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ABSTRACT

This paper evaluates the coding gain of using a dynamic
Huffman entropy coder in an audio coder that uses a
wavelet-packet decomposition that is close to the sub-
band decomposition made by the human ear. The sub-
band audio signals are modeled as samples of a station-
ary random process with laplacian probability density
function because experimental results indicate that the
highest coding efficiency is obtained in that case. We
have also studied how the entropy coding gain varies
with the band index. The proposed adaptive Huffman
coding method gives rise to an average coding gain of
approximately 0.25 bits per sample compared to binary
coding. A further coding gain can be achieved if time-
varying filter banks are used. Experimental results tell
us that using a suitable method to translate the psycho-
acoustic information to the wavelet domain, combined
with our adaptive Huffman coding scheme, binary rates
of about 64 kbps can be obtained for transparent coding
of CD quality monophonic audio signals.

1. INTRODUCTION

Coding of CD quality audio signals has become a key
technology in the development of current audio systems.
CD quality monophonic audio signals are obtained with
sampling frequencies of 44.1 kHz and 16 bits PCM cod-
ing. So, it is necessary a binary rate of 705.6 kbps for
transmission, justifying the research and development of
efficient audio coding techniques in order to reduce this
high transmission rate. In many applications, such as
high quality audio transmission and storage, the goal is
to achieve transparent coding of CD quality audio signals
at the lowest possible bit rates.

Most audio coding algorithms are based on: 1) re-
moval of statistical redundancies in the audio signal, and
2) masking properties of the human auditory system to
“hide” distortions. Traditional subband and transform
coding techniques provide a convenient framework for
coding based on both principles. Several of these tech-
niques have contributed to the development of the
ISO/MPEG audio coding standards.

The first one, called ISO/MPEG-1 [1], supports sam-
pling rates of 32, 44.1 and 48 kHz, and several operation
modes with bit rates ranging from 32 to 448 kbps.

The last one, the ISO/MPEG-4 standard, is composed
of several speech and audio coders supporting bit rates
from 2 to 64 kbps per channel. ISO/MPEG-4 includes
the already proposed AAC standard, which provides high
quality audio coding at bit rates of 64 kbps per channel.

Parallel to the definition of the ISO/MPEG standards,
several audio coding algorithms have been proposed that
use the wavelet transform as the tool to decompose the
audio signal. The most promising results correspond to
adapted wavelet-based audio coders. Probably, the most
cited is the one designed by Sinha and Tewfik [2], a high
complexity audio coder that provides low bit rate and
high quality audio coding by searching a nearly optimum
prototype filter for each audio frame. Others adaptive
wavelet-based audio coders achieve similar results with
lower complexity by searching the best wavelet packet
structure attending to perceptual criteria [3].

To achieve bit rates around 64 kbps, it is necessary to
incorporate in our scheme an entropy coding stage.
Huffman coding involves the definition of mapping ta-
bles attending to the probabilities associated to each in-
put symbol. Here, we propose an adaptive method based
on the assumption that subband audio signals can be
modeled as samples of a stationary random process with
Laplacian probability density function.

2. AUDIO CODER STRUCTURE

In this section, the audio coder structure is described. It
works with monophonic audio signals sampled at 44.1
kHz, but can be easily extended for multi-channel audio
signals. Each input sample is PCM coded with 16 bits.

 The encoder structure is summarized in figure 1.

Figure 1. Encoder structure
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The main features of the audio coding scheme pre-
sented in this paper are:

1. The input signal is analyzed with a filter bank which
implements a wavelet packet decomposition adapted
to the critical band analysis at the inner ear. It is rep-
resented in figure 2.

Figure 2. Filter bank for critical band decomposition

2. Due to the fact that audio signals are not stationary,
input signals are segmented in frames that can be
modeled as windowed samples of a random process.
Each frame is 1024 samples sized, that is a suitable
duration in order to consider it as a stationary signal
in most of the cases.

3. To avoid that the number of wavelet coefficients
that characterize an audio frame is higher than the
number of samples in the time domain, each frame is
interpreted as a periodical signal.

4. To avoid sharp changes in the introduced quantiza-
tion noise power in the decoded audio signal, adja-
cent frames overlap 1/64 of their length, and the
overlapping samples of each frame are windowed
with the square root of a raised cosine function.

5. Parallel to the decomposition of the input signal, a
masking threshold in the frequency domain is esti-
mated for each audio frame. Here, we have used the
ISO/MPEG-1 psycho-acoustic model 2. This mask-
ing threshold is not suitable to be applied directly in
the wavelet domain, mainly when short filters are
used to implement the wavelet transform. A novel
algorithm to translate the psycho-acoustic informa-
tion from the Fourier to the wavelet domain is in-
cluded in our coding scheme [4].

6. A set of 15 uniform quantizers is used. The size of
the quantization step for a given band is adapted to
the scale factor of that band. The scale factors,
which are sent to the receiver as side information to-
gether with the bit allocation information, are coded
using 8 bits log PCM.

7. The quantized wavelet coefficients are entropy
coded by the adaptive method proposed in next sec-
tion and multiplexed with the side information to
compose the bit stream transmitted to the decoder.

8. At the decoder, the coded wavelet coefficients and
the side information are demultiplexed. Then, coded
wavelet coefficients are decoded using the side in-
formation and applied to the inverse wavelet de-
composition, which reconstructs the audio frame.

9. Each the overlapping samples of the reconstructed
frames are windowed again with the squared root of
a raised cosine function, and so, after the overlap-
add process, the perfect reconstruction property is
preserved.

The decoder structure is represented in figure 3.

Figure 3. Decoder structure

3. ADAPTIVE HUFFMAN CODING

This section is devoted to a detailed description of our
adaptive Huffman coding method. In general, a subband
audio signal can be viewed as a zero-mean random signal
with a probability density function (p.d.f.) that can be
modeled with a generalized gaussian function [5]:
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For β = 1.0 and β = 2.0 we have the special cases of
laplacian and gaussian distributions, respectively. We
treat to test the hypothesis that subband signals resulting
from the wavelet packet decomposition of audio signals
can be almost always modeled with laplacian probability
density functions. In [5] β has been estimated using the
Kolmogorov-Smirnov test and it varies in the range of
0.8 to 1.2 in most cases. Another method to validate the
above mentioned hypothesis is checking whether coding
gain is obtained using entropy coders adapted to lapla-
cian p.d.f.’s and compare the results with those obtained
for other p.d.f.’s.
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Experimental results come to confirm our hypothesis,
as it will be shown in next section. In figure 4 we show
an example of wavelet coefficients histogram for a given
subband audio signal together with its modeling using
laplacian and generalized gaussian distributions.

Figure 4. Example of wavelet coefficients histogram and
its modeling using laplacian and generalized gaussian

p.d.f.’s (α = 0.0745 and β =1.2953).

Once a probability density function is assumed for
wavelet coefficients, the next stage in our dynamic
Huffman coding technique involves computing the prob-
ability for each quantization level at each subband audio
signal. Assuming laplacian p.d.f. for subband k-th with
quantization step size qk and laplacian parameter αk, the
probability of the quatization level j-th (mid-tread quan-
tizer) is defined by:
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The binary rate resulting from uniform quantization
followed by Huffman coding can be approximated by the
following function [6]:
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Where Dk is the sample rate of subband k and Φ can
be explicitly computed as
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The code words for each subband audio signal are
obtained from the above probabilities using the Huffman
coding algorithm given in [7]. The bit rate estimation is
based on the statistical model of the subband signals.

4. EXPERIMENTAL RESULTS

To check the performance of the proposed audio coder,
we have obtained some subjective and objective results.
Five music samples considered hard to encode have been
used, and we have made sure that the set covers a wide
variety of signals.

4.1. Objective results

Table 1 shows the entropy coding gain that our method
gives rise when using minimum phase Daubechies filters
with 32 coefficients rise for both laplacian and general-
ized gaussian distributions. It also shows the final bit
rates achieved for transparent coding.

Test signal Case I:
Laplacian model

Case II:
Gener. Gaussian model

Drums 1,58 / 0,23 1,75 / 0,06

Guitar 1,48 / 0,23 1,70 / 0,01

Piano 1,42 / 0,18 1,65 / -0,05

Saxo 1,44 / 0,15 1,68 / - 0,09

Pop 1,49 / 0,25 1,76 / -0.02

Table 1. Objective results: Final bit rate / Huffman coding
gain both in bits per sample.

From table 1, it can be remarked the following re-
sults:

1. The laplacian distribution is closer to the actual
wavelets coefficients distribution that the general-
ized gaussian one.

2. The coding gain using adaptive Huffman coding for
laplacian modeling is around 0.25 bits per sample.

3. The bit rates are near to 64 kbps for most of the test
signals.

In figure 5 we show how coding gain is changed with
the band index. Several important results can be ex-
tracted from that figure:

1. Coding gain is increased with the band index, which
indicates that laplacian distribution only match
properly for high frequency bands, where few fil-
tering stages are used.

2. No improvement is obtained from the first to the
tenth subbands, where the coding gain is compen-
sated with the side information necessary at the de-
coder (αk), or even coding losses are obtained.

3. Subband 23-th is a special case. A look at figure 2
indicates that this subband contains the highest fre-
quency components, corresponding to those whose
power is almost always below the auditory thresh-
old. So, the coder doesn’t assign any bits to that
subband even when entropy coding is not used.



 Figure 5. Variation of the coding gain with the band index

The results suggest that a good coding strategy would
be the following: binary coding for low frequency sub-
bands and adaptive Huffman coding for the rest.

4.2. Subjective results

We have performed a test for transparency (“double
blind test”) at a binary rate of approximately 64 kbps
with 20 people selected from our research group, all of
them aged from 24 to 35 years. The results when using
the above mentioned filters are presented in table 2.

Music
Sample

Average probability of
original music preferred

over encoded one

Comments

Drums 0.56 Transparent

Guitar 0.48 Transparent

Piano 0.47 Transparent

Saxophone 0.54 Transparent

Pop 0.51 Transparent

Table 2. Subjective test results: transparency test

The quality is cataloged as ‘transparent’ because the
average probability is around 0.5 for all the test signals.
The results confirm that our coder can be considered as
transparent at a binary rate of 64 kbps.

Besides, our coder was mostly preferred if it was
compared to MPEG-1 layer-3 coder because something
like a filtering was found in signals coded with MPEG-1
layer-2 coder. However, listeners found the quality of
signals coded with our coder similar to those coded with
MPEG-1 layer-3 coder.

5. SUMMARY

We have just presented an adaptive Huffman coding
technique included in a wavelet-based perceptual audio
coder. Our studies point to laplacian distribution as the
best choice for high frequency subband audio signals
modeling and indicate that coding gains around 0.25 bits
per sample are feasible. A hybrid coding strategy is pro-
posed due to the lack of accuracy of this modeling for
low frequency subbands.

Two promising approaches for further bit rate reduc-
tion are: 1) vector quantization, 2) model based coding.
We are now focused on these two issues. An interesting
way to reduce the computational complexity would be
the development of a masking model directly in the
wavelet domain. This will be another research issue to
work on.

Also, it would be interesting to check the perform-
ance of our scheme with other entropy coding methods
(i.e arithmetic coding).

Other issues to work on are scalable wavelet-based
coding, evaluation of different psycho-acoustic models
and more extensive subjective quality evaluation.
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