x rescal: in STD LOGIC VECTOR (49 downto 0);
x _adjust: out STD LOGIC VECTOR(46 downto 0)
)

end component;

101

-- Type declarations

-- Signal declarations

signal invquant: STD LOGIC VECTOR (S downto 0);
signal rescal: STD LOGIC VECTOR (49 downto 0);
signal sign bit: STD LOGIC;

-—- Constant declarations
-—- Attribute declarations

begin

Ul: inverse quantisation port map (
X _quant => x quant,
x_invquant => invquant

)7

U2: apply scalefactors port map (
X _invquant => invquant,
scalefactor => scalefactor,

X rescal => rescal

)

U3: quantisation adjustment port map (
sign bit => sign bit,

X rescal => rescal,

x adjust => x rescal

)

sign bit <= x quant (6);

end quantisation top;

C.8 invquant.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity inverse quantisation is
port (
x_quant: in STD LOGIC VECTOR(6 downto O0);
x_invquant: out STD LOGIC VECTOR(9 downto 0)
)i

end inverse quantisation;

architecture inverse quantisation of inverse quantisation is
-- Signal declarations

signal twos xquant: STD LOGIC VECTOR (6 downto 0);

signal xquant in: STD LOGIC VECTOR (6 downto 0);

begin

102

-- Concurrent assignments

twos xquant <= not x quant + 1;

with x gquant (6) select
xquant in <= x quant when '0',

twos xquant when '1',
"TXXXXXXX" when others;

with xquant in select
X _invquant <= "0000000000™
"0000001000"
"0000010100"
"0000100011"
"0000110011"
"0001000100"
"0001010111"
"0001101011"
"0010000000"
"0010010110"
"0010101100"
"0011000100"
"0011011100"
"0011110101"
"0100001110"
"0100101000"
"0101000011"
"0101011110"
"0101111001"
"0110010110"
"0110110010"
"0111001111"
"0111101101"
"1000001011"
"1000101010"
"1001001001"
"1001101000"
"1010001000"
"1010101000"
"1011001001"
"1011101010"
"1100001011"
"1100101101"
§9:9:0:0:0:0:0:0:0.0:44

end inverse quantisation;

C.9 scaleapp.vhd

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

"0000000",
"ooooo01",
"0oo00010",
"oooo011",
"0000100",
"ooo00101",
"oo00110",
"0oo00111",
"0o01000",
"ooo1001",
"ooo1010",
"0001011",
"oo0o1100",
"oo01101",
"ooo1110",
"oo01111",
"0010000",
"oo1i10001",
"0010010",
"o010011",
"0010100",
"0010101",
"0010110",
"0010111",
"0011000",
"o011001",
"oo011010",
"0011011",
"o011100",
"0011101",
"0011110",
"0011111",
"0100000",
others;

value

20

35

51

68

87
107
128
150
172
196
220
245
270
296
323
350
377
406
434
463
493
523
554
585
616
648
680
713
746
779
813

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

103

entity apply scalefactors is
port (
x_invquant: in STD LOGIC VECTOR(9 downto 0);
scalefactor: in STD LOGIC VECTOR(7 downto 0);
x _rescal: out STD LOGIC VECTOR(49 downto 0)
)

end apply scalefactors;

architecture apply scalefactors of apply scalefactors is

-- Signal declarations
signal gain: STD LOGIC VECTOR (42 downto 0);
signal x rescal8: STD LOGIC VECTOR (52 downto 0);

begin

-- Concurrent assignments
with scalefactor select
gain <= "000" when "00000000",

"000"™ when "00000001™,
"000"™ when ™"00000010",
"000"™ when ™"00000011",
"000"™ when "00000100",
"000"™ when "00000101",
"000"™ when "00000110",
"000"™ when "00000111M,
"000"™ when ™00001000",
"000" when ™00001001",
"000" when "00001010",
"000" when "00001011",
"000™ when "00001100",
"000™ when "00001101",
"000"™ when "00001110",
"000"™ when "00001111",
"000"™ when "00010000",
"000"™ when ™00010001M,
"000"™ when ™00010010",
"000" when "00010011M",
"000" when "00010100",
"000" when "00010101",
"000"™ when "00010110",
"000™ when "00010111",
"000"™ when "00011000",
"000"™ when "00011001",
"000"™ when "00011010",
"000"™ when ™"00011011",
"000"™ when ™"00011100",
"000" when "00011101",
"000" when "00011110",
"000" when "00011111",
"000"™ when ™"00100000",
"000™ when ™00100001™,
"000™ when "00100010",
"000"™ when "00100011",
"000"™ when "00100100",
"000"™ when ™"00100101",
"000"™ when ™"00100110",
"000" when "00100111",
"000" when ™"00101000",

104

"000"
"000"
"000"
"000"
"000"
"000™
"000™
"000"
"000"
"000"
"000"
"000"
"000"
"000"
"000"
"000™
"000™
"000"
"000"
"000"
"000"
"000"
"000"
"000"
"000"
"000™
"000™
"000"
"000"
"000"
"000"
"000"
"000"
"000"
"000"
"000™
"000™
"000"
"000"
"000"
"000"
"000"
"000"
"001L"
"001"
"001"
"001"
"001"
"001"
"001"
"00010"
"00010"
"00010"
"00011L"
"0001 1"
"00100"
"00101"
"00110"
"00111"

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

"00101001",
"00101010",
"00101011",
"00101100",
"00101101",
"00101110",
"00101111",
"00110000",
"00110001"™,
"00110010",
"00110011",
"00110100",
"00110101",
"00110110",
"00110111",
"00111000",
"00111001",
"00111010",
"00111011",
"00111100",
"00111101",
"00111110",
"00111111",
"01000000",
"01000001",
"01000010",
"01000011",
"01000100",
"01000101"™,
"01000110",
"01000111",
"01001000",
"01001001",
"01001010",
"01001011",
"01001100",
"01001101",
"01001110",
"01001111",
"01010000",
"01010001",
"01010010",
"01010011",
"01010100",
"01010101",
"01010110",
"01010111",
"01011000",
"01011001",
"01011010",
"01011011",
"01011100",
"01011101",
"01011110",
"01011111",
"01100000",
"01100001",
"01100010",
"01100011",

105

"0000000000000000000000000000000000000001 000"
"0000000000000000000000000000000000000001010"
"0000000000000000000000000000000000000001011L"
"0000000000000000000000000000000000000001201L"
"0000000000000000000000000000000000000010000"
"0000000000000000000000000000000000000010011"
"00000000000000000000000000000000000000101 11"
"0000000000000000000000000000000000000011011"
"00000000000000000000000000000000000001L00000"
"0000000000000000000000000000000000000100110"
"0000000000000000000000000000000000000101 101"
"0000000000000000000000000000000000000110110"
"0000000000000000000000000000000000001000000"
"0000000000000000000000000000000000001001200"
"0000000000000000000000000000000000001011011"
"0000000000000000000000000000000000001101100"
"0000000000000000000000000000000000010000000"
"0000000000000000000000000000000000010011000"
"0000000000000000000000000000000000010110101"
"00000000000000000000000000000000000110101211"
"0000000000000000000000000000000000100000000"
"0000000000000000000000000000000000100110000"
"0000000000000000000000000000000000101101010"
"0000000000000000000000000000000000210201 211"
"0000000000000000000000000000000001000000000"
"0000000000000000000000000000000001001100001"
"0000000000000000000000000000000001011010100"
"0000000000000000000000000000000001101011101"
"0000000000000000000000000000000010000000000"
"0000000000000000000000000000000010011000010"
"0000000000000000000000000000000010110101000™
"0000000000000000000000000000000011010111010™
"0000000000000000000000000000000100000000000"
"00000000000000000000000000000001001210000011"
"0000000000000000000000000000000101101010000"
"0000000000000000000000000000000110101110100"
"0000000000000000000000000000001000000000000"
"0000000000000000000000000000001001100000111"
"0000000000000000000000000000001011010100001"
"0000000000000000000000000000001101011101001"
"0000000000000000000000000000010000000000000"
"0000000000000000000000000000010011000001110™
"0000000000000000000000000000010110101000001"
"0000000000000000000000000000011010111010001"
"0000000000000000000000000000100000000000000"
"0000000000000000000000000000100110000011100"
"0000000000000000000000000000101101010000010"
"0000000000000000000000000000110101110100010"
"0000000000000000000000000001000000000000000"
"0000000000000000000000000001001100000111000"
"0000000000000000000000000001011010100000101™
"0000000000000000000000000001101011101000101™
"0000000000000000000000000010000000000000000"
"0000000000000000000000000010011000001110000"
"0000000000000000000000000010110101000001010"
"0000000000000000000000000011010111010001010"
"0000000000000000000000000100000000000000000"
"0000000000000000000000000100110000011100000"
"0000000000000000000000000101101010000010100™

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

"01100100",
"0l1100101",
"01100110",
"01100111",
"01101000",
"0l101001",
"0l1101010",
"0l1i01011",
"0l1i01100",
"0l1i01101",
"01l101110",
"01l101111",
"01110000",
"01110001",
"01110010",
"01110011",
"0l1110100",
"0l110101",
"0l110110",
"0l110111",
"0l1l1i1o000",
"0l1i1i1io001",
"0l111010",
"0l111011",
"0l111100",
"0l1l1i1i1io01",
"0l1l1i1110",
"0l111111",
"10000000",
"10000001",
"10000010",
"10000011",
"10000100",
"10000101",
"10000110",
"10000111",
"10001000",
"10001001",
"10001010",
"10001011",
"10001100",
"10001101",
"10001110",
"10001111",
"10010000",
"10010001",
"10010010",
"10010011",
"10010100",
"10010101",
"10010110",
"10010111",
"10011000",
"10011001",
"10011010",
"10011011",
"10011100",
"10011101",
"10011110",

106

"0000000000000000000000000110101110100010100™"
"0000000000000000000000001000000000000000000"
"0000000000000000000000001001100000111000000"
"0000000000000000000000001011010100000101000"
"0000000000000000000000001101011101000101000"
"0000000000000000000000010000000000000000000"
"0000000000000000000000010011000001101111111"
"0000000000000000000000010110101000001001 111"
"0000000000000000000000011010111010001010000"
"0000000000000000000000100000000000000000000"
"0000000000000000000000100110000011011111110"
"0000000000000000000000101101010000010011110"
"0000000000000000000000110101110100010100000"
"0000000000000000000001000000000000000000000"
"0000000000000000000001001100000110111111100"
"0000000000000000000001011010100000100111101™
"0000000000000000000001101011101000100111111"
"0000000000000000000010000000000000000000000"
"0000000000000000000010011000001101111111000"
"0000000000000000000010110101000001001111010"
"0000000000000000000011010111010001001111110"
"0000000000000000000100000000000000000000000"
"0000000000000000000100110000011011111110000"
"0000000000000000000101101010000010011110011"
"0000000000000000000110101110100010011111101"
"0000000000000000001000000000000000000000000™
"0000000000000000001001100000110111111100001™
"0000000000000000001011010100000100111100110"
"0000000000000000001101011101000100111111010"
"0000000000000000010000000000000000000000000"
*0000000000000000010011000001101111111000001"
"0000000000000000010110101000001001111001101"
"0000000000000000011010111010001001111110011"
"0000000000000000100000000000000000000000000"
"0000000000000000100110000011011111110000011"
"0000000000000000101101010000010011110011010™
"0000000000000000110101110100010011111100110™
"0000000000000001000000000000000000000000000"
"00000000000000010011000001101111111000001201"
"0000000000000001011010100000100111100110011"
"0000000000000001101011101000100111111001101™"
"0000000000000010000000000000000000000000000"
"0000000000000010011000001101111111000001010"
"0000000000000010110101000001001111001100110"
"0000000000000011010111010001001111110011001"
"0000000000000100000000000000000000000000000™
"0000000000000100110000011011111110000010100™
"0000000000000101101010000010011110011001101"
"0000000000000110101110100010011111100110011"
"0000000000001000000000000000000000000000000"
"0000000000001001100000110111111100000101001 ™"
"0000000000001011010100000100111100110011010™"
"0000000000001101011101000100111111001100101"
"0000000000010000000000000000000000000000000"
"0000000000010011000001101111111000001010010"
"0000000000010110101000001001111001100110100™
"0000000000011010111010001001111110011001011 ™
"0000000000100000000000000000000000000000000"
"0000000000100110000011011111110000010100011"

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

"10011111",
"10100000",
"10100001",
"10100010",
"10100011",
"10100100",
"10100101",
"10100110",
"10100111",
"10101000",
"10101001",
"10101010",
"10101011",
"10101100",
"10101101",
"10101110",
"10101111",
"10110000",
"10110001",
"10110010",
"10110011",
"10110100",
"10110101",
"10110110",
"10110111",
"10111000",
"10111001",
"10111010",
"10111011",
"10111100",
"10111101",
"10111110",
"10111111",
"11000000",
"11000001",
"11000010",
"11000011",
"11000100",
"11000101",
"11000110",
"11000111",
"11001000",
"11001001",
"11001010",
"11001011",
"11001100",
"11001101",
"11001110",
"11001111",
"11010000",
"11010001",
"11010010",
"11010011",
"11010100",
"11010101",
"11010110",
"11010111",
"11011000",
"11011001",

107

"0000000000101101010000010011110011001101000" when ™"11011010",
"0000000000110101110100010011111100110010110" when ™"11011011",
"0000000001000000000000000000000000000000000" when "11011100",
"0000000001001100000110111111100000101000110" when ™"11011101",
"0000000001011010100000100111100110011010000" when "11011110",
"0000000001101011101000100111111001100101011" when "11011111",
"0000000010000000000000000000000000000000000™ when ™11100000",
"0000000010011000001101111111000001010001100" when "11100001",
"0000000010110101000001001111001100110100000"™ when ™"11100010",
"0000000011010111010001001111110011001010111" when "11100011",
"0000000100000000000000000000000000000000000"™ when ™11100100",
"0000000100110000011011111110000010100011001" when ™"11100101",
"0000000101101010000010011110011001101000000" when "11100110",
"0000000110101110100010011111100110010101101" when "11100111",
"0000001000000000000000000000000000000000000" when ™"11101000",
"0000001001100000110111111100000101000110010"™ when "11101001",
"0000001011010100000100111100110011001111111" when "11101010",
"0000001101011101000100111111001100101011011" when "11101011",
"0000010000000000000000000000000000000000000"™ when "11101100",
"0000010011000001101111111000001010001100011" when "11101101",
"0000010110101000001001111001100110011111110" when "11101110",
"0000011010111010001001111110011001010110110" when ™"11101111",
"0000100000000000000000000000000000000000000" when ™"11110000",
"0000100110000011011111110000010100011000111" when "11110001",
"0000101101010000010011110011001100111111101" when "11110010",
"0000110101110100010011111100110010101101011" when "11110011",
"0001000000000000000000000000000000000000000"™ when ™"11110100",
"0001001100000110111111100000101000110001110" when "11110101",
"0001011010100000100111100110011001111111010" when "11110110",
"0001101011101000100111111001100101011010111" when "11110111",
"00100"™ when ™11111000",
"0010011000001101111111000001010001100011011" when ™11111001",
"0010110101000001001111001100110011111110100" when "11111010",
"0011010111010001001111110011001010110101101" when "11111011",
"01000" when ™11111100",
"0100110000011011111110000010100011000110111" when ™"11111101",
"0101101010000010011110011001100111111100111" when "11111110",
"0110101110100010011111100110010101101011010" when "11111111",
19:0:9:0:0:0:0.:9:9:9.9:9:0:0.9:9:9.9.9:0:0.9:9:9.9:9:0:0:0:0.9.0.0:0:0.0:0.9.0.9:0:0:0: ¢ /o [} s o) sl s [N oF - I

X rescal8 <= gain * x invquant;
x rescal <= x rescal8(52 downto 3);

end apply scalefactors;

C.10 quantadjust.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity quantisation adjustment is
port (

108

sign bit: in STD LOGIC;

x rescal: in STD LOGIC VECTOR (49 downto 0);
x_adjust: out STD LOGIC VECTOR (46 downto 0)
)

end quantisation adjustment;

architecture quantisation adjustment of quantisation adjustment is

-- Signal declarations

signal x _div8: STD LOGIC VECTOR (46 downto 0);
signal twos_ xdiv8: STD LOGIC VECTOR(46 downto 0);
begin

-- Concurrent assignments
x div8 <= x rescal (49 downto 3);

twos xdiv8 <= not x div8 + 1;
with sign bit select
x adjust <= x div8 when '0O', twos xdiv8 when

'0') when others;

end quantisation adjustment;

C.11 testbench.vhd

'1', (others

library ieee;
use leee.std logic unsigned.all;
use ieee.std logic 1164.all;

entity Test bench is
port (
clk: in STD LOGIC;
reset: in STD LOGIC
)i

end Test bench;

architecture TB ARCHITECTURE of Test bench is

component bitstream top is
port (
clk: in STD_LOGIC;
reset: in STD LOGIC;
bits in: in STD LOGIC;
clock 48: out STD LOGIC
)i

end component;

component bitstream source
port (
clk: in STD_ LOGIC;
reset: in STD LOGIC;

109

bit out: out STD LOGIC
)
end component;

signal bitstream : std logic;
signal clock 48khz: STD LOGIC;

begin

—-— Unit Under Test port map
Decoder : bitstream top port map (
clk => clk,
reset => reset,
bits in => bitstream,
clock 48 => clock 48khz
) ;

Source: bitstream source port map (
clk => clock 48khz,
reset => reset,
bit out => bitstream

) ;

end TB ARCHITECTURE;

C.12 bitstream_source.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic unsigned.all;

entity bitstream source is
port (
clk: in STD LOGIC;
reset: in STD LOGIC;
bit out: out STD LOGIC
);

end bitstream source;
architecture bitstream source of bitstream source is
constant test stream: STD LOGIC VECTOR (687 downto 0) :=
x"41444946401F4000020500988004003C3B456E636F6465642062792041542654204C
61626F7261746F726965732C20474D5420467269204465632032312031343A33303A32
3920323030310A9F0200AB00C85483EALB";
signal test stream next: STD LOGIC VECTOR (687 downto O0);
begin

process (clk, reset)

begin
if (reset = '0') then

110

test stream next <= test stream;
bit out <= test stream(687);

else
if (clk'event and clk = '1') then
test stream next (687 downto 1)
<= test stream next (686 downto 0);
bit out <= test stream next (686);
end if;
end if;

end process;
end bitstream source;

111

APPENDIX D. XSV BOARD PINOUT FOR TESTING

#PINLOCK BEGIN

#Sat Oct 12 13:45:29 2002

#File:

#Author:

pinout.uct

Ryan Linneman

#Disable SRAM

NET "SRAM CE Left" LOC
NET "SRAM_CE_Right" LOC
#Push buttons

NET "x quant<3>" LOC
NET "x_quant<2>" LOC
NET "x quant<l>" LOC
NET "x_quant<0>" LOC
#DIP Switches

NET "scalefactor<7>"

NET "scalefactor<oe>"

NET "scalefactor<55>"

NET "scalefactor<4>"

NET "scalefactor<3>"

NET "scalefactor<2>"

NET "scalefactor<l>"

NET "scalefactor<0>"

#Expansion Header Left

NET "x rescal<45>" LocC
NET "x rescal<44>" LocC
NET "x rescal<43>" LoC
NET "x rescal<42>" LocC
NET "x rescal<41>" LoC
NET "x rescal<40>" Loc
NET "x rescal<39>" LoC
NET "x rescal<38>" LOC
NET "x rescal<37>" LoC

LoC =
LOC =
LoC =
LOC =
LoC =
LOC =
LoC =
LOC =

Hp186";
"p109",'

"p185";
"Pl76";
"p175";
"Pl74";

"P140";
"P142";
"P146";
"P149";
"P153";
"P155";
"P159";
"P161";

"P199";
"P195";
"P194";
"P193";
"P192";
"P191";
"P189";
"P188";
"P187";

#Expansion Header Right

NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET

"x_rescal<36>"
"x rescal<35>"
"x_rescal<34>"
"x rescal<33>"
"x_rescal<32>"
"x_rescal<31>"
"x rescal<30>"
"x_rescal<29>"
"x_rescal<28>"
"x_rescal<27>"
"x_rescal<26>"
"x_rescal<25>"
"x_rescal<24>"
"x_rescal<23>"
"x_rescal<22>"
"x_rescal<21>"
"x_rescal<20>"
"x_rescal<19>"
"x_rescal<18>"
"x_rescal<l7>"
"x_rescal<le>"
"x_rescal<15>"
"x_rescal<l4>"
"x_rescal<13>"
"x_rescal<l2>"
"x_rescal<ll>"
"x_rescal<10>"
"x rescal<9>"
"x_rescal<8>"
"x_rescal<7>"
"x rescal<6>"
"x_rescal<5>"
"x rescal<4>"
"x_rescal<3>"
"x rescal<2>"
"x_rescal<l>"
"x rescal<0>"

#PINLOCK END

LOC
LOC
LOC
LOC
LOC
LOC

LOC =
LoC =

LOC
LOC
LOC
LOC

LOC =
LoC =

LOC
LOoC
LOC
LOC

LOC =
LOC =

LOC
LOC
LOC
LOC

LOC =
LOC =

LOC
LOoC
LOC
LOC
LoC
LOC
LOoC
LOC
LOoC
LOC
LOoC

"P108";
"P107";
"P103";
"P102";
"P101";
"P100";
"P99";
"P97";
"P96";
"P95";
"P94";
"P93";
"P87";
"P86";
"P85";
"Pg4";
"P82";
"P81";
"P80";
"P79";
"P78";
"P74";
"P73";
"P72";
"P71";
"P70";
"P68";

"P67";

"P66"’.

"P65"’.

"P64";

"P63"’.

"P57";

"P56"’.

"P55";

"P54"’.

"P53";

112

