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Abstract

The topic of this thesis is parametric coding of speech and audio. A number of esti-
mation and modeling problems in this field of research are addressed. First, a major
problem in audio coding, namely efficient coding of transients, is considered. Am-
plitude modulated sinusoidal models and associated estimators are proposed, and we
develop and compare a number of coders. The amplitude modulated sinusoidal models
are found to lead to improved coding in listening tests.

Then we move on to the problem of estimating the parameters of sinusoids. We
relate a number of practical sinusoidal frequency estimators that are commonly used in
audio coding in a framework based on a perceptual distortion measure. These can be
related to maximum likelihood estimation under the assumption of Gaussian noise and
can be seen as relaxations of the optimal nonlinear least-squares frequency estimator.

The next part concerns a modeling and estimation problem in rate-distortion opti-
mized audio coding. Based on rate-distortion optimization, an optimal segmentation
and allocation of bits can be found, but this requires that distortions are calculated for
all allocations and segments. We instead propose a method for estimating the distor-
tions based only on a number of simple signal features. Specifically, the relationship
between these features and distortions are modeled using a Gaussian mixture, and, for a
particular segment, the distortions are estimated using a Bayesian estimator. Listening
tests reveal that this can be done without much loss in perceived quality.

Finally, we consider the application of the harmonic sinusoidal model, where all
sinusoids are integer multiples of a fundamental frequency, to parametric coding of
speech and packet loss concealment based on the sinusoidal parameters. Also, a high-
resolution fundamental frequency estimation method is proposed.

The applications of the methods and models presented in this thesis extend beyond
the scope of audio coding. The amplitude modulated sinusoidal models and the meth-
ods for sinusoidal frequency estimation have applications also in signal and spectral
analysis, musical analysis and synthesis, and signal modification.
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Maxims of Signal Processing

Julius O. Smith III, professor at Stanford University, formulated
the following humorous fundamental principles of signal process-
ing.

1. Everything is equivalent to everything else, once you finally
understand it.

2. If one technique is superior to another, it is due to a longer
integration time (more averaging).

3. Exciting new results are usually due to artifacts in the pro-
cessing.

4. With enough processing, it is no longer necessary to have
any input data.

5. Scale factors are never right on the first try.
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Introduction

1 Source Coding

1.1 Introduction
Compression of audio signals, be it music or speech, can be described as the art of
achieving the highest possible perceived quality of audio signals represented using a
given number of bits or, conversely, minimizing the number of bits required to en-
code a signal at a given quality. Despite the availability and decreasing cost of high
rate transmission channels, the interest in perceptual audio coding remains high today.
The reason is simple. Instead of making perceptual audio coding obsolete, increasing
bandwidth instead opens up new applications and possibilities. For example, many
companies have seized the opportunity to spawn a variety of new consumer electronics
products such as portable digital audio players that are much smaller, lighter and more
flexible than previous products based on compact discs or cassette tapes. Digital audio
broadcasting (DAB) [1] and streaming over the Internet are also becoming more pop-
ular and important in today’s society. Many high quality audio systems now rely on
multiple channels, not just stereo, and this is yet another example of the new possibili-
ties. It also seems logical that since channel capacity will always be limited and never
without cost, we will continue to seek to get the most from a given channel, and, hence,
the source coding problem persists. For an overview of some of the many applications
of audio coding, we refer to the papers [1–7]. It is also interesting to note that while
early audio and video players and recorders were mainly based on a single codec, there
now seems to be a development towards support for many different codecs. This opens
the door for great progress since the research community then no longer necessarily has
to concern itself with backward compatibility.

Audio coding belongs to the field of source coding, which is part of communication
and information theory. First, we treat the audio coding problem as a source coding
problem. Later, we will present the specifics of audio coders and go into details about
parametric coding of audio. Finally, the contributions of this thesis will be presented.
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2 INTRODUCTION

1.2 The Shannon Communication Model
It was C. E. Shannon who, with his landmark 1948 papers [8, 9], laid the foundation of
modern communication theory. A block diagram of the Shannon model of communi-
cation is shown in Figure 1. The source produces messages, in our case discrete-time
audio signals, that are to be transmitted to the sink. In Shannon’s work, the source
is characterized by a probability density function (pdf) or a probability mass function
(pmf). The source is transformed into a different signal, a string of bits, by the source
encoder. The source encoder seeks to find a representation that exploits statistical prop-
erties of the source such that the number of bits required is minimized. This string
of bits is then passed on to the channel encoder. The function of the channel encoder
is to protect the signal from corruption by the transmission channel. This is done by
adding redundant information that allows for error correction in the channel decoder.
The source and channel encoders are jointly referred to as the encoder. The signal is
then transmitted through the communication channel or is stored on a medium.

Source coder

Decoder

Channel

Channel
DecoderSink

Encoder

Decoder

Encoder

Storage
Channel/

Source
Encoder

Source

Source

Figure 1: The Shannon Communication Model.

The transmission channel is the physical medium that the signal is transmitted
through on its way to the sink. This may, for example, be the acoustical channel be-
tween two people communicating in a room or a radio frequency channel. The channel
may subject the transmitted signal to noise. In the channel decoder, the redundant in-
formation that was added by the channel encoder is exploited to correct errors caused
by the noisy channel and thereby recovering the original signal. This is then fed to
the source decoder which maps the signal back to a form similar to that of the original
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source. It then finally arrives at the sink. The combination of the source and channel
decoders are commonly referred to as the decoder while the combination of a encoder
and a decoder is commonly known as a codec or a coder.

One of the main results of Shannon’s work is that the source and channel coding
processes can be separated. This, however, is only strictly true for infinite delay and
complexity, and as a result, joint source and channel encoding may be of interest in
some applications. For example, the nature of the transmission channel is taken into
account in recent work on speech coding for packet based networks [10–15]. For the
most part, in fact except for paper I, this thesis is mostly concerned with source encod-
ing and decoding, commonly referred to as source coding. For a survey of the results
and research activities in source coding, we refer to [16–18].

1.3 Design Criteria
The design of a coder is typically subject to a number of explicit or implicit constraints
that depends on the application. Some design criteria are conflicting and their relative
importance depends on the application. These must all be taken into account in the
design or evaluation of a coder (see e.g. [4, 19]).

Rate: The number of bits per second. The rate may either be fixed or variable over
time. Often coders are designed to operate at specific rates, and which coder is the
best depends on the desired bit-rate. For example, parametric coders are known to
perform better than transform coders at low bit-rates while at high bit-rates, transform
coders perform best (see e.g. [20, 21]).

Distortion: The quality of a coder is measured in terms of distortion. The higher
the distortion, the worse the quality. Distortion may be measured objectively, but
ultimately the subjective quality is what matters. This is determined using listening
tests.

Delay: The delay is the time it takes from the message is produced at the source until
it arrives at the sink. The higher the delay, the lower the rate is achievable at the same
distortion. The delay constraints on the encoder/decoder may vary greatly depending
on the application. For example, in music storage applications, no hard delay con-
straint exists and the encoder may take advantage of this, while for telephone systems
there are strict requirements for the tolerable delay.

Memory: The amount of memory that is required by the encoder/decoder. How much
memory is required in the encoder and/or decoder is also an important factor in many
applications. Often memory can be traded for complexity and vice versa.

Complexity: The number of CPU/DSP cycles required by the encoder/decoder to pro-
cess a block of data. Many applications of audio coding require real-time encoding
and/or decoding of the coded signal and often the decoder has to run on devices that
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have very little processing power such as mobile phones or portable players. Hence,
the computational complexity is often considered critical for the decoder.

Robustness: The ability of the coder to handle errors and anomalies in the input. Some
transmission channels are subject to bit errors while others are subject to losses of
entire packets (i.e. the frame erasure channel). Hence, the encoder/decoder should be
designed with robustness towards the respective types of errors. Robustness is traded
for bit-rate.

Flexibility: How well the coder adjusts to different constraints and/or conditions. For
example, rate scalability is desirable in many applications. The ability of a coder to
adjust to different constraints and input signals is becoming increasingly important.
For example, the available bandwidth on the Internet may be different at different
times of the day, or the probability of packet losses may vary. Speech coders can
code speech very efficiently at very low bit-rates but they do not perform well for
music. Audio coders can code both music and speech well, but at higher bit-rates.
The price paid for flexibility is often complexity and/or bit-rate.

The art of source coding is then to arrive at a reasonable tradeoff between all these
factors for the application at hand.

1.4 Fundamentals
Let us start by introducing the basics of source coding. Since all practical coders op-
erate under the constraint of finite delay, we here concern ourselves with signals of
finite length, namely blocks of signals. It is also assumed that we are dealing with
discrete-time signals, i.e. signals that have been sampled in an appropriate manner. The
input signal is denoted as x(n) and the vector containing a block of the input signal
as x = [ x(0) . . . x(N − 1) ]

T ∈ RN . A vector quantizer (VQ) is then a mapping
Q : R

N → C of x to a codebook (CB) C, i.e. we write Q(x) = x̂i. The case where
N = 1 is referred to as scalar quantization. The codebook consist of a number of re-
production vectors C = {x̂1, x̂2, . . . x̂K} with x̂i ∈ RN for i ∈ I = {1, 2, . . . ,K}.
The aim of vector quantizer design is then for a given codebook size K (or entropy)
to design a codebook that minimizes the error that the quantization process causes. No
optimal solution exists for this problem, however, and a wealth of different algorithms
for codebook design exists (see e.g. [22, 23]). With respect to the Shannon communi-
cation model, the vector quantizer can be described in terms of an encoder that maps
the input vector to a member of the index set, i.e. E : R

N → I. This index maps to
a bit string that is transmitted. The decoder is then the map D : I → RN back from
the bit string corresponding to a member of the index set to the reconstruction vector.
From these definitions, it can be seen that any coding system can be classified as a vec-
tor quantizer. In fact, this is also the argument used to show that vector quantization
is indeed optimal [17, 22, 24]. The differences between different quantizers or coders
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are then in terms of the process that maps from the input signal to the index and back
again. A vector quantizer is (at least locally) optimal (see [22]) if its encoder, given a
codebook, operates in such a way that it satisfies the nearest neighbor condition mean-
ing that a vector is mapped to the nearest reconstruction vector in the sense of some
distance (distortion) measure and the codebook satisfies the centroid condition, mean-
ing that the reconstruction vectors are the ones minimizing the expected distortions of
the partition cells that define the decision boundaries between neighboring reconstruc-
tion vectors. Finally, the zero probability boundary condition must be satisfied, that is,
boundary points (exactly equally distant to two reconstruction vectors) occur with zero
probability.

1.5 Definition of the Coding Problem
Let us now move on in defining the source coding problem mathematically. The prob-
lem at hand can be described as finding a reconstruction vector x̂i of the input signal x.
In posing the source coding problem, a nonnegative distortion measure D(x, x̂i) that
measures how close the reconstruction vector is to the input signal is needed. The dis-
tortion measure must satisfy a number of properties to be a metric or norm (see [25]).
Source coders can be described as either distortion-constrained or rate-constrained.
Distortion-constrained means that the source coding problem can be posed as

minimize R(i)

s. t. D(x, x̂i) ≤ D?,
(1)

where D? is the desired distortion. In this setup, the number of bits used is minimized
while the distortion is equal to or less than some required level. For rate-constrained
coding, the mathematical optimization problem is

minimize D(x, x̂i)

s. t. R(i) ≤ R?,
(2)

with R? being the desired number of bits. Here, the distortion is minimized while
the number of bits is at most R?. Both of these constrained optimization problems
can be solved using the Lagrange multiplier method (see e.g. [18, 26, 27]) and this is
commonly referred to as rate-distortion optimization. How this is done in practice is
described in several of the papers in this thesis.

The rate R(i) associated with transmitting the codebook indices can be measured
in terms of resolution (codebook size) or entropy. When measured in terms of the
resolution (number of different representations), the resulting rate is upper bounded and
fixed, whereas when measured in terms of entropy, the resulting expected rate will be
lower and variable. The entropy of a source is defined as the average minimum number
of bits required to reconstruct it without any loss [8, 9]. Specifically, the entropy of a
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random variable I with (quantizer indices) outcomes i ∈ I is defined as

H(I) = −
∑

i∈I

p(i) log2 p(i), (3)

with the individual indices having probability p(i). Furthermore, there exist entropy
codes of expected length L such that H(I) ≤ L ≤ H(I) + 1 (see [18]). Hence, we
can then design vector quantizers subject to an entropy constraint rather than a resolu-
tion constraint and deal with the entropy coding in a separate step. Entropy coding is
also commonly referred to as lossless coding. Lossless coding is a type of distortion-
constrained coding where D? = 0 and where D(x, x̂i) = 0 implies that x̂i = x. Here,
the goal is to minimize the rate under the condition that the input signal can be recon-
structed perfectly. Common examples of lossless coding are Huffman, arithmetic and
Ziv-Lempel coding (see e.g. [18, 22]). Parametric and perceptual audio coders belong
to the class of lossy coders where D? ≥ 0, which in turn implies that we may have that
x̂i 6= x. Lossy coders often also apply lossless coding in the final stage of the encoding
process. Using these definitions, we can also define perceptually transparent coding as
distortion-constrained coding with D? = 0, but where we may have that D(x, x̂i) = 0
for x̂i 6= x. An alternative definition of transparent coding, with D(x, x̂i) = 0 if and
only if x̂i = x, would be D? = ε, where the distortion measure is then constructed in
such a way that a distortion less than ε is guaranteed to be inaudible.

In practice, most lossy source coders are rate-constrained. The formulation in (2)
of the source coding problem comes naturally from transmission channels or storage
media having limited capacity. Given the constraints of the transmission channel or
storage medium, we seek to find the best encoding of a given signal. In this case, best
is measured in terms of the distortion D(·). Basically, we seek to do the best with what
we have.

In designing source coders, we then face a number of tasks. We have to either
choose or design 1) a distortion measure, 2) codebook vectors, and 3) an encoder and
decoder. The function of the codebook is to describe the signal in a compact way
whereas the function of the distortion measure is to shape the error such that it has the
least impact on the perceived quality.

1.6 Rate-Distortion Theory
Shannon derived bounds on the possible minimum rate required to encode a source at a
given distortion [28]. We will here briefly state the main results. For proofs and details
we refer to [17, 18, 24, 28]. Here, we consider x ∈ B to be the discrete outcomes of a
random variableX having a pmf p(x). The quantization process then results in another
random variable X̂ = Q(X) ∈ C. The expected distortion of the quantization process
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can then be written as

E
{
D(X, X̂)

}
=
∑

x̂∈C

∑

x∈B

p(x, x̂)D(x, x̂) (4)

=
∑

x̂∈C

∑

x∈B

p(x)p(x̂|x)D(x, x̂). (5)

The entropy of the reconstruction point or vector X̂ can be related to the mutual infor-
mation between X̂ and X as

H(X̂) ≥ H(X̂) −H(X̂|X) (6)

= I(X ; X̂), (7)

where the conditional entropy is zero, i.e. H(X̂|X) = 0, since we are not concerned
with noisy channels or reconstruction. This means that the entropy of the quantized vec-
tor, or, equivalently, the entropy of the quantization indices, simply equals the mutual
information. The mutual information between X and X̂ is defined as

I(X ; X̂) =
∑

x̂∈C

∑

x∈B

p(x, x̂) log2

p(x|x̂)
p(x)

. (8)

Since p(x) is given, the problem of minimizing the entropy associated with X̂ reduces
to the design of a statistical mapping, a quantizer, having the conditional probability
p(x̂|x). Indeed, rate-distortion theory states that if we pick this such that

R(D) = min
p(x̂|x):E{D(X,X̂)}≤D

I(X ; X̂) (9)

we can do no better. This minimum rate as a function of the distortion is known as
the rate-distortion function. The rate-distortion function is a convex, non-increasing
function of the distortion. The rate-distortion bound can be attained by using long (in
principle infinite) vectors. That is, for sufficiently long segments, there exists codes
such that the rate-distortion bound is attained. It turns out that even when quantizing
independent random variables a lower rate can be achieved by vector quantization than
by quantizing the variables independently [18]. Given these results, we can justifiably
claim that all practical source coding, other than unstructured quantization of arbitrarily
long vectors, is motivated by implicit delay and complexity constraints.

The Shannon rate-distortion theory [28] is often considered nonconstructive (see
e.g. [22]) since it does not give us a practical method for designing vector quantizers.
For real-life signals, the pdf of the source is generally not known.

1.7 Parametric Coding
The topic of this thesis is parametric audio coding. The basic principle of parametric
coding is essentially an extrapolation of Occam’s razor that one should not use any
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more parameters to describe a system/signal than necessary (see, e.g., [18]). Or, in
other words, the simplest possible model that can be used to describe the system/signal
is probably also the right one.

We weakly define parametric coding to mean compression by means of modeling a
signal with a few physically and/or psychoacoustically meaningful parameters θ ∈ RL

(see also [29]). The number of parameters L is less than the length of the input signal
vector N and in most cases much less, i.e., we have that L � N . The parametric en-
coder is then a map from the input signal vector to the (intermediate) parameters, and
through quantization of these parameters, to the index which is transmitted. The para-
metric decoder is the map back to the parameters and to the reconstruction vector. By a
few parameters, we mean that the number of parameters are less, and often much less,
than the number of input samples. One distinct feature that separates parametric cod-
ing from vector quantization using trained codebooks is that the signal model x̂(n,θ)
is chosen (or postulated, some may say) by the designer. From the point of view of
vector quantization, one might say that parametric coding is a form of structured vector
quantization where the codebook structure is imposed by the signal model. The basic
sentiment shared among people working on parametric coding seems then to be that we
can better choose a signal model than design a codebook training algorithm. That the
codebook design is reduced to a choice of signal model can generally be attributed to
difficulties in imposing codebook structures on the training algorithms. Likewise, that
the model parameters are chosen such that the quantization of model parameters maps
to well-studied experiments in psychoacoustics is due to shortcomings in the distortion
measures. In reality, though, the success and popularity of parametric coding is due
to a number of factors. Namely, we can choose models such that the parameters can
be found in a computationally efficient way, and, for the case of audio coding, we can
choose models that are expressed in terms of parameters whose sensitivity to quanti-
zation errors are well-studied in the psychoacoustical literature. Mathematically, the
parametric coding problem can be defined as follows: Let the input signal x(n) be seg-
mented as x = [ x(0) · · · x(N−1) ]T ∈ RN . Then we seek to find a description of that
input signal x̂(θ) = [ x̂(0,θ) · · · x̂(N − 1,θ) ]T ∈ RN in terms of some parameters
θ ∈ RL.

A parametric coder typically consists of a number of processing components, namely
model parameter estimation, perceptual modeling that calculates a distortion measure,
parameter quantization, and entropy coding. These are depicted in the block diagram
in Figure 2.

It is interesting to note that our definition of parametric coding is contradictory to
the popular distinction of audio coders into parametric and waveform coders. That dis-
tinction is clearly misleading since parametric coding can be, and often is, waveform
approximating (e.g. [30–32]). However, most non-waveform approximating coding
techniques are parametric. Waveform approximating coders can have the useful prop-
erty that the reconstructed signal converges to the original as the bit-rate grows. As
a result, they generally require higher bit-rates than the non-waveform approximating
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Figure 2: Parametric encoder. Given a signal model, the parameters are estimated from the observed signal.
The model parameters are then quantized and entropy coded before they are written to the bitstream. A
perceptual model is used to calculate a distortion measure, which can then be applied in the estimation and
quantization of model parameters.

coders, but they are then typically also more robust, i.e. they can handle a wide va-
riety of different sources [21]. Furthermore, it can be seen that, by our definition of
parametric coding, it can generally not achieve perfect reconstruction since L < N .
However, many models used in parametric coding, for example the sinusoidal model,
can include L = N as a special case. Most coding standards and practical coders to-
day employ combinations of different coding techniques and many also use parametric
coding methods.

1.8 Estimation and Modeling Problems
Having defined the source coding problem and parametric audio coding, we can now
define what is meant by the title of this thesis, namely estimation and modeling prob-
lems in parametric audio coding. A modeling problem can be defined as the problem
of finding a signal model, which is suitable for some purpose, or, in terms of vector
quantization, designing a codebook having a certain structure. The purpose considered
here is signal compression and we hence seek a model that results in efficient coding of
audio signals. Estimation problems, on the other hand, are concerned with, given a sig-
nal model, finding the model parameters as well as possible. The measure of goodness
of the model and estimated parameters is that the distortion D(x, x̂(θ)) is minimized
while the number of bits associated with the parameters θ is kept fixed. Often, the quan-
tization of model parameters or compressed-domain signal modifications, such as [33],
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rely on the physical interpretation of the parameters. In that case, the statistical proper-
ties of the estimated parameters may also be of interest. Here, it should be noted that
when a number of coders are used in a multi-stage structure, such as [21, 34], where the
output of one coder is subtracted from the input and this difference is fed to a different
coder, one cannot simply conclude that the individual stages should, greedily, minimize
the distortion. Hence, the estimation-theoretical perspective of finding the best param-
eters (see e.g. [35, 36]), in a statistical sense, may also be applicable to parametric
coding.

2 Audio Coding

2.1 Brief History
Audio coding is one of the great success stories of modern digital signal processing.
Most people in the Western world today have heard about, or use, “mp3” (MPEG-1
Layer III [37]) frequently and, despite its age, it remains the de facto audio coding stan-
dard. Although speech and audio coding had been an active research field for many
years before that, e.g. [38], the major breakthrough in audio coding came in 1990 when
J. D. Johnston and K. Brandenburg made a historic demonstration at AT&T Bell Labs.
They demonstrated the concept of perceptually transparent coding of audio by spectral
noise shaping. They compared two audio signals with the same signal-to-noise ratio
(SNR), namely 13.6 dB. For one of the signals, the noise was white, while for the
other signal, the noise was shaped, in the frequency domain, by the auditory masking
threshold [39]. A SNR of 13.6 dB is typically considered as very low quality. In-
deed, most analog-to-digital converters used in audio processing system employ 16 of
24 bits per sample, corresponding to SNRs of 96 or 144 dB. The difference in per-
ceived quality between the two signals was such that the demonstration has since been
dubbed “The 13 dB miracle”. Perceptual audio coding is often described as the task of
removing/exploiting redundancies and irrelevancies of audio signals for compression
purposes. The redundancies refer to the statistical properties of the source, e.g. sta-
tistical dependencies over time, while the second refers to taking the properties of the
human auditory system into account. Most people today accept the compact disc (CD)
quality as the benchmark against which compression schemes should be compared. The
CD uses 16 bits per sample with a sampling frequency of 44.1 kHz and the resulting rate
is 705.6 kbps for a mono signal. Even by today’s standards, streaming or processing
data at such rates would be impossible, or at least very expensive, in many applications.
Both lossless and lossy coding of audio have been considered throughout the years. It
turns out, however, that only moderate savings in bit-rate, a factor of two or three, can
be achieved with lossless coding [40]. As a consequence, many applications require
that lossy coding be applied.

For a complete survey of the different standards and methods for perceptual audio
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coding, we refer to the tutorials [20, 41, 42] and for specifics of speech coding, we refer
to the tutorials [43, 44] and the references therein.

2.2 Perceptual Noise Shaping
In this section, we illustrate the basic principles of perceptual audio coding and the
notions of perceptual distortion measures and noise shaping. We do this based on the
simplest possible quantizer, a uniform scalar quantizer. First, the signal is transformed
into a perceptual domain by the, possibly nonlinear, transformation T (·). In that do-
main, the signal is quantized and mapped back to the signal domain using the inverse
transformation T−1(·). The transformation may depend on the signal x(n) as is often
the case in audio coding. This is illustrated in a block diagram in Figure 3. Noise shap-
ing is also sometimes constructed such that T−1(T (x(n))) = x(n), in which case the
original can be reconstructed perfectly.

Q

PSfrag replacements

T−1(·) x̂(n)x(n) T (·)

Figure 3: Noise shaping by quantization in the perceptual domain.

The quantization error caused by the quantization process (denoted Q) can be mod-
eled as an additive noise process e(n). In the block diagram in Figure 3, this means
that the quantization block is replaced by an addition of the noise process e(n). This
is depicted in Figure 4. For a uniform scalar quantizer, the noise process e(n) is white
and has a uniform probability density function (pdf); the number of bits determines the
variance of e(n). Now, the role of the transformation T−1(·) also becomes evident. It
will shape the error according to the transformation T−1(·); so, for the same quantizer,
the error can be shaped in many different ways. Clearly, it is desirable that the error
is shaped such that it has least impact; in the case of audio signals, this means that the
error is introduced where it is the least audible. This is the basic idea of noise shaping,
and it is very fundamental to audio coding. At this place, it is important to realize that
the signal-to-noise ratio cannot be improved by noise shaping. Noise shaping is often
also used in audio analog-to-digital converters and in wordlength reduction, but usually
in much simpler ways than in audio coders, e.g. [45–49].

From Figures 3 and 4, it can also be seen that we could just as well have designed the
quantizer such that the error was shaped according to T−1(·) rather than transforming
the input and output of the quantizer. This would, however, mean a more complicated
quantizer design.

The public switched telephone network (PSTN) also employs the principle of noise
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x(n) x̂(n)

e(n)

T−1(·)T (·)

Figure 4: Noise shaping by transformation of the input and output.

shaping, but in a very simple way. In the 1972 ITU-T standard for audio and speech
companding G.711 (see e.g. [43, 50]), a logarithmic transform is applied to the input,
which is subsequently quantized uniformly. Some, though, e.g. [22], see this as motived
by the source pdf not being uniform. The pre- and postfiltering approaches of [51, 52]
also fit this description well. In [51, 52] the transformation T (·) is a linear filter that
implements a spectral weighting and in [53, 54], the error is shaped in the temporal
domain in order to improve coding of transients.
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Figure 5: Illustration of frequency-to-place transformation along the basilar membrane for a tone complex
with the curves indicating the envelopes of the traveling waves (crudely after [55]).

2.3 The Human Auditory System
What is special about perceptual audio coders is that they take the properties of the
human auditory system into account in the coding of signals [4, 56–58]. The human
auditory system is a complex and highly nonlinear system. The ear consists of three
parts: the outer, middle and inner ear. The function of the outer ear is to collect the
signal and pass it on to the middle ear that serves as a transducer. Here, the acoustical
waves are transformed into compressional waves in the fluid in the inner ear. In the
inner ear these are transformed into nerve impulses that are transmitted to the brain.
Audio coders take advantage of the effects, or limitations, of the processing in the
human auditory system.
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Transparent coding aims at shaping the error in such a way that it is inaudible. The
simplest possible way of doing this is by taking advantage of the absolute threshold of
hearing, that is the minimum level of a tone that is audible. This level depends greatly
on the frequency of the tone. Any spectral components below the absolute thresh-
old of hearing are not audible and hence do not have to be coded. Audio coders also
take advantage of a phenomenon known as masking. Masking can be defined as a re-
duced audibility of a signal known as the maskee due to the presence of another signal
known as the masker. In terms of coding this means that spectro-temporal perturbations
(quantization or modeling errors) that may be inaudible can be introduced. The maxi-
mum inaudible perturbation is known as the masking threshold. The notion of masking
threshold led to the definition of perceptual entropy in [4, 59, 60], which is the bit-rate
required to encode a signal in such a way that it is indistinguishable from the original.
However, fairly complicated signal analysis is required in order to derive the masking
thresholds and the concept of masking is not applied easily to all types of audio coders.
As an example of a model for calculating such masking thresholds, we refer the reader
to the ISO 11172-3 (MPEG-1) Psychoacoustic Model 1 [37] also described in [20].

masker
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Figure 6: Illustration of simultaneous masking with the sound pressure level (SPL) as a function of log-
frequency. The presence of a strong tone, the masker, make a nearby tone, the maskee, inaudible if it is
bellow the auditory masking threshold.

The literature on psychoacoustics (see e.g. [55, 61]) distinguishes between two
types of masking: spectral (or simultaneous) and temporal (nonsimultaneous) mask-
ing. Simultaneous masking is the steady-state masking that occurs in the presence
of a stationary masker. Simultaneous masking can be understood by observing the
frequency-to-place transformation that takes place along the basilar membrane in the
cochlea of the human ear. This is illustrated for a tone complex consisting of three
tones in Figure 5. It can be seen that the different tones affect different locations of
the basilar membrane and that the effect is not well localized. This part of the human
auditory system can be seen as filter bank consisting of a set of tuned filters that adapt
to the stimuli. What can be observed is that the energy in one region spreads to neigh-
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boring filters, and because of this spread a nearby less strong signal may not be audible.
This is known as the spread of masking and its properties are illustrated in Figure 6.
The figure illustrates that, in the presence of a sinusoid having high amplitude, another
sinusoid, with a smaller amplitude at a nearby frequency, can become inaudible and
hence does not have to be coded. There are, however, some problems in applying the
concept of masking to audio coding since the derived masking thresholds depend on the
type of masker and the type of maskee. For example, the sensitivities encountered in
experiments with tones masking noise versus noise masking noise are different. Also,
the human auditory system is highly nonlinear. This can, for example, be observed in
that the response to a certain stimulus depends on the loudness level. This also leads to
the problem that, at the time of the encoding, it is not known what the playback level
will be. Hence, we see that the masking analysis inherently will be subject to a number
of choices and tradeoffs.
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Figure 7: Illustration of nonsimultaneous masking (crudely after [55]). In the presence of the masker, simul-
taneous masking occurs while before and after the masker, nonsimultaneous masking occurs.

Nonsimultaneous masking refers to the phenomenon that masking effects can be
observed before and after a masker is present. The masking capabilities of the masker
build up as the sensitivity decreases. Right before the onset of the masker, the sen-
sitivity decreases rather quickly. After the masker has ended, the sensitivity recovers
rather slowly. This is known as pre and post-masking, respectively and is depicted in
Figure 7. The post-masking is a much stronger effect than pre-masking, and, there-
fore, modeling or quantization noise introduced before the onset of a signal component
can be especially troublesome. These kinds of errors are usually referred to as pre-
echos or pre-echo distortion and much effort has been put into solving this problem
(see e.g. [20, 53]), including papers A through E in this thesis.

In non-transparent coding, e.g. rate-constrained coding, it is not a matter of what is
masked and what is not. Rather, it is a matter of shaping the error in a way such that
the error is least audible and this leads naturally to the need for perceptually motivated
distortion measures.
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2.4 Generalized Linear Distortion Measure
The masking properties of the human auditory system have been discussed, but how
these concepts can be applied in a distortion measure has yet to be addressed. We now
proceed to define the distortion measure D(x, x̂(θ)) in a fairly general but mathemati-
cally convenient way. We define it as a generalized 2-norm, which can be written as

D(x, x̂(θ)) = ‖W(x − x̂(θ))‖2
2, (10)

with W ∈ RM×N being a perceptual weighting matrix, which may depend on x and
x̂(θ). Using this formulation, all of the R-D optimization problems turn out to be some
form of least-squares. Writing out the 2-norm, we get

D(x, x̂(θ)) = (x − x̂(θ))HWHW(x − x̂(θ)), (11)

where WHW is now guaranteed by construction to be symmetric and positive semidef-
inite. We can now write the eigenvalue decomposition of this as [62]

WHW = UΛUH , (12)

with U ∈ R
N×N containing the column eigenvectors and Λ ∈ R

N×N the associated
(nonnegative) eigenvalues λi on the diagonal. If we have that all the eigenvalues are
positive λi > 0 ∀i, the distortion measure defines a norm, whereas if any of the eigen-
values are zero, i.e. λi = 0, we have a pseudo-norm. In that case, errors in the subspace
of the orthogonal complement of the row space of W will have zero distortion. The
perceptually weighted two-norm can now be written in the following form

D(x, x̂(θ)) = (x − x̂(θ))HUΛUH(x − x̂(θ)). (13)

From this it is also clear that in our choice of signal model x̂(θ) it is desirable that
the matrix-vector product UH x̂(θ) can be calculated efficiently. We have still not dis-
cussed how to derive the perceptual weighting matrix W. This is an active field in
current psychoacoustical research. Much effort has been put into defining perceptually
meaningful distortion measures. For example, the model presented in [63, 64] defines
such a measure, where the perceptual weighting matrix W is circulant and symmetric.
For such a matrix, the eigenvectors are the well-known Fourier basis and such a struc-
ture is a desirable property in that it admits efficient computations. In [65, 66], a fairly
complicated and nonlinear signal processing model of the human auditory system is
presented. It was originally designed to predict the outcome of masking experiments,
but in [67] this measure is linearized and a perceptual weighting matrix is derived from
it. This matrix does not have the circulant structure of the model in [63], and, hence,
the calculation of distortions is more complicated. Other examples of perceptually mo-
tivated distortion measures and auditory models for audio coding are given in [68–70].
The model of [65, 66] is monaural but auditory models for the binaural case have also
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been investigated, for example [71]. Also in the field of speech coding the importance
of the distortion measure has been recognized [72–74]. How such a distortion measure
can be incorporated in sinusoidal audio modeling and coding in an efficient way is the
topic of paper F.

2.5 Transform/Subband Coding
Transform coding is based on a linear map from the signal domain to another domain
by means of an invertible transform, often a unitary transform. In the transform domain,
the signal is then quantized and mapped back to the signal domain in the decoder by
the inverse transform. The function of the transform is in terms of energy compaction
and decorrelation. It is desirable to choose a transform such that the energy is now con-
centrated in only a few parameters, whereby low-dimensional vector quantizers or even
scalar quantizers may be applied. Under a Gaussian assumption, the optimal transform
can be shown to be the Karhunen-Loeve transform (see [22]). However, the Karhunen-
Loeve transform is signal dependent and thus not very useful for coding purposes as the
transform would need to be transmitted to the decoder. Generally, due to the nonsta-
tionary nature of audio signals, no one transform is optimal for all segments of a given
signal. For speech and audio signals, different variations of the sinusoidal transforms
have been used, such as the Fourier transform and the discrete cosine/sine transforms;
although wavelets have also been considered in e.g. [75, 76]. Transform/subband cod-
ing is by far the most successful coding technique for audio coding (e.g. [77–80]) and
such coders have been standardized in the context of MPEG (Moving Picture Experts
Group) [37, 41, 56, 81–83]. In Figures 8 and 9, block diagrams of generic audio encoder
and decoders are shown, respectively.

bitstreamsignal

Measure
Distortion

QuantizationTransformation Encoding
Lossless

Figure 8: Generic audio encoder. The signal is first transformed into a set of model or transform parameters
or coefficients. These parameters are quantized according to a perceptual distortion measure which is formed
by an analysis of the input signal using a perceptual model. The quantized parameters are entropy coded and
written to the bit-stream.

Most state-of-the-art transform audio coders are based on the modified discrete
cosine transform (MDCT), for example the MPEG-2/4 AAC (Advanced Audio Cod-
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Figure 9: Generic audio decoder. The quantized parameters are reconstructed from the bitstream by the
entropy decoder and the signal is reconstructed from these parameters by the inverse transformation.

ing) [82–84]. The MDCT is a type-IV discrete cosine transform (DCT) [85]. It is
a critically sampled lapped transform based on the principle of time-domain aliasing
cancellation [86, 87]. The MDCT (and many other similar transforms) can also be in-
terpreted as perfect reconstruction modulated filter banks. Therefore, transform coding
can also be seen as a form of subband coding. The MPEG-4 AAC algorithm is gen-
erally considered state-of-the-art and forms the measure against which new coders are
measured in MPEG. It exists in a number different incarnations (known as profiles):
main, low complexity, scalable sampling rate, long term prediction, low delay and high
efficiency. The AAC scheme incorporates a number of different coding techniques and
supports a wide range of different bit-rates.

2.6 Quality Assessment
The quality of audio and speech coders is primarily evaluated in listening tests, where a
number of subjects are asked to grade processed, i.e. coded, excerpts on some scale rel-
ative to the unprocessed excerpt. The primary reason for this is that ,even though much
effort has been invested in research in objective measures e.g. [88–92], these still fail to
predict the outcome of listening tests under different conditions. In listening tests, it is
imperative that appropriate test conditions and methods be defined such that the results
can be reliably compared. This is exactly what the recommendations in e.g. [93, 94] do.
For example, in [93], methods for screening (and rejection) of listeners are given. An
often used set of excerpts for evaluation of audio coders are those on the EBU SQAM
(Sound Quality Assessment Material) discs [95]. Often expert listeners are preferred
over inexperienced listeners in assessing the quality of an audio coder. The reason for
this is that over time, inexperienced listeners will, with extensive exposure to a certain
coding technique, tend to become more sensitive to coding artifacts. Hence, experts lis-
teners give an accurate indication as to whether a coder will stand the test of time [96].
A natural question seems also to be how to define transparent quality. Transparent qual-
ity means that the test samples are indistinguishable from the originals. Specifically, the
term was defined by the EBU as “A decoded test item is indistinguishable from the ref-
erence test item when, using the triple stimulus hidden reference method, the 95 %
confidence intervals of the test and reference subjective assessments overlap” [97].

In the papers in this thesis, three types of listening tests have been used. The tests
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have been carried out as proof of concept and are not to be considered formal. In de-
termining whether one, supposedly improved, system outperforms another system, we
use a preference test where the listeners are asked which of two processed excerpts they
prefer relative to a reference without knowing which is which. Typically, especially
when dealing with small differences, such tests are repeated. It is important that such
tests are randomized in terms of the order of presentations and the excerpts. In de-
termining the overall quality of different coding techniques MUSHRA-like tests have
been employed [93]. In these kind of tests, the listeners are asked to rank a number
of processed excerpts on a scale from 0 to 100 relative to the original with a score of
100 indicating that the processed excerpt is identical, in quality, to the original. Also, a
number of additional excerpts processed in a well-defined way, known as anchors, and
a hidden reference are included. For evaluation of the packet loss concealment methods
for sinusoidally coded speech considered in paper I, listening tests were also carried
out based on a five point degradation score [94], where the listener is asked to rate the
degradation due to different channel conditions relative to the reference.

3 Parametric Coding

3.1 Introduction
Although many coding techniques presently used in combination with transform coders
fit the defintion of parametric coders, we here primarily focus on a specific type of para-
metric coding, namely sinusoidal coding. Sinusoidal coding is also often combined
with other types of coding, such as residual (or noise) coding. Historically, the interest
in sinusoidal coding started during the search for efficient coding of speech signals for
mobile telephony. In the 1980s, much research was devoted to the application of sinu-
soidal modeling of speech for coding purposes [33, 98–105] and somewhat later also
to its applications to musical analysis and synthesis [106–108]. Since the mid 1990s
there has been much interest in standardization bodies such as MPEG (Moving Picture
Experts Group) and research in parametric coding [109–119]. The sinusoidal model
has also been applied to speech enhancement [120] and more recently, renewed interest
in sinusoidal coding of speech has been spurred by the increasing interest in voice over
packet-based networks [12–15, 121], where sinusoidal coders form an attractive alter-
native in that frame independence can more easily be achieved compared to LPC-based
coders [43].

The most general form of sinusoidal coding is based on the following signal model,
where a segment is modeled for n = 0, . . . , N − 1 as

x̂(n) =

L∑

l=1

al(n) cos(Φl(n)) + w(n), (14)

where the signal is modeled as a deterministic part, which is composed of a sum of
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sinusoids, and a stochastic part w(n) [29, 108]. The sum of L sinusoids each charac-
terized by an instantaneous amplitude al(n), also known as the amplitude modulating
signal in modulation theory, and an instantaneous phase Φl(n). The stochastic part is
often modeled as an auto-regressive moving-average (ARMA) process

w(n) =

I∑

i=0

bie(n− i) +

F∑

f=1

cfw(n− f), (15)

with e(n) being the excitation signal, often modeled as Gaussian noise having a possi-
bly time-varying variance, and bi being the MA coefficients and cf the AR coefficients.

sinusoids

output
−

+

+

+
input

Sinusoidal
Coder

Residual
Coder

Figure 10: Typical parametric coder consisting of a sinusoidal and residual coder.

Typically, the decomposition into a deterministic and a stochastic component is
done in a sequential way, where first all sinusoids are extracted and parameters quan-
tized in sinusoidal coder and then the remaining signal, also known as the residual, is
fed to a so-called noise or residual coder that codes the stochastic parts. This is il-
lustrated in Figure 10. Each of the sinusoidal and the residual coding blocks can be
described as in Figure 8. This kind of coding is sometimes also referred to as multi-
stage coding. Transient signal segments are often also handled by a separate coder in
a multi-stage (or switched) structure, e.g. [114–116, 122]. Some parametric coders are
only based on the deterministic part [33, 99], but we will return to that later.

3.2 Sinusoidal Models
The model stated in (14) is quite general and not in itself all that useful for coding
purposes. In this section we take a look at sinusoidal model variations that have been
applied in parametric coding, and some that have only been applied to modeling. Here,
the reader must bear in mind that just because a model can capture the energy of a
signal, it does not mean that it is also efficient in terms of bit-rate.

We have not yet put any restriction on the phase Φl(n) and the amplitude al(n) of
(14). The frequency of the sinusoid is defined as the derivative of the instantaneous
phase, i.e. ωl(n) = ∂Φl(n)

∂n . Many different models of the amplitude and the phase have
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been proposed. The simplest and perhaps most successful is where both the frequency
and the amplitude are constant for a particular segment, i.e.,

ŝ(n) =

L∑

l=1

Al cos(ωln+ φl), (16)

where φl is the starting phase of the l’th sinusoid. This model is very well suited for
modeling of stationary tonal signals such as voiced speech, trumpet, violin and many
other signals. For periodic signals the relation between the frequencies of the individual
components may be modeled as ωl = lω0 where ω0 is the fundamental frequency.
This model, which is referred to as the harmonic sinusoidal model, has been widely
used in speech modeling and coding, e.g. [98, 123–125]. In some applications it is of
interest to relax this constraint somewhat. For example, in [126–128], it was noted that
higher quality modeling and coding of speech can be achieved using a quasi-harmonic
model where ωl = lω0 + ∆l with ∆l being a small deviation for the l’th component
from the integer multiples of the fundamental frequency. It is also well-known that
certain instruments, for example stiff-stringed instruments such as the piano, produce
harmonics that are not exact integer multiples of a fundamental frequency [129], and
for this reason, the quasi-harmonic model has also been applied to modeling of audio
signals [106, 130].

The harmonic sinusoidal model is too restrictive for general audio and as a conse-
quence the unconstrained model where ωl may take on any value is typically preferred.
Also, different phase representations have been considered. For voiced speech, an on-
set model of the phase, where the phase of the individual components are assumed to
be synchronous in the residual domain of a linear prediction (LP) filter, has been re-
ported to produce reasonable results [98, 131, 132]. In this model, the instantaneous
phase is modeled as Φl(n) = ωl(n − n0) + φl with n0 being the onset and φl then
the minimum-phase contribution of the LP filter. Perhaps the most efficient coding of
phases arise from sinusoidal components evolving slowly from segment to segment.
Then the phase of a sinusoidal component can be predicted from the previous segment
by taking the frequency change into account. This is known as phase prediction and has
been widely used in sinusoidal coding of speech [98, 133–137]. The caveat is that it in-
troduces strong interframe dependencies and is hence sensitive to packet losses and bit
errors. The minimum-phase assumption of LP has also been known to cause problems
in this context.

It is well-known that the speech production system is not always minimum-phase,
for example for nasal sounds [138–140]. As a result of this, phase compensation by
means of an all-pass filter has also been investigated and applied to sinusoidal coding
of speech [140, 141].

Many different models have been proposed for efficient coding of transients, though
very few have actually been proven to improve on existing coders. Different variations
of damped sinusoids where the instantaneous amplitude (or amplitude modulating sig-
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nal) can be expressed as al(n) = u(n − nl)Al exp(−βn) where u(n) is the unit step
function, have been studied [123, 142–147], mainly because of their mathematically
convenient form. Some of these methods, namely [142, 143, 147], impose the con-
straint that nl = 0 for all l such that the components may only start at the beginning of
a segment. The model proposed in [145, 146] allow any nl, but the resulting envelopes
are not smooth. That smoothness generally is desirable is the reason that overlap or
interpolative synthesis is used to avoid discontinuities between segment boundaries in
all audio coders, also when optimal segmentation is used [148].

A different aspect of this is that the steepness of the attack is also an important
factor in the recognition of musical instruments [149]. In the sinusoidal coder described
in [21, 117–119], which is the current reference parametric coder in MPEG [150], this
is recognized as the amplitude modulating signal is modeled using so-called Meixner
functions.

Some methods for audio modeling do not impose any specific model on the ampli-
tude modulating signal, but rather assume that it is slowly varying [105, 106], but these
are not directly applicable to coding. A rather different method that can also be seen as
an amplitude modulating signal model was proposed in [53], although for noise shaping
purposes. As we shall see in paper D, this can also be applied to amplitude modulated
sinusoidal audio coding. Different realizations of low-order polynomial phase and am-
plitude modeling have also been considered [29, 151–153] and these have been reported
to improve on the perceived quality especially for nonstationary voiced speech.

3.3 Sinusoidal Parameter Estimation
Given the wealth of different sinusoidal models, it is not surprising that also a great
number of different estimators exist; in some cases, the model has perhaps been cho-
sen because an efficient estimator exists. Indeed, the freedom in choice of models and
estimators has made this area an active area for signal processing researchers. The prob-
lem of estimating the parameters of a set of sinusoids in noise arises in many different
applications, and is therefore also well-studied and well-documented.

For the sinusoidal model, consisting of a sum of sinusoids with each having a con-
stant phase, a constant amplitude and a frequency for a particular segment, all of these
parameters have to be estimated. It turns out, however, that the amplitude and phase
parameters can be found in a straigh-forward manner using linear least-squares [154].
The difficult part is the nonlinear part, namely the frequencies, and for some models
also the parameters of the modulating signal. One can distinguish between a number
of types of frequency estimators: a) subspace-based methods b) nonlinear least-squares
(NLS) methods c) filter bank methods and d) rational spectra methods. Only a) and b)
have been widely used in parametric audio coding and modeling; we will discuss only
those approaches. For an overview of the other methods, and frequency estimation in
general, we refer to the excellent book on spectral estimation [36].

In subspace-based methods, the eigenvalue decomposition of the sample covariance
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matrix is decomposed into a noise subspace and a signal (plus noise) subspace (see e.g.
[36, 155, 156]). The various subspace methods either model the structure of the signal
subspace or exploit that all sinusoids belonging to the signal subspace are orthogonal to
the noise subspace. Among the subspace-based methods, MUSIC [157–159], ESPRIT
[160] and the subspace fitting method(s) [156] are especially noteworthy. ESPRIT can
also be used for estimating damped sinusoids.

The NLS class of estimators are based on the principle of least-squares, meaning
that they seek to minimize a squared error measure, generally to achieve consistency
with respect to the source coding problem formulation. This is by far the most widely
used principle in parametric coding. The optimal estimator is then a multidimensional
numerical search for the L sinusoids that minimize the squared error, but such an ex-
haustive search simply not feasible due to the computational complexity. This optimal
estimator is known as the NLS estimator [36, 161, 162]. Due to the intractable com-
plexity of the NLS method, most of the practical methods find sinusoids iteratively, one
at a time. Matching pursuit [85] is perhaps the most famous example of this. For more
information on matching pursuit and its various derivatives, we refer to [29]. It is in-
teresting to note that the nonlinear least-squares method also can be seen as a subspace
pursuit, where the target subspace is spanned by L sinusoids [163]. Also, the often
used, and much maligned, peak picking method [33, 99], which is based on the discrete
Fourier transform, can be seen as a least-squares method under certain conditions.

Estimators are traditionally evaluated in terms of the bias and variance of the es-
timates (see e.g. [35, 36]). In the case of a model mismatch the estimates will gener-
ally be biased. A lower bound of the variance of unbiased estimators, known as the
Cramér-Rao bound (CRB), can be found given the properties of the noise. Assuming
that the noise is white and distributed according to a Gaussian pdf, it can be shown that
minimization of a squared error measure is the same as estimating the most likely pa-
rameters, i.e. least-squares estimation is equivalent to maximum likelihood estimation.
When the noise is Gaussian but colored, the maximum likelihood estimator corresponds
to a weighted least-squares estimator. However, for the sinusoidal signal model, least-
squares and maximum likelihood estimation is asymptotically (for many observations)
the same [36, 161, 162].

There has recently been much interest in incorporating perception into these estima-
tors. Audio modeling and coding have in common that it is of interest to find a compact
representation, or in other words to represent the signal in as few, physically meaning-
ful parameters as possible. Since the receiver of these signals is the human auditory
system, it is also of interest to represent the perceptually most important components.
In audio coding in particular, it is desirable to estimate and transmit only the parame-
ters of audible sinusoids; in recent years, much effort has been put into this problem,
e.g. [32, 143, 147, 164–169]. Often, these methods rely on more or less heuristic rules
taken from psychoacoustic experiments. In [166], for example, sinusoidal components
are found in an iterative manner by assigning a perceptual weight to the spectrum and
then picking the most dominant peak of the weighted spectrum. Another method is
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the so-called pre-filtering method [51, 52, 143], where the observed signal is filtered
using a perceptual filter in order to achieve a weighting of the sinusoidal components.
The methods of [167] and [168] are different methods yet that rely on loudness and
excitation pattern similarity criteria for sinusoidal component selection, respectively.

In coding applications, it is of particular interest to state the estimation criterion
in a way that defines a distortion measure or metric. A globally optimal solution that
minimizes this distortion measure ensures that at a given bit-rate (for a certain number
of sinusoids in the case of sinusoidal coding), the lowest possible distortion is achieved.
When the distortion measure is a perceptual one, meaning that it reflects the behavior
of the human auditory system, we can then claim that the perceived distortion is mini-
mized at the given bit-rate. The psychoacoustic (or perceptual) matching pursuit [165]
is a descendant of matching pursuit algorithm where the 2-norm is replaced by a per-
ceptually motivated distortion measure [63, 64]. Rather than converging in the 2-norm,
the algorithm converges in a perceptually more meaningful way. Then, we also see that
there are some parallels to the analysis-by-synthesis methods using perceptually mo-
tivated distortion measures often used in speech coding, e.g. [170]. Matching pursuit
can be seen as an analysis-by-synthesis method with the special requirement that the
distortion measure is induced by an inner product.

3.4 Sinusoidal Parameter Quantization
The quantization of model parameters has also been the subject of much research. Many
of the problems involve incorporating psychoacoustics into the quantization process. As
a result, many coders, for example [148], employ quantizers that are derived from just-
noticeable-differences (JNDs) in psychoacoustical experiments (see e.g. [55, 61]) and
these are thus not based on a proper distortion measure that may be subject to optimiza-
tion. The consequence is that these kinds of quantizers lead to inflexible coders. The
JNDs are also typically found in experimental setups that are very simple compared to
the application.

Recently, there has been some interest in the application of high-rate quantiza-
tion theory (see e.g. [22]) to sinusoidal coding [34, 171–177]. The high-rate assump-
tion leads to analytical expressions for the optimal point densities of a quantizer for
a given target-rate. This is an extremely flexible approach that allows many degrees
of freedom in the optimization of the distribution of bits over components and seg-
ments compared to fixed quantizers. Also, the so-called spherical or polar quantizers
of [34, 171–173, 176, 177] incorporate joint quantization of the sinusoidal parameters
such that, for example, the number of bits used in quantizing the phase of a component
depends on its amplitude and perceptual weight. Vector quantization of sinusoidal pa-
rameters has also been considered, but there is a problem in that the length of the vector
is not always the same. In fact, it may vary substantially. In [178], this is handled by a
variable-to-fixed length transformation for the amplitudes. Differential encoding of the
sinusoidal parameters has also been of interest. The phase prediction mentioned earlier,
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perhaps combined with encoding of the prediction error, is in fact such a method. The
problem of optimal time or frequency differential encoding of the sinusoidal parameters
has been extensively studied and solutions are compared and proposed in [179–181].

3.5 Residual Coding
A sum of a small number of sinusoids is not an effective model for all signals. Indeed,
noise-like stochastic signals are not well-modeled using sinusoids; the alternate coders
used to compress such signals are known as residual or noise coders. In speech cod-
ing, though, there has been a tradition of modeling the stochastic part using sinusoids
as well (e.g. [33, 98, 99]), mainly because it is convenient. Actually, any signal, in-
cluding broadband noise and transients, can be modeled using sinusoids that are spaced
“close enough”, but it is just not efficient in terms of bit-rate, and any spectral sub-
sampling will inherently result in temporal aliasing. In practice, acceptable quality can
be achieved using this approach for narrowband speech, although it often results in the
synthesized speech being very tonal. For wideband speech, unvoiced parts are not well
modeled using sinusoids, and fricatives sound especially bad.

In audio coding, different encoding methods must be used for handling noise-like
signals. Typically, the encoding of the deterministic and stochastic components is han-
dled in a multi-stage structure where first a number of sinusoids are extracted and sub-
tracted from the input. The remaining signal, called the residual, is then encoded by a
different coder.

Residual coders can be grouped into those that are waveform approximating and
those that are not. The first group generally operates at higher bit-rates than the last
group. Examples of waveform-approximating residual coders are [174, 182] where
a sinusoidal coder is combined with an MDCT-based transform coder, and in [21],
the residual is coded using regular-pulse excitation (RPE) [183]. It is interesting to
note that in [21] the parametric coder is demonstrated to outperform MPEG4-AAC
at 64 kbps (stereo). Residual coders belonging to the other group, i.e. those that do
not encode the signal in a waveform-approximating way, are sometimes called noise
coders. They are based on the notion that the human auditory system cannot distinguish
between two realizations of the same noise process. Typically the spectral and temporal
envelopes are encoded. The noise coders generally rely on either an ARMA model, or
derivatives thereof, [107, 108, 111, 117–119, 184, 185] or perceptually motivated filter
bank-/transform-based synthesis [29, 114, 122, 186–189]. Perceptual noise substitution
[190, 191] is also such a method. Some work on incorporating perception into the
ARMA model-based coders has also been published [184, 192–194].

The waveform approximating coders have the desirable property that the recon-
structed signal may converge to the original signal as the bit-rate is increased. As
a result, the waveform approximating coders generally perform better at higher bit-
rates while the so-called noise coders perform best at low bit-rates. The problem
of quantization of AR parameters is also well-studied in the context of speech cod-
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ing [74, 195, 196].

3.6 Applications of Rate-Distortion Optimization
Rate-distortion optimization is a valuable tool for source coding. Here we will focus
mainly on the application of rate-distortion optimization to parametric coding, although
it has also been applied to transform coding in e.g. [197, 198]. By rate-distortion op-
timized coding, we mean coding that is optimized according to the input signal and
rate or distortion constraints. This is based on the so-called operational rate-distortion
theory [199] and is based on the results of [26] that the optimization problem of rate-
constrained coding can be solved using the Lagrange multiplier method even for dis-
crete allocation problems (see e.g. [200]). Operational rate-distortion theory is different
from the Shannon rate-distortion theory [28] in that the outcomes of the stochastic pro-
cesses that produce the signals are the subject of optimization rather than statistical
properties such as the expected distortion.

Rate-distortion optimized coding parts with arbitrarily chosen bit allocations and
tradeoffs. Instead, these problems are solved using constrained optimization. For ex-
ample, it is possible to distribute bits optimally over segments, provided that the delay
constraint allows it, such that more efficient coding is achieved. In [27, 199] an algo-
rithm for segmenting an input signal in a rate-distortion optimal way was devised and
applied to linear predictive coding of speech signals. Traditionally, audio and speech
coders use either a fixed segment length or find a variable segmentation based on heuris-
tic stationarity measures. The window-switching method [201] used in e.g. [202, 203]
is an example of this. Such methods can neither adapt to different signals nor coders.

In the last few years, these principles have been applied to parametric audio coding
[148, 175, 204, 205]; and are likewise used in the papers in this thesis. One major
drawback of the optimal segmentation is that it requires the encoding of all different
segment sizes at all possible starting points. This is extremely wasteful in terms of
computational complexity since the final encoding only will make use of a small subset.
There has also been some recent interest in rate-distortion optimized multi-stage coding
of audio, e.g. [182]. Rate-distortion optimized coding is sometimes considered not to
be feasible due to delay or complexity constraints. In that case, it may be considered
a benchmark, a development tool, for investigating and even quantifying the loss in
performance due to different constraints.

3.7 Relation to Vector Quantization
By the definition of a vector quantizer, we see that a sinusoidal coder too can be seen as
a vector quantizer of sorts. This interpretation is further strengthened by the similarity
between a particular method for vector quantization and a method for sinusoidal coding.
Matching pursuit [85] is an algorithm for iteratively building a signal model. It has
a wide variety of applications including model-based signal compression and signal
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Figure 11: Multi-stage vector quantizer (here two stages). The reconstruction vector of each stage is sub-
tracted from the input and the difference is fed to the next stage.

analysis, and it has been widely used for sinusoidal modeling and coding of audio
[29, 144, 163, 165, 166, 204, 205]. In each iteration, the matching pursuit selects an
element (a vector) from a dictionary (a codebook) that with an optimal scaling best
matches the input signal in the sense of some norm. This scaled dictionary element is
then subtracted from the input and the process is repeated. In sinusoidal modeling and
coding, the dictionary is built from complex sinusoids having different frequencies and
the associated scalings are then the amplitude and phase of the sinusoids.
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Figure 12: Shape-gain vector quantizer. The reconstruction vector is a scaled codebook shape.

Multi-stage quantizers are quantizers consisting of multiple stages where in each



3. PARAMETRIC CODING 27

stage, a vector quantization operation is performed; the codebooks may or may not be
the same in the different stages. The reconstruction vector of a stage is then subtracted
from its input and the resulting signal, called a residual, is then fed to the next stage.
This is illustrated in Figure 11. A shape-gain vector quantizer is a vector quantization
method where a reconstruction vector is found along with an optimal scaling. In this
way, the energy of the reconstruction vector is treated separately from the shape (as if
the pdf of the shape is independent of the gain), whereby the complexity involved in the
VQ can be minimized significantly. The structure of a shape-gain vector quantization
encoder is shown in Figure 12. It is readily seen then that by constructing a quantizer
from multiple stages of shape-gain vector quantizers, we get a structure similar to that
of matching pursuit. The difference is basically one of terminology.

From the discussion above, it should be clear that a sinusoidal coder using matching
pursuit with subsequent quantization of the phase and amplitude can be seen as a multi-
stage shape-gain vector quantizer, where the shape index corresponds to a sinusoid
while the gain corresponds to the amplitude and phase. The codebook is a highly struc-
tured one constructed from complex sinusoids of different frequencies. From the point
of view of vector quantization, perhaps the dictionary should not be chosen but rather
designed using codebook training algorithms. This is indeed the idea in [206, 207].
Then, however, it would by our definition no longer belong to the class of parametric
coders.

3.8 Other Parametric Coders
Besides the incarnation of parametric coding that we have just discussed, i.e. the com-
bination of a sinusoidal coder and a residual coder, there are other types of coding tech-
niques that can be characterized as parametric. In fact, many are already in use in stan-
dardized audio coders such as MPEG-4 AAC. For example, spectral band replication
(SBR) [208] and perceptual noise substitution (PNS) [190, 191] are coding techniques
that may be characterized as parametric. Also, parametric representations are also of-
ten used in multi-channel coding (see e.g. [209]). For example, binaural cue coding
(BCC) [210, 211] is a technique where the stereo channels are derived parametrically
from a mono channel as opposed to the often used non-parametric sum-difference cod-
ing [203]. Other examples of parametric stereo coding are the so-called intensity stereo
coding [212, 213] and the more recent extension to BCC [214, 215]. There have also
been activities in e.g. MPEG on extending these principles to more than two chan-
nels [216] and these efforts continue today [209]. Early linear predictive speech coders,
such as LPC-10 [217], were often also described in a parametric fashion, where the sig-
nal is separated into a vocal tract contribution and a parametrically modeled excitation
signal [43]. However, this interpretation may be considered somewhat of a stretch for
waveform approximating coders such as [170].
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4 Contributions
The title of this thesis is quite broad because the topics and contributions are rather
diverse, but all apply to parametric audio coding and modeling. Papers A through E
deal with amplitude modulated sinusoidal audio coding, a coding technique for efficient
coding of transients. Papers C, E, G, and H are about, or use, coding based on rate-
distortion optimization using a perceptual distortion measure, and paper F deals with
sinusoidal frequency estimation using this perceptual distortion measure. Paper I is
concerned with the application of the harmonic sinusoidal model for speech coding
for packet based networks and how packet loss concealment can be achieved using the
sinusoidal parameters; Paper J deals with the estimation of the fundamental frequency
of the harmonic sinusoidal model. We will now go through the contributions of the
individual papers that constitute the main body of this thesis.

Paper A: This paper introduces the notion of amplitude modulated sinusoidal audio
modeling from the perspective of modulation theory. The paper is based on Bedrosian’s
separation theorem of carriers and modulating signals [218] using the Hilbert trans-
form and the analytic signal (see e.g. [219]) and treats different signal manipulations
and models in this framework. One of the strengths of this framework is that it is
fairly general with respect to the assumptions that are made regarding the signal.

Paper B: In this paper, the theory of paper A is brought to practice in an audio model-
ing system. This system is used to study the importance of allowing different ampli-
tude modulating signals for different frequency regions; it is confirmed in listening
tests and using a model of the human auditory system [65, 66] that significant im-
provements are achieved by this. The paper does not, however, deal with the question
of whether this is also efficient in terms of bit-rate.

Paper C: An amplitude modulated sinusoidal audio coder is developed. It is based on
a model of the modulating signal which is characterized by an onset, an attack, and
a decay. Each sinusoidal component can have a different envelope. This model is
combined with a sinusoidal coder without amplitude modulation in a rate-distortion
optimized framework that uses optimal distribution of sinusoids over segments and
optimal segmentation [26, 27]. The amplitude modulated sinusoidal coder is shown
to improve on a baseline coder in listening tests. This work proves that it is indeed
efficient in terms of bit-rate to allow different modulating signals for different compo-
nents and that optimal segmentation and adapted models are complementary coding
techniques; furthermore, the optimal segmentation changes with the signal model.

Paper D: In this work, we develop an amplitude modulated sinusoidal audio coder
based on the theory of Paper A and the results of paper B. We use frequency-domain
linear prediction, a principle similar to the temporal noise shaping of [53], as a means
for estimation and efficient coding of the modulating signal. This coder has very
low complexity and requires little memory compared to that in Paper C, and it is
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demonstrated to improve upon a baseline coder in a delay constrained setup. Like
in paper A, the strength of the methods used in this paper is that the model of the
modulating signal is not very restrictive.

Paper E: In this paper, the amplitude modulating signal is modeled as a linear combi-
nation of arbitrary basis vectors. This model is rather different from those of papers
B-D in that the constraints on the amplitude modulating signal being nonnegative is
relaxed; sinusoidal frequencies may occur at spectral minima. The model can exploit
spectral symmetries for coding purposes and is demonstrated in listening tests to im-
prove upon a sinusoidal coder. Also, this coder has the advantage that since the model
parameters are linear they may easily be optimized.

Paper F: Here, we develop a framework for frequency estimation based on a percep-
tual distortion measure [63, 64]. We relate a number of different practical estima-
tors [51, 143, 166] in this framework and investigate how they relate to estimation
theory. Seen in the light of this work, the pre-filtering method for incorporating per-
ception in estimators and the weighted matching pursuit can be seen as approxima-
tions to the optimal perceptual nonlinear least-squares method (see e.g. [36, 161]) and
can be shown to be equal to the perceptual, or psychoacoustic, matching pursuit [165]
under certain conditions.

Paper G: In this paper, we apply the framework of [220] to sinusoidal coding. The ba-
sic idea is to estimate the distortion of a sinusoidal audio coder at different rates given
a set of observed features. The dependence between the features and the distortion is
modeled in a probabilistic setting where the joint probability density is modeled using
Gaussian Mixtures and the distortions are estimated using a Bayesian estimator.

Paper H: We extend the work of paper G further in this paper by addressing a number
of problems in the framework for estimating the distortion at different rates based on
signal features. We apply the framework to the problem of finding the rate-distortion
optimal segmentation. This results in a significant complexity reduction in finding
the optimal segmentation and it is demonstrated, via listening tests, that this can be
done without much loss of performance.

Paper I: Recently, there has been much interest in speech coding for packet based net-
works where packets may be lost. We here develop a parametric coder specifically
for speech based on the harmonic sinusoidal model, wherein all sinusoids have fre-
quencies that are integer multiple of a fundamental frequency. We perform packet
loss concealment based on time-scale modification using the sinusoidal components.
A simple listening test shows that graceful degradation as a function of the packet
loss probability can be achieved.

Paper J: In this paper, we present a method for estimation of the fundamental fre-
quency of the harmonic sinusoidal model used in paper I. The method is based on an
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eigenvalue decomposition of the sample covariance matrix and a subsequent separa-
tion into signal and noise subspaces. We propose a method where the rank, and hence
the number of harmonics, of the subspaces depend on the fundamental frequency,
and the estimate is found as the fundamental frequency for which the harmonically
related sinusoids are the closest to being orthogonal to the noise subspace. An inter-
esting observation here is that the fundamental frequency can, generally, be estimated
more accurately than the frequency of any of the individual harmonics.

It seems natural to ask, based on the contributions of this thesis, what general conclu-
sions can be drawn and in what direction audio coding will be heading in the future.
We have shown that it is possible to significantly improve parametric coders by dedi-
cated signal models, such as modulated sinusoids, for certain critical signals. It is the
opinion of the author that the results of this thesis prove that rate-distortion optimized
coding can succeed and that the concept of perceptual distortion measures can be ap-
plied successfully in audio coding. Furthermore, the author believes that continued
research in perceptual distortion measures is the key to future advances. It has also
been demonstrated that the main objection to rate-distortion optimized coding, namely
that it is too computationally demanding, can be mitigated by rate-distortion estimation.
The strength of rate-distortion optimized coding lies in its flexibility, or specifically its
adaptivity to user and/or channel constraints and the input signal; this will become an
increasingly important factor in the future as the many different networks converge to
one heterogeneous network. As we have already argued, the source coding problem will
persist, but the relative weight between the different design criteria will change. We see
already today that the bit-rate is not as important as it once was in mobile telephony.

References
[1] E. F. Schröder, “Digital audio broadcasting (DAB),” in Collected Papers on Digital Audio

Bit-Rate Reduction, N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc., 1996, pp. 164–
170.

[2] J. Herre and B. Grill, “Overview of MPEG-4 Audio and its applications in mobile com-
munications,” in IEEE Int. Conf. Signal Processing, vol. 1, 2000, pp. 11–20.

[3] F. Rumsey, “Putting low-bit-rate audio to work,” in Collected Papers on Digital Audio Bit-
Rate Reduction, N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc., 1996, pp. 155–163.

[4] N. Jayant, J. Johnston, and R. Safranek, “Signal compression based on models of human
perception,” Proc. IEEE, vol. 81(10), Oct. 1993.

[5] J. Cohen, “ISDN applications for bit-rate-reduced audio coding,” in Collected Papers on
Digital Audio Bit-Rate Reduction, N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc.,
1996, pp. 171–181.

[6] G. C. P. Lokhoff, “The digital compact cassette,” in Collected Papers on Digital Audio Bit-
Rate Reduction, N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc., 1996, pp. 182–189.



REFERENCES 31

[7] G. C. P. Lokhoff, “MiniDisc: Disc-based digital recodering for portable audio appli-
cations,” in Collected Papers on Digital Audio Bit-Rate Reduction, N. Gilchrist and
C. Grewin, Eds. Audio Eng. Soc., 1996, pp. 190–196.

[8] C. E. Shannon, “A Mathematical Theory of Communication I,” The Bell Systems Technical
Journal, vol. 27, pp. 369–423, July 1948.

[9] C. E. Shannon, “A Mathematical Theory of Communication II,” The Bell Systems Techni-
cal Journal, vol. 27, pp. 623–656, Oct. 1948.

[10] J. Lindblom, “Coding speech for packet networks,” Ph.D. dissertation, Chalmers Univer-
sity of Technology, 2003.

[11] C. A. Rødbro, “Speech processing methods for the packet loss problem,” Ph.D. disserta-
tion, Aalborg University, 2004.

[12] J. Lindblom, “A sinusoidal voice over packet coder tailored for the frame-erasure channel,”
IEEE Trans. Speech and Audio Processing, vol. 13(5), pp. 16–19, 2005.

[13] J. Lindblom and P. Hedelin, “Packet Loss Concealment Based on Sinusoidal Modeling,”
in Proc. IEEE Workshop on Speech Coding for Telecommunications, 2002, pp. 65–67.

[14] C. A. Rødbro, J. Jensen, and R. Heusdens, “Rate-distortion optimal time-segmentation
and redundancy selection for VoIP,” IEEE Trans. Speech and Audio Processing, 2005,
accepted.

[15] C. A. Rødbro, M. N. Murthi, S. V. Andersen, and S. H. Jensen, “Hidden markov model
based framework for packet loss concealment in voice over IP,” IEEE Trans. Speech and
Audio Processing, 2005, accepted.

[16] T. Berger and J. D. Gibson, “Lossy source coding,” IEEE Trans. Information Theory, vol.
44(6), pp. 2693–2723, 1998.

[17] T. Berger, Rate-distortion theory: A Mathematical basis for data compression. Prentice-
Hall, 1971.

[18] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley & Sons,
Inc., 1991.

[19] P. Kroon, “Evalation of speech coders,” in Speech Coding and Synthesis, W. B. Kleijn and
K. K. Paliwal, Eds. Elsevier Science B.V., 1995, ch. 13.

[20] T. Painter and A. S. Spanias, “Perceptual coding of digital audio,” Proc. IEEE, vol. 88(4),
pp. 451–515, Apr. 2000.

[21] F. Riera-Palou, A. C. den Brinker, and A. J. Gerrits, “A hybrid parametric-waveform ap-
proach to bistream scalable audio coding,” in Rec. Asilomar Conf. Signals, Systems, and
Computers, 2004, pp. 2250–2254.

[22] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Kluwer Aca-
demic Publishers, 1993.

[23] D. K. Neuhoff and R. M. Gray, “Quantization,” in IEEE Trans. Information Theory,
vol. 44, 1998.

[24] R. M. Gray, Source Coding Theory. Kluwer Academic Press, 1990.

[25] T. M. Apostol, Mathematical Analysis, 2nd ed. Addison-Wesley, 1974.



32 INTRODUCTION

[26] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set of quantizers,” IEEE
Trans. Acoust., Speech, Signal Processing, pp. 1445–1453, Sept. 1988.

[27] P. Prandoni and M. Vetterli, “R/D optimal linear prediction,” IEEE Trans. Speech and
Audio Processing, pp. 646–655, 8(6) 2000.

[28] C. E. Shannon, “Coding theorems for a discrete source with a fidelity criterion,” in IRE
National Convention Records, 1959, pp. 142–163.

[29] M. M. Goodwin, “Adaptive Signal Models: Theory, Algorithms, and Audio Applications,”
Ph.D. dissertation, University of California, Berkeley, 1997.

[30] M. M. Goodwin, “Multiscale overlap-add sinusoidal modeling using matching pursuit and
refinements,” in Proc. IEEE Workshop on Appl. of Signal Process. to Aud. and Acoust.,
2001, pp. 207–210.

[31] W. B. Kleijn, “Encoding speech using prototype waveforms,” IEEE Trans. Speech and
Audio Processing, vol. 1(4), pp. 386–399, Oct. 1993.

[32] K. Vos, R. Vafin, R. Heusdens, and W. B. Kleijn, “High-quality consistent analysis-
synthesis in sinusoidal coding,” in Proc. Aud. Eng. Soc. 17th Conf., 1999, pp. 244–250.

[33] R. J. McAulay and T. F. Quatieri, “Speech Transformation Based on a Sinusoidal Repre-
sentation,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 34, pp. 1449–1464, Dec.
1986.

[34] R. Vafin and W. B. Kleijn, “Towards optimal quantization in multistage audio coding,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 4, 2004, pp. 205–208.

[35] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-
Hall, 1993.

[36] P. Stoica and R. Moses, Introduction to Spectral Analysis. Prentice Hall, 1997.

[37] JTC1/SC29/WG11 MPEG IS11172-3, ISO/IEC Information technolgy - Coding of moving
pictures and associated audio for digital storage media at up to about 1.5 Mbits/s–Part 3:
Audio, 1992.

[38] J. M. Tribolet and R. E. Crochiere, “Frequency domain coding of speech,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 27(5), pp. 512–530, Oct. 1979.

[39] G. Schuller and J. Herre, “Audio coding: Recent advances and standards,” Lecture Notes,
Tutorial at IEEE Int. Conf. Acoust., Speech, and Signal Processing, 2004.

[40] M. Hans and R. W. Schafer, “Lossless compression of digital audio,” IEEE SP Mag., vol.
18(4), pp. 21–32, July 2001.

[41] P. Noll, “MPEG digital audio coding,” IEEE SP Mag., vol. 14(5), pp. 59–81, Sept. 1997.

[42] D. Pan, “A tutorial on MPEG/audio compression,” IEEE Multimedia, vol. 2(2), pp. 60–74,
1995.

[43] A. S. Spanias, “Speech Coding: A Tutorial Review,” in Proc. IEEE, vol. 82(10), Oct.
1994, pp. 1541–1582.

[44] A. Gersho, “Advances in speech and audio compression,” Proc. IEEE, vol. 82(6), pp. 900–
918, June 1994.



REFERENCES 33

[45] S. P. Lipshitz, R. A. Wannamaker, and J. Vanderkooy, “Quantization and dither: a theoret-
ical survey,” J. Audio Eng. Soc., vol. 40, pp. 355–375, 1992.

[46] S. P. Lipshitz, J. Vanderkooy, and R. A. Wannamaker, “Minimally audible noise shaping,”
J. Audio Eng. Soc., vol. 39, pp. 836–852, 1991.

[47] S. P. Lipshitz, R. A. Wannamaker, J. Vanderkooy, and J. N. Wright, “Non-subtractive
dither,” in Proc. IEEE Workshop on Appl. of Signal Process. to Aud. and Acoust., 1991.

[48] R. A. Wannamaker, “Psycho-acoustically optimal noise-shaping,” J. Audio Eng. Soc.,
vol. 40, pp. 611–620, July/August 1992.

[49] R. A. Wannamaker, “The theory of dithered quantization,” Ph.D. dissertation, University
of Waterloo, 2003.

[50] N. S. Jayant and P. Noll, Digital Coding of Waveforms. Prentice-Hall, 1984.

[51] B. Edler and G. Schuller, “Audio coding using a psychoacoustic pre- and post-filter,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 2000, pp. 881–884.

[52] G. D. T. Schuller, B. Yu, D. Huang, and B. Edler, “Perceptual audio coding using adaptive
pre- and post-filters and lossless compression,” in IEEE Trans. Speech and Audio Process-
ing, vol. 10(6), Sept. 2002, pp. 379–390.

[53] J. Herre and J. D. Johnston, “Enhancing the performance of perceptual audio coders by
using temporal noise shaping (TNS),” in Proc. 101st Conv. Aud. Eng. Soc., 1996, paper
preprint 4384.

[54] M. Link, “An attack processing of audio signals for optimizing the temporal characteristics
of a low bit-rate audio coding system,” in Proc. 95th Conv. Aud. Eng. Soc., 1993, paper
preprint 3696.

[55] E. Zwicker and H. Fastl, Psychoacoustics - Facts and Models, 2nd ed. Springer, 1999.

[56] K. Brandenburg, “Introduction to perceptual coding,” in Collected Papers on Digital Audio
Bit-Rate Reduction, N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc., 1996, pp. 23–30.

[57] B. C. J. Moore, “Masking in the human auditory system,” in Collected Papers on Digital
Audio Bit-Rate Reduction, N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc., 1996, pp.
9–19.

[58] R. Veldhuis and A. Kohlrausch, “Waveform coding and auditory masking,” in Speech
Coding and Synthesis, W. B. Kleijn and K. K. Paliwal, Eds. Elsevier Science B.V., 1995,
ch. 11, pp. 397–432.

[59] J. D. Johnston, “Estimation of perceptual entropy using noise masking criteria,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing, 1988, pp. 2524–2527.

[60] J. D. Johnston, “Transform coding of audio signal susing perceptual noise criteria,” IEEE
J. Select. Areas Commun., pp. 314–323, 1988.

[61] B. C. J. Moore, An Introduction to the Psychology of Hearing, 4th ed. Academic Press,
1997.

[62] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. The Johns Hopkins Uni-
versity Press, 1996.



34 INTRODUCTION

[63] S. van de Par, A. Kohlrausch, G. Charestan, and R. Heusdens, “A new psychoacoustical
masking model for audio coding applications,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing, vol. 2, 2001, pp. 1805 – 1808.

[64] S. van de Par, A. Kohlrausch, R. Heusdens, J. Jensen, and S. H. Jensen, “A perceptual
model for sinusoidal audio coding based on spectral integration,” EURASIP J. on Applied
Signal Processing, vol. 9, pp. 1292–1304, 2004.

[65] T. Dau, D. Püschel, and A. Kohlrausch, “A quantitative model of the effective signal pro-
cessing in the auditory system. i. model structure,” J. Acoust. Soc. Am., vol. 99(6), pp.
3615–3622, June 1996.

[66] T. Dau, D. Püschel, and A. Kohlrausch, “A quantitative model of the effective signal pro-
cessing in the auditory system. ii. simulations and measurements,” J. Acoust. Soc. Am.,
vol. 99(6), pp. 3623–3631, June 1996.

[67] J. Plasberg, D. Zhao, and W. B. Kleijn, “Sensitivity matrix for a spectro-temporal auditory
model,” in Proc. European Signal Processing Conf., 2004, pp. 1673–1676.

[68] S. Voran, “Perception-based bit-allocation algorithms for audio coding,” in Proc. IEEE
Workshop on Appl. of Signal Process. to Aud. and Acoust., 1997.

[69] F. Baumgarte, “Improved audio coding using a psychoacoustic model based on cochlear
filter bank,” IEEE Trans. Speech and Audio Processing, vol. 10(6), pp. 495–503, Oct.
2002.

[70] C. Colomes, M. Lever, J.-B. Rault, and Y. F. Dehery, “A perceptual model applied to audio
bit-rate reduction,” J. Audio Eng. Soc., vol. 43, pp. 223–239, 1995.

[71] J. Breebaart, “Modeling binaural signal detection,” Ph.D. dissertation, Technical Univer-
sity of Eindhoven, 2001.

[72] A. H. Gray and J. D. Markel, “Distance measures for speech processing,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 24(5), pp. 380–391, 1976.

[73] W. R. Gardner and B. D. Rao, “Theoretical analysis of the high-rate vector quantization
of LPC parameters,” IEEE Trans. Speech and Audio Processing, vol. 3(5), pp. 367–381,
1995.

[74] K. K. Paliwal and B. S. Atal, “Efficient vector quantization of LPC parameters at 24
bits/frame,” IEEE Trans. Speech and Audio Processing, vol. 1, pp. 3–14, 1993.

[75] D. Sinha and A. H. Tewfik, “Low bit rate transparent audio compression using adapted
wavelets,” IEEE Trans. Signal Processing, vol. 41, pp. 3463–3479, 1993.

[76] M. Erne, G. Moschytz, and C. Faller, “Best wavelet-packet bases for audio coding using
perceptual and rate-distortion criteria,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing, vol. 2, 1999, pp. 909–912.

[77] L. D. Fielder, M. Bosi, G. Davidson, M. Davis, C. todd, and S. Vernon, “AC-2 and AC3:
Low-Complexity Transform-based Audio Coding,” in Collected Papers on Digital Audio
Bit-Rate Reduction, N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc., 1996, pp. 54–72.

[78] J. D. Johnston, D. Sinha, S. Dorward, and S. R. Quackenbush, “AT&T Perceptual Audio
Coding (PAC),” in Collected Papers on Digital Audio Bit-Rate Reduction, N. Gilchrist and
C. Grewin, Eds. Audio Eng. Soc., 1996, pp. 73–82.



REFERENCES 35

[79] F. Wylie, “apt-X100: Low-Delay, Low-Bit-Rate Subband ADPCM Digital Audio Coding,”
in Collected Papers on Digital Audio Bit-Rate Reduction, N. Gilchrist and C. Grewin, Eds.
Audio Eng. Soc., 1996, pp. 83–94.

[80] K. Tsutsui, H. Suzuki, O. Shimoyoshi, M. Sonohara, K. Akagiri, and R. M. Heddle,
“ATRAC: Adaptive Transform Acoustic Coding for MiniDisc,” in Collected Papers on
Digital Audio Bit-Rate Reduction, N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc.,
1996, pp. 95–101.

[81] K. Brandenburg and G. Stoll, “ISO-MPEG-1 Audio: A Generic Standard for Coding of
High-Quality Digital Audio,” in Collected Papers on Digital Audio Bit-Rate Reduction,
N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc., 1996, pp. 31–42.

[82] JTC1/SC29/WG11 MPEG IS13818-3, ISO/IEC Information technolgy - Coding of moving
pictures and associated audio–Part 3: Audio, 1994.

[83] ISO/IEC IS13818-7, ISO/IEC Information technology - generic coding of moving pictures
and associated audio information. Part 7: Advanced Audio Coding, 1997.

[84] M. Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri, H. Fuchs, M. Dietz,
J. Herre, G. Davidson, and Y. Oikawa, “ISO/IEC MPEG-2 Advanced Audio Coding,” J.
Audio Eng. Soc., vol. 45(10), pp. 789–814, 1997.

[85] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency dictionaries,” IEEE Trans.
Signal Processing, vol. 41(12), pp. 3397–3415, Dec. 1993.

[86] J. Princen and A. Bradley, “Analysis/synthesis filter bank design based on time domain
aliasing cancellation,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 34(5), pp.
1153–1161, Oct. 1986.

[87] J. Princen, A. Johnson, and A. Bradley, “Subband/transform coding using filter banks
designs based on time domain aliasing cancellation,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, 1987, pp. 2161–2164.

[88] R. J. Beaton, J. G. Beerends, M. Keyhl, and W. C. Treurniet, “Objective perceptual mea-
surement of audio quality,” in Collected Papers on Digital Audio Bit-Rate Reduction,
N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc., 1996, pp. 126–152.

[89] ITU-T P.862, ITU Perceptual evaluation of speech quality (PESQ), an objective method
for end-to-end speech quality assessment of narrowband telephone networks and speech
codecs, Feb. 2001.

[90] ITU-R BS.1387, ITU Method for objective measurements of perceived audio quality, Nov.
2001.

[91] S. Voran, “Objective estimation of perceived speech quality. I. Development of the mea-
suring normalizing block technique,” IEEE Trans. Speech and Audio Processing, vol. 7(4),
pp. 371–382, 1999.

[92] S. Voran, “Objective estimation of perceived speech quality. II. Evaluation of the measur-
ing normalizing block technique,” IEEE Trans. Speech and Audio Processing, vol. 7(4),
pp. 383–390, 1999.

[93] ITU-R BS.1534, ITU Method for subjective assessment of intermediate quality level of
coding system, 2001.



36 INTRODUCTION

[94] ITU-R P.800, ITU Methods for Subjective Determination of Transmission Quality, Jan.
1996.

[95] European Broadcasting Union, Sound Quality Assessment Material Recordings for Sub-
jective Tests. EBU, Apr. 1988, Tech. 3253.

[96] T. Rydén, “Using listening tests to assess audio codecs,” in Collected Papers on Digital
Audio Bit-Rate Reduction, N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc., 1996, pp.
115–125.

[97] ISO/IEC JTC1/SC29/WG11, “Report on the formal subjective listening tests of MPEG-2
NBC multichannel audio coding, Tech. Rep. N1419, Nov. 1996.

[98] R. J. McAulay and T. F. Quatieri, “Sinusoidal coding,” in Speech Coding and Synthesis,
W. B. Kleijn and K. K. Paliwal, Eds. Elsevier Science B.V., 1995, ch. 4, pp. 121–174.

[99] R. J. McAulay and T. F. Quatieri, “Speech analysis/synthesis based on a sinusoidal repre-
sentation,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 34(4), pp. 744–754, Aug.
1986.

[100] P. Hedelin, “A tone oriented voice excited vocoder,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, 1981, pp. 205–208.

[101] E. B. George and M. J. T. Smith, “A new speech coding model based on a least-squares
sinusoidal representation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
1987, pp. 1641–1644.

[102] J. S. Marques, I. M. Trancoso, and A. J. Abrantes, “Harmonic Coding of Speech: An
Experimental Study,” in EuroSpeech Proceedings, 1991, pp. 235–238.

[103] J. S. Marques and L. B. Almeida, “A Background for Sinusoid Based Representation of
Voiced Speech,” in IEEE Trans. Acoust., Speech, Signal Processing, 1986, pp. 1233–1236.

[104] J. S. Rodrigues and L. B. Almeida, “Harmonic Coding at 8kbits/sec,” in Proceedings IEEE
Int. Conf. Acoustics, Speech, Signal Processing, 1987, pp. 1621–1624.

[105] E. B. George and M. J. T. Smith, “Speech analysis/synthesis and modification using an
analysis-by-synthesis/overlap-add sinusoidal model,” IEEE Trans. Speech and Audio Pro-
cessing, vol. 5(5), pp. 389–406, Sept. 1997.

[106] E. B. George and M. J. T. Smith, “Analysis-by-synthesis/overlap-add sinusoidal modeling
applied to the analysis-synthesis of musical tones,” J. Audio Eng. Soc., vol. 40(6), pp.
497–516, 1992.

[107] J. O. Smith III and X. Serra, “PARSHL: An Analysis/Synthesis Program for Non-
Harmonic Sounds Based on a Sinusoidal Representation,” in Proceedings of the Inter-
national Computer Music Conference (ICMC-87, Tokyo), Computer Music Association,
1987.

[108] J. O. Smith III and X. Serra, “Spectral Modelling Synthesis: A Sound Analysis/Synthesis
System Based on a Deterministic Plus Stochastic Decomposition,” Computer Music Jour-
nal, vol. 14(4), pp. 12–24, 1990.

[109] B. Edler, H. Purnhagen, and C. Ferekidis, “ASAC – Analysis/Synthesis Audio Codec for
Very Low Bit Rates,” in Proc. 100th Conv. Aud. Eng. Soc., 1996, paper preprint 4179.



REFERENCES 37

[110] ISO/IEC, Coding of audio-visual objects – Part 3: Audio (MPEG-4 Audio Edition 2001).
ISO/IEC Int. Std. 14496-3:2001, 2001.

[111] H. Purnhagen and N. Meine, “HILN - The MPEG-4 Parametric Audio Coding Tools,” in
IEEE International Symposium on Circuits and Systems, 2000.

[112] B. Edler and H. Purnhagen, “Parametric audio coding,” in Proc. ICSP, 2000, pp. 21–24.

[113] S. N. Levine, T. S. Verma, and J. O. Smith III, “Alias-free, multiresolution sinusoidal
modeling for polyphonic, wideband audio,” in Proc. IEEE Workshop on Appl. of Signal
Process. to Aud. and Acoust., 1997, pp. 101–104.

[114] S. N. Levine and J. O. Smith III, “A switched parametric & transform audio coder,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1999, pp. 985–988.

[115] K. N. Hamdy, M. Ali, and A. H. Tewfik, “Low bit rate high quality audio coding with
combined harmonic and wavelet representation,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing, 1996, pp. 1045–1048.

[116] T. S. Verma and T. H. Y. Meng, “A 6kbps to 85kbps scalable audio coder,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Processing, 2000, pp. 877–880.

[117] A. C. den Brinker, E. G. P. Schuijers, and A. W. J. Oomen, “Parametric coding for high-
quality audio,” in Proc. 112th Conv. Aud. Eng. Soc., 2002, paper preprint 5554.

[118] E. G. P. Schuijers, A. W. J. Oomen, A. C. den Brinker, and A. J. Gerrits, “Advances in
parametric coding for high-quality audio,” in Proc 1st. IEEE Benelux Workshop on Model
Based Processing and Coding of Audio (MPCA-2002), 2002.

[119] E. G. P. Schuijers, A. W. J. Oomen, A. C. den Brinker, and J. Breebaart, “Advances in
parametric coding for high-quality audio,” in Proc. 114th Conv. Aud. Eng. Soc., 2003,
paper preprint 5852.

[120] J. Jensen and J. H. L. Hansen, “Speech enhancement using a constrained iterative sinu-
soidal model,” IEEE Trans. Speech and Audio Processing, vol. 9, pp. 731–740, Oct. 2001.

[121] “Skype,” June 2005, http://www.skype.com.

[122] T. S. Verma, “A perceptually based audio signal model with application to scalable audio
compression,” Ph.D. dissertation, Stanford University, 1999.

[123] J. Jensen, “Sinusoidal Models for Speech Signal Processing,” Ph.D. dissertation, CPK,
Institute of Electronic Systems, Aalborg University, 2000.

[124] L. Almeida and J. Tribolet, “Harmonic coding: A low bit-rate, good-quality speech coding
technique,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 7, 1982, pp.
1664–1667.

[125] J. S. Marques, L. B. Almeida, and J. M. Tribolet, “Harmonic coding at 4.8kb/s,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing, 1990, pp. 17–20.

[126] E. B. George and M. J. T. Smith, “Perceptual Conciderations in a Low Bit Rate Sinu-
soidal Vocoder,” in Ninth Annual International Phoenix Conference on Computers and
Communications, 1990, pp. 268–275.

[127] E. B. George and M. J. T. Smith, “Generalized overlap-add sinusoidal modeling applied
to quasi-harmonic tone synthesis,” in Proc. IEEE Workshop on Appl. of Signal Process. to
Aud. and Acoust., 1993, pp. 165–168.



38 INTRODUCTION

[128] E. B. George and M. J. T. Smith, “Speech Analysis/Synthesis and Modification Using an
Analysis-by-Synthesis/Overlap-Add Sinusoidal Model,” in IEEE Trans. Speech and Audio
Processing, vol. 3, 1997, pp. 389–406.

[129] J. Lattard, “Influence of inharmonicity on the tuning of a piano - measurements and math-
ematical simulation,” J. Acoust. Soc. Am., vol. 94, pp. 46–53, 1993.

[130] F. Myburg, “Design of a scalable parametric audio coder,” Ph.D. dissertation, Technical
University of Eindhoven, 2004.

[131] R. J. McAulay and T. F. Quatieri, “Multirate sinusoidal transform coding at rates from 2.4
kbps to 8 kbps,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1986, pp.
1645–1648.

[132] R. J. McAulay and T. F. Quatieri, “Phase modelling and its application to sinusoidal trans-
form coding,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1986, pp.
1713–1715.

[133] L. B. Almeida and J. M. Tribolet, “A model for short-time phase prediction of speech,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1981, pp. 213–216.

[134] S. Ahmadi and A. S. Spanias, “Improved algorithms for phase prediction and frame inter-
polation in low bit rate sinusoidal coders,” in Rec. Asilomar Conf. Signals, Systems, and
Computers, vol. 1, 1998, pp. 362–366.

[135] S. Ahmadi and A. S. Spanias, “A new phase model for sinsoidal transform coding of
speech,” in IEEE Trans. Speech and Audio Processing, vol. 6(5), 1998, pp. 495–501.

[136] S. Ahmadi and A. S. Spanias, “New techniques for sinusoidal coding of speech at 2400
bps,” in Rec. Asilomar Conf. Signals, Systems, and Computers, vol. 1, 1996, pp. 495–501.

[137] A. C. den Brinker, A. J. Gerrits, and R. J. Sluijter, “Phase transmission in a sinusoidal
audio and speech coder,” in Proc. 115th Conv. Aud. Eng. Soc., 2003, paper preprint 5983.

[138] T. F. Quatieri, Discrete-Time Speech Signal Processing. Pearson Professional Education,
2001.

[139] W. R. Gardner and B. D. Rao, “Mixed-phase ar models for voiced speech and perceptual
cost functions,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1994, pp.
205–208.

[140] P. Hedelin, “Phase compensation in all-pole speech analysis,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Processing, 1988, pp. 339–342.

[141] S. Ahmadi, “An improved residual-domain phase/amplitude model for sinusoidal coding
of speech at very low bit rates: A variable rate scheme,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, vol. 4, 1999, pp. 2291–2294.

[142] J. Nieuwenhuijse, R. Heusdens, and E. F. Deprettere, “Robust Exponential Modeling of
Audio Signals,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1998, pp.
3581–3584.

[143] J. Jensen, R. Heusdens, and S. H. Jensen, “A perceptual subspace approach for model-
ing of speech and audio signals with damped sinusoids,” IEEE Trans. Speech and Audio
Processing, vol. 12(2), pp. 121–132, Mar. 2004.



REFERENCES 39

[144] M. M. Goodwin, “Matching pursuit with damped sinusoids,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Processing, 1997, pp. 2037–2040.

[145] R. Boyer and K. Abed-Meraim, “Audio Transient Modeling by Damped and Delayed
Sinusoids (DDS),” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, May 2002,
pp. 1729–1732.

[146] R. Boyer and K. Abed-Meraim, “Audio modeling based on delayed sinusoids,” IEEE
Trans. Speech and Audio Processing, vol. 12(2), pp. 110 – 120, Mar. 2004.

[147] K. Hermus, W. Verhelst, P. Lemmerling, P. Wambacq, and S. van Huffel, “Perceptual audio
modeling with exponentially damped sinusoids,” Signal Processing, vol. 85, pp. 163–176,
2005.

[148] R. Heusdens, J. Jensen, W. B. Kleijn, V. kot, O. A. Niamut, S. van de Par, N. H. van
Schijndel, and R. Vafin, “Bit-rate scalable intra-frame sinusoidal audio coding based on
rate-distortion optimisation,” J. Audio Eng. Soc., 2005, submitted.

[149] T. D. Rossing, The Science of Sound, 2nd ed. Addison-Wesley Publishing Company,
1990.

[150] ISO/IEC 14496-3:2001/AMD2, ISO/IEC Parametric Coding for High-Quality Audio, July
2004.

[151] F. Myburg, A. C. den Brinker, and S. van Eijndhoven, “Sinusoidal analysis of audio with
polynomial phase and amplitude,” in Proc. ProRISC, 2001.

[152] F. Myburg, A. C. den Brinker, and S. van Eijndhoven, “Multi-component chirp analysis in
parametric audio coding,” in Fourth IEEE Benelux Signal Processing Symposium, 2004.

[153] G. Li, L. Qiu, and L. K. Ng, “Signal representation based on instantaneous amplitude
models with application to speech synthesis,” IEEE Trans. Speech and Audio Processing,
vol. 8(3), pp. 353–357, 2000.

[154] P. Stoica, H. Li, and J. Li, “Amplitude estimation of sinusoidal signals: Survey, new results
and an application,” IEEE Trans. Signal Processing, vol. 48(2), pp. 338–352, Feb. 2000.

[155] A.-J. van der Veen, E. F. Deprettere, and A. L. Swindlehurst, “Subspace-based signal
analysis uisng singular value decompostion,” Proc. IEEE, vol. 81(9), pp. 1277–1308, Sept.
1993.

[156] H. Krim and M. Viberg, “Two decades of array signal processing research–the parametric
approach,” IEEE SP Mag., July 1996.

[157] G. Bienvenu, “Influence of the spatial coherence of the background noise on high resolu-
tion passive methods,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1979,
pp. 306–309.

[158] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans.
Antennas Propagat., vol. 34(3), pp. 276–280, Mar. 1986.

[159] V. F. Pisarenko, “The retrieval of harmonics from a covariance function,” Geophys. J. Roy.
Astron. Soc., vol. 33, pp. 347–366, 1973.

[160] R. Roy and T. Kailath, “ESPRIT – estimation of signal parameters via rotational invariance
techniques,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37(7), July 1989.



40 INTRODUCTION

[161] P. Stoica, A. Jakobsson, and J. Li, “Cisiod parameter estimation in the coloured noise
case: Asymptotic cramér-rao bound, maximum likelihood, and nonlinear least-squares,”
in IEEE Trans. Signal Processing, vol. 45(8), Aug. 1997, pp. 2048–2059.

[162] P. Stoica, R. L. Moses, B. Friedlander, and T. Söderström, “Maximum likelihood esti-
mation of the parameters of multiple sinusoids from noisy measurements,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 37(3), pp. 378–392, Mar. 1989.

[163] M. M. Goodwin, “Matching pursuit and atomic signal models based on recursive filter
banks,” IEEE Trans. Signal Processing, vol. 47(7), pp. 1890–1902, July 1999.

[164] R. Vafin, S. V. Andersen, and W. B. Kleijn, “Exploiting time and frequency masking in
consistent sinusoidal analysis-synthesis,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing, vol. 2, 2000, pp. 901–904.

[165] R. Heusdens, R. Vafin, and W. B. Kleijn, “Sinusoidal modeling using psychoacoustic-
adaptive matching pursuits,” IEEE Signal Processing Lett., vol. 9(8), pp. 262–265, Aug.
2002.

[166] T. S. Verma and T. H. Y. Meng, “Sinusoidal modeling using frame-based perceptually
weighted matching pursuits,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
vol. 2, 1999, pp. 981–984.

[167] H. Purnhagen, N. Meine, and B. Edler, “Sinusoidal coding using loudness-based compo-
nent selection,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 2, 2002,
pp. 1817–1820.

[168] T. Painter and A. S. Spanias, “Perceptual segmentation and component selection in com-
pact sinusoidal representation of audio,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing, vol. 5, 2001, pp. 3289–3292.

[169] T. Painter and A. Spanias, “Perceptual segmentation and component selection for sinu-
soidal representations of audio,” IEEE Trans. Speech and Audio Processing, vol. 13(2),
pp. 149–162, Mar. 2005.

[170] B. S. Atal and J. R. Remde, “A new model of LPC excitation for producing natural sound-
ing speech at low bit rates,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
1982.

[171] R. Vafin and W. B. Kleijn, “Entropy-constrained polar quantization: Theory and an ap-
plication to audio coding,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
vol. 2, 2002, pp. 1837–1840.

[172] R. Vafin, D. Prakash, and W. B. Kleijn, “On frequency quantization in sinusoidal audio
coding,” IEEE Signal Processing Lett., vol. 12, no. 3, pp. 210–213, Mar. 2005.

[173] R. Vafin and W. B. Kleijn, “Entropy-constrained polar quantization and its application to
audio coding,” IEEE Trans. Speech and Audio Processing, vol. 13, no. 2, pp. 220–232,
Mar. 2005.

[174] R. Vafin, “Towards flexible audio coding,” Ph.D. dissertation, Royal Institute of Technol-
ogy, Dec. 2004, tRITA-S3-SIP-2004-4.

[175] R. Heusdens and J. Jesper, “Jointly optimal time segmentation, component selection and
quantization for sinusoidal coding of audio and speech,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, vol. 3, 2005, pp. 18–23.



REFERENCES 41

[176] P. E. L. Korten, J. Jensen, and R. Heusdens, “High resolution spherical quantization of
sinusoidal parameters uinsg a prceptual distortion measure,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Processing, vol. 3, 2005, pp. 177–180.

[177] P. E. L. Korten, J. Jensen, and R. Heusdens, “High rate spherical quantization of sinusoidal
parameters,” in Proc. European Signal Processing Conf., 2004, pp. 1805–1808.

[178] J. Lindblom and P. Hedelin, “Variable-dimension quantization of sinusoidal amplitudes
using gaussian mixture models,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process-
ing, vol. 1, 2004, pp. 100–103.

[179] J. Jensen and R. Heusdens, “A comparison of differential schemes for low-rate sinusoidal
audio coding,” in Proc. IEEE Workshop on Appl. of Signal Process. to Aud. and Acoust.,
2003, pp. 205–208.

[180] J. Jensen and R. Heusdens, “Optimal frequency-differential encoding of sinusoidal model
parameters,” in Proc. IEEE Conf. on Acoust., Speech, Signal Processing, 2002, pp. 2497–
2500.

[181] J. Jensen and R. Heusdens, “Schemes for optimal frequency-differential encoding of sinu-
soidal model parameters,” Elsevier Science Signal Processing, vol. 83(8), pp. 1721–1735,
Aug. 2003.

[182] R. Vafin and W. B. Kleijn, “Rate-distortion optimized quantization in multistage audio
coding,” IEEE Trans. Speech and Audio Processing, 2004, accepted.

[183] P. Kroon, E. D. F. Deprettere, and R. J. Sluyter, “Regular-pulse excitation - a novel ap-
proach to effective multipulse coding of speech,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. 34, pp. 1054–1063, 1986.

[184] R. Hendriks, R. Heusdens, and J. Jensen, “Perceptual linear predictive noise modelling
for sinusoid-plus-noise audio coding,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing, vol. 4, 2004, pp. 189–192.

[185] X. Serra, “A system for sound analysis/transformation/synthesis based on a deterministic
plus stochastic decomposition,” Ph.D. dissertation, Stanford University, 1989.

[186] M. M. Goodwin, “Nonuniform filterbank design for audio signal modeling,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Processing, vol. 2, 1997, pp. 1229–1233.

[187] M. M. Goodwin, “Residual modeling in music analysis-synthesis,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Processing, vol. 2, 1996, pp. 1005–1008.

[188] T. S. Verma and T. H. Y. Meng, “An analysis/synthesis tool for transient signals that al-
lows a flexible sines+transients+noise model for audio,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, vol. 6, 1998, pp. 3573–3576.

[189] S. N. Levine, “Audio Representations For Data Compression And Compressed Domain
Processing,” Ph.D. dissertation, Stanford University, 1999.

[190] D. Schulz, “Improving audio codecs by noise substitution,” J. Audio Eng. Soc., vol. 7/8,
pp. 593–598, Jul/Aug 1996.

[191] J. Herre and D. Schulz, “Extending the MPEG-4 AAC codec by Perceptual Noise Substi-
tution,” in Proc. 104th Conv. Aud. Eng. Soc., 1998, paper preprint 4720.



42 INTRODUCTION

[192] A. Härmä, “Frequency-warped autoregressive modeling and filtering,” Ph.D. dissertation,
Helsinki University of Technology, 2001.

[193] A. Härmä, U. K. Laine, and M. Karjalainen, “Warped linear prediction (WLP) in audio
coding,” in Nordic Signal Processing Symposium, 1996.

[194] A. C. den Brinker, V. Voitischchuk, and S. J. L. van Eijndhoven, “IIR-based pure linear
prediction,” IEEE Trans. Speech and Audio Processing, vol. 12(1), Jan. 2004.

[195] F. K. Soong and B. Juang, “Optimal quantization of lsp parameters,” in IEEE Trans.
Speech and Audio Processing, vol. 1, 1993, pp. 15–24.

[196] W. B. Kleijn and K. K. Paliwal, “Quantization of LPC Parameters,” in Speech Coding and
Synthesis, W. B. Kleijn and K. K. Paliwal, Eds. Elsevier Science B.V., 1995, ch. 12.

[197] O. A. Niamut and R. Heusdens, “RD Optimal Time Segmentation for the Time-Varying
MDCT,” in Proc. European Signal Processing Conf., Sept. 2004, pp. 1649–1652.

[198] O. A. Niamut and R. Heusdens, “Flexible frequency decompositions for cosine-modulated
filter banks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Apr. 2003, pp.
449–452.

[199] P. Prandoni, “Optimal Segmentation Techniques for Piecewise Stationary Signals,” Ph.D.
dissertation, Ecole Polytechnique Federale de Lausanne, 1999.

[200] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[201] B. Edler, “Codierung von Audiosignalen mit überlappender Transformation und adaptiven
Fensterfunktionen,” Frequenz, pp. 1033–1036, 1989.

[202] K. Brandenburg, J. Herre, J. D. Johnston, Y. Mahieux, and E. F. Schroeder, “ASPEC:
Adaptive Spectral Entropy Coding of High Quality Music Signals,” in 90th Conv. Aud.
Eng. Soc., 1991, paper Preprint 3011 A-4.

[203] J. D. Johnston and A. J. Ferreira, “Sum-difference stereo transform coding,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Processing, vol. 2, 1992, pp. 569–572.

[204] R. Heusdens and S. van de Par, “Rate-distortion optimal sinusoidal modeling of audio us-
ing psychoacoustical matching pursuits,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing, 2002, pp. 1809–1812.

[205] P. Prandoni, M. M. Goodwin, and M. Vetterli, “Optimal time segmentation for signal
modeling and compression,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
1997, pp. 2029–2032.

[206] K. Engan, “Frame based signal representation and compression,” Ph.D. dissertation, Sta-
vanger Unversity College, 2000.

[207] K. Engan, S. O. Aase, and J. H. Husøy, “Designing frames for matching pursuit algo-
rithms,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1998, pp. 1817–
1820.

[208] M. Dietz, L. Liljeryd, K. Kjörling, and U. Kunz, “Spectral band replication, a novel ap-
proach to audio coding,” in Proc. 112th Conv. Aud. Eng. Soc., 2002, paper preprint 5553.

[209] J. Herre, “From joint stereo to spatial audio coding–recent progress and standardization,”
in Proc. Int. Conf. Digital Audio Effects, 2004, pp. 157–162.



REFERENCES 43

[210] F. Baumgarte and C. Faller, “Binaural Cue Coding–Part I: Psychocaoustic fundamentals
and design principles,” IEEE Trans. Speech and Audio Processing, vol. 11(6), pp. 509–
519, 2003.

[211] C. Faller and F. Baumgarte, “Binaural Cue Coding–Part II: Schemes and applications,”
IEEE Trans. Speech and Audio Processing, vol. 11(6), pp. 520–531, 2003.

[212] R. van de Waal and R. Velduis, “Subband coding of stereophonic digital audio signals,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1991, pp. 3601–3604.

[213] J. Herre, K. Brandenburg, and D. Lederer, “Intensity stereo coding,” in Proc. 96th Conv.
Aud. Eng. Soc., 1994, paper Preprint 3799.

[214] J. Breebaart, S. van de Par, A. Kohlrausch, and E. Schuijers, “High-quality parametric
spatial audio coding at low bit rates,” in Proc. 116th Conv. Aud. Eng. Soc., 2004, paper
Prerpint 6072.

[215] J. Breebaart, S. van de Par, A. Kohlrausch, and E. Schuijers, “Parametric coding of stereo
audio,” EURASIP J. on Applied Signal Processing, vol. 9, pp. 1305–1322, June 2005.

[216] G. Stoll, “ISO-MPEG-2 Audio: A Generic Standard for the Coding of Two-Channel
and Multichannel Sound,” in Collected Papers on Digital Audio Bit-Rate Reduction,
N. Gilchrist and C. Grewin, Eds. Audio Eng. Soc., 1996, pp. 43–53.

[217] Federal Standard 1015, National Communication System–Office of Technology and Stan-
dards Telecommunications: Analog to digital conversion of radio voice by 2400 bit/second
linear predictive coding, national communication system, Nov. 1984.

[218] E. Bedrosian, “A product theorem for Hilbert transforms,” in Proc. IEEE, vol. 51(1), May
1963, pp. 868–869.

[219] S. L. Hahn, Hilbert Transforms in Signal Processing. Artech House, 1996.

[220] F. Nordén, S. V. Andersen, S. H. Jensen, and W. B. Kleijn, “Property vector based dis-
tortion estimation,” in Rec. Asilomar Conf. Signals, Systems, and Computers, 2004, pp.
2275–2279.



44 INTRODUCTION



Paper A

Amplitude Modulated Sinusoidal Models
for Audio Modeling and Coding

Mads Græsbøll Christensen, Søren Vang Andersen, and
Søren Holdt Jensen

The paper has been published in
Knowledge-Based Intelligent Information & Enginerring Systems, V. Palade,

R. J. Howlett, and L. C. Jain, Eds., Lecture Notes in Artificial Intelligence,
Springer-Verlag, vol. 2773, pp. 1334–1342, 2003.



Note
The signal model x̂(n) and the subband signal xq(n) only relate to the amplitude mod-
ulating signal as described in (6) and (7) for the real case, i.e. γ∗

q (n) = γq(n). For the
complex case, (6) should read

x̂(n) =

Q∑

q=1

γ∗q (n)
Aq

2
exp(−j(ωq + φq)) + γq(n)

Aq

2
exp(j(ωq + φq)).

Similarly, the subband signal in (7) can be written as

xq(n) = γ∗q (n)
Aq

2
exp(−j(ωq + φq)) + γq(n)

Aq

2
exp(j(ωq + φq))

= γ∗q (n)s∗q(n) + γq(n)sq(n),

where sq(n) = exp(j(ωq + φq)). With these definitions in place, the remaining part of
the section holds for both the complex and the real case.
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Abstract
In this paper a new perspective on modeling of transient phenomena in the context of
sinusoidal audio modeling and coding is presented. In our approach the task of finding
time-varying amplitudes for sinusoidal models is viewed as an AM demodulation prob-
lem. A general perfect reconstruction framework for amplitude modulated sinusoids is
introduced and model reductions lead to a model for audio compression. Demodula-
tion methods are considered for estimation of the time-varying amplitudes, and inherent
constraints and limitations are discussed. Finally, some applications are considered
and discussed and the concepts are demonstrated to improve sinusoidal modeling of
audio and speech.

1 Introduction
In the last couple of decades sinusoidal modeling and coding of both speech and audio
in general has received great attention in research. In its most general form, it models a
segment of a signal as a finite sum of sinusoidal components each having a time-varying
amplitude and a time-varying instantaneous phase. Perhaps the most commonly used
derivative of this model is the constant-frequency constant-amplitude model known as
the basic sinusoidal model. This model is based on the assumptions that the amplitudes
and frequencies remain constant within the segment. It has been used for many years
in speech modeling and transformation [1]. The model, however, has problems in mod-
eling transient phenomena such as onsets, which causes so-called pre-echos to occur.
This is basically due to the quasi-stationarity assumptions of the model being violated
and the fundamental trade-off between time and frequency resolution. Also, the use of
overlap-add or interpolative synthesis inevitably smears the time-resolution.

Many different strategies for handling time-varying amplitudes have surfaced in
recent years. For example, the use of time-adaptive segmentation [2] improves perfor-
mance greatly at the cost of increased delay. But even then pre-echos may still occur
in overlap regions or if interpolative synthesis [1] is used. Also, the use of exponential
dampening of each sinusoid has been extensively studied [3–5], although issues con-
cerning quantization remain unsolved. Other approaches include the use of one com-
mon dampening factor for all sinusoids [6], the use of asymmetric windows [7], the use
of an envelope estimated by low-pass filtering of the absolute value of the input [8] and
the approaches taken in [9, 10]. In [9] lines are fitted to the instantaneous envelope and
then used in sinusoidal modeling, and in [10] transient locations are modified in time
to reduce pre-echo artifacts. The latter requires the use of dynamic time segmentation.
Also, tracking of individual speech formants by means of an energy separation into
amplitude modulation and frequency modulation (FM) contributions has been studied
in [11–13].

In this paper we propose amplitude modulated sinusoidal models for audio model-
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ing and coding applications. The rest of the paper is organized as follows: In section
2 the mathematical background is presented. A general perfect reconstruction model is
derived in section 3, and in section 4 a model which addresses one of the major issues
of audio coding regardless of type, namely pre-echo, is presented along with a compu-
tationally simple estimation technique. Finally, in section 5 some experimental results
are presented and discussed and section 6 concludes on the work.

2 Some Preliminaries
The methods proposed in this paper are all based on the so-called analytic signal,
which is derived from the Hilbert transform. First, we introduce the Hilbert transform
and define the analytic signal and the instantaneous envelope. Then we briefly state
Bedrosian’s theorem, which is essential to this paper.

Definition 1 (Discrete Hilbert Transform). Let xr(n) be a discrete-time real signal.
The Discrete Hilbert transform, H{·}, of this, denoted xi(n), is then defined as (see
e.g. [14])

xi(n) = H{xr(n)} =
∞∑

m=−∞

h(m)xr(n−m). (1)

where h(n) is the impulse response of the discrete Hilbert transform given by

h(n) =

{
2 sin2(πn/2)

πn , n 6= 0
0, n = 0

. (2)

A useful way of looking at the Hilbert transform, and perhaps a more intuitive
definition, is in the frequency domain:

Xi(ω) = H(ω)Xr(ω), with H(ω) =





j, for −π < ω < 0
0, for ω = {0, π}
−j, for 0 < ω < π

. (3)

where Xi(ω) and Xr(ω) are the Fourier transform (denoted F{·}) of xi(n) and xr(n),
respectively, and H(ω) is the Fourier transform of h(n). The so-called analytic signal
and instantaneous envelope are then defined as

xc(n) = xr(n) + jxi(n) and |xc(n)| =
√
x2

r(n) + x2
i (n), (4)

respectively. With these definitions in place, we now state Bedrosian’s theorem [15].

Theorem 1 (Bedrosian). Let f(n) and g(n) denote generally complex functions in
`2(Z) of the real, discrete variable n. If
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1. the Fourier transform F (ω) of f(n) is zero for a < |ω| ≤ π and the Fourier
transform G(ω) of g(n) is zero for 0 ≤ |ω| < a, where a is an arbitrary positive
constant, or

2. f(n) and g(n) are analytic, then

H{f(n)g(n)} = f(n)H{g(n)}. (5)

For proof of the continuous case see [15]. The theorem holds also for periodic
signals in which case the Fourier series should be applied.

3 Sum of Amplitude Modulated Sinusoids
In this section we consider a perfect reconstruction framework based on a model con-
sisting of a sum of amplitude modulated sinusoids:

x̂(n) =

Q∑

q=1

γq(n)Aq cos(ωqn+ φq) for n = 0, . . . , N − 1, (6)

where γq(n) is the amplitude modulating signal, Aq the amplitude, ωq the frequency,
and φq the phase of the qth sinusoid. We note in the passing that the aforementioned
exponential sinusoidal models [3–5] fall into this category. Assume that the signal
has been split into a set of subbands by a perfect reconstruction nonuniform Q-band
filterbank, such as [16], having a set of cut-off frequencies Ωq for q = 0, 1, . . . , Q
where Ω0 = 0 and ΩQ = π. Then we express the contents of each individual subband
xq(n) as an amplitude modulated sinusoid placed in the middle of the band, i.e.

xq(n) = γq(n)Aq cos(ωqn+ φq) = γq(n)sq(n), (7)

where ωq =
Ωq+Ωq−1

2 , γq(n) ∈ C, i.e. the modulation is complex. We start our demod-
ulation by finding the analytic signal representation of both the left and right side of the
previous equation:

xq(n) + jH{xq(n)} = γq(n)sq(n) + jH{γq(n)sq(n)}, (8)

which according to Bedrosian’s theorem is equal to

γq(n)sq(n) + jH{γq(n)sq(n)} = γq(n) (sq(n) + jH{sq(n)}) (9)
= γq(n)Al exp (j(ωqn+ φq)) . (10)

This means that we can simply perform complex demodulation in each individual sub-
band using a complex sinusoid, i.e.

γq(n) = (xq(n) + jH{xq(n)}) 1

Aq
exp(−j(ωqn+ φq)). (11)
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In this case we have a modulation with a bandwidth equal to the bandwidth of the
subband, ∆q = Ωq − Ωq−1. It is of interest to relax the constraint on the frequency
of the carrier. Here we consider a more general scenario, where the carrier may be
placed anywhere in the subband, i.e. Ωq−1 ≤ ωq ≤ Ωq . In this case, the modulation
is asymmetrical around the carrier in the spectrum. An alternative interpretation is that
the carrier is both amplitude and phase modulated simultaneously. Alternatively, we
can split the modulation into an upper (usb) and a lower sideband (lsb). These can
be obtained by calculating the analytic signal of γq(n) and γ∗q (n), which is similar to
zeroing out the negative frequencies:

γq,usb(n) =
1

2
(γq(n) + jH{γq(n)}) (12)

γq,lsb(n) =
1

2

(
γ∗q (n) + jH{γ∗q (n)}

)
. (13)

The complex modulating signal can be reconstructed as

γq(n) = γq,usb(n) + γ∗q,lsb(n). (14)

The modulating signal can be written as γq(n) = C + b(n), where b(n) is zero mean.
For C 6= 0, this is the case where the sinusoidal carrier is present in the spectrum in the
form of a discrete frequency component. For the special case that C = 0, we have what
is known as suppressed carrier AM, i.e. the carrier will not be present in the spectrum.
In the context of speech modeling this representation may be useful in modeling non-
tonal parts, e.g. unvoiced speech, whereas the non-suppressed AM (C 6= 0) case may
be well-suited for voiced speech. In the particular case that the modulating signal is
both non-negative and real, i.e. γq(n) ∈ R and γq(n) ≥ 0, the demodulation simply
reduces to

γq(n) =
1

Aq
|xq(n) + jH{xq(n)}|, (15)

as the instantaneous envelope of the carrier is equal to 1. This last estimation is lossy
as opposed to the previous demodulations. Notice that in the perfect reconstruction
scenario, the filtering of the signal into subbands and subsequent demodulation can be
implemented efficiently using an FFT.

An alternative to the filterbank-based sum of amplitude modulated sinusoids scheme,
which requires that the sinusoidal components are well spaced in frequency is the use of
periodic algebraic separation [17, 18]. This allows for demodulation of closely spaced
periodic components provided that the periods are known.

4 Amplitude Modulated Sum of Sinusoids
In this section a model for audio compression is introduced. This model addresses one
of the major problems of audio coding regardless of type, namely pre-echo control. The
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perfect reconstruction model of the previous section has an amplitude modulating signal
of each individual sinusoid. Here, we explore the notion of having more sinusoids in
each subband and that modulating signal being identical for all sinusoids in the subband.
This is especially useful in the context of modeling onsets and may even be used in the
one-band case for low bit-rate or single source applications. The model of the qth
subband is:

x̂q(n) =γq(n)

Lq∑

l=1

Aq,l cos(ωq,ln+ φq,l) = γq(n)ŝq(n), (16)

where ŝq(n) is the constant-amplitude part. In the one-band case where xq(n) = x(n)
the models in [6–9] all fall into this category. These, however, do not reflect human
sound perception very well as pre-echos may occur in the individual critical bands (see
e.g. [19]). Neither do they take the presence of multiple temporally overlapping sources
into account. The sum of amplitude modulated sinusoids, however, does take multiple
sources into account.

The basic principle in the estimation of the modulating signal γq(n) is that it can
be separated from the constant-amplitude part of our model x̂q(n) under certain condi-
tions. First we write the instantaneous envelope of equation 16, i.e.

|x̂q(n) + jH{x̂q(n)}| = |γq(n)ŝq(n) + jH{γq(n)ŝq(n)}|. (17)

Since we are concerned here with sinusoidal modeling, we constrain the modulation to
the case of non-suppressed carrier and the physically meaningful non-negative and real
modulating signal. Equation (17) can then be rewritten using Bedrosian’s theorem:

|γq(n)ŝq(n) + jH{γq(n)ŝq(n)}| = γq(n)|ŝq(n) + jH{ŝq(n)}|. (18)

For this to be true, our constant-amplitude model and the amplitude modulation must
not overlap in frequency, i.e. we have that the lowest frequency must be above the
bandwidth,BW , of the modulating signal

BW < min
l
ωq,l. (19)

Using this constraint, we now proceed in the estimation of the amplitude modulating
signal γq(n) by finding the analytic signal of the sinusoidal model

x̂q,c(n) =

Lq∑

l=1

Alγq(n) exp(jφq,l) exp(jωq,ln), (20)

with subscript c denoting the analytic signal. We then find the squared instantaneous
envelope of the model:

|x̂q,c(n)|2 =

Lq∑

l=1

Lq∑

k=1

γ2
q (n)Aq,lAq,k exp(j(φq,k − φq,l)) exp(j(ωq,k − ωq,l)n). (21)
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The squared instantaneous envelope is thus composed of a set of auto-terms (l = k)
which identifies the amplitude modulating signal and a set of interfering cross-terms
(l 6= k). From this it can be seen that the frequencies of these cross-terms in the instan-
taneous envelope is given by the distances between the sinusoidal components. Thus,
the lowest frequency in the squared instantaneous envelope caused by the interaction
of the constant-amplitude sinusoids is given by the minimum distance between two
adjacent sinusoids. A computationally simple approach is to reduce the cross-terms by
constraining the minimum distance between sinusoids and then simply lowpass filtering
the squared instantaneous envelope of the input signal, i.e.

γ2
q (n) = αe2q(n) ∗ hLP (n), (22)

where e2q(n) = x2
q(n) + H{xq(n)}2, α is a positive scaling factor and hLP (n) is the

impulse response of an appropriate lowpass filter with a stopband frequency below half
the minimum distance between two sinusoids, i.e.

2BW < min
l6=k

|ωq,l − ωq,k|. (23)

This estimate allows us to find an amplitude modulating signal without knowing the
parameters of the sinusoidal model a priori. This is especially attractive in the context
of matching pursuit [20]. Note that the constraint in equation (23) is more restrictive
than those of theorem 1. The design of the lowpass filter is subject to conflicting criteria.
On one hand, we want to have sufficient bandwidth for modeling transients well. On
the other, we want to attenuate the cross-terms while having arbitrarily small spacing in
frequency between adjacent sinusoids. Also these criteria have a time-varying nature.
A suitable filter which can easily be altered to fit the requirements is described in [8].
Generally, the consequences of setting the cutoff frequency of the lowpass filter too low
are more severe than setting it too high. Setting the cutoff frequency too high causes
cross-terms to occur in γq(n), which may result in degradation in some cases, whereas
setting the cutoff frequency too low reduces the model’s ability to handle transients.

An alternative approach in finding γq(n) would be to estimate the amplitude modu-
lating signals of the individual sinusoids and then combine these according to frequency
bands or sources.

5 Results and Discussion
The framework in section 3 has been verified in simulations to attain perfect reconstruc-
tion. The choice of model, whether it is some derivative of the sum of amplitude modu-
lated sinusoids or the amplitude modulated sum of sinusoids, should reflect signal char-
acteristics. Types of sinusoidal signals that can be efficiently modeled using a one-band
amplitude modulated sum of sinusoids are single sources that have a quasi-harmonic
structure, i.e. pitched sounds. For example, voiced speech can be modeled well using
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Figure 1: Signal examples: voiced speech. Original (top), modeled without AM (middle) and with AM
(bottom).

such a model. In figure 1 two examples of onsets of voiced speech are shown (sampled
at 8 kHz) with the originals at the top, modeled without AM in the middle, and with at
the bottom. The fundamental frequency was found using a correlation-based algorithm
and the amplitudes and phases were then estimated using weighted least-squares. Seg-
ments of size 20 ms and overlap-add with 50% overlap was used. It can be seen that
the pre-echo artifacts present in the constant-amplitude model are clearly reduced by
the use of the AM scheme. The proposed model and estimation technique was found to
consistently improve performance of the harmonic sinusoidal model in transient speech
segments with pre-echo artifacts clearly being reduced.
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Figure 2: Signal examples: glockenspiel. Original (top), modeled without AM (middle) and with AM
(bottom).

More complex signals composed of multiple temporally overlapping sources, how-
ever, require more sophisticated approaches for handling non-stationarities. The glock-
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enspiel of SQAM [21] is such a signal. At first glance this signal seems well suited
for modeling using a sinusoidal model. The onsets are, however, extremely difficult to
model accurately using a sinusoidal model. This is illustrated in figure 2, again with the
original at the top, modeled using constant amplitude sinusoids in the middle and using
AM at the bottom. The signal on the left is the entire signal and the signal on the right is
a magnification of a transition region between notes. In this case amplitude modulation
is applied per equivalent rectangular bandwidth (ERB) (see [19]) and a simple match-
ing pursuit-like algorithm was used for finding sinusoidal model parameters, i.e. no
harmonic constraints on the frequencies. Again overlap-add using segments of 20 ms
and 50% overlap was employed. In this example the sampling frequency was 44.1 kHz.
It can be seen that the onsets are smeared when employing constant amplitude and that
there is a significant improvement when AM is applied, although some smearing of the
transition still occurs due to the filtering.

6 Conclusion
In this paper we have explored the notion of amplitude modulated sinusoidal models.
First, a general perfect reconstruction framework based on a filterbank was introduced,
and different options with respect to modulation and their physical interpretations were
presented. Here, one sinusoid per subband is used and everything else in the subband
is then modeled as modulation of that sinusoid. This model is generally applicable
and can be used for modeling not only tonal signals but also noise-like signals such
as unvoiced speech. Then a physically meaningful, compact representation for sinu-
soidal audio coding and modeling and a demodulation scheme with low computational
complexity was presented. In this model, each subband is represented using a sum of
sinusoids having one common real, non-negative modulating signal, which is estimated
by lowpass filtering the squared instantaneous envelope. The model and the proposed
estimation technique was found to be suitable for modeling of onsets of pitched sounds
and was verified to generally improve modeling performance of sinusoidal models.
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Abstract
In this paper, we investigate the importance of taking frequency-dependent temporal
phenomena into account in audio coding. We do this in the context of sinusoidal mod-
eling of audio signals by applying amplitude modulation to the sinusoidal components.
Traditionally, audio coders use a fixed time-segmentation for all frequencies despite
that it is well-known that the time-frequency resolution of the human auditory system
is not constant. The well-known window switching is an example of this. We compare
multiband amplitude modulated sinusoidal models to a singleband model using differ-
ent audio excerpts. Based on both comparative listening tests and a psychoacoustical
distortion measure it is concluded that an improvement is generally gained using multi-
band amplitude modulation, although specific single sources are well-modeled using a
singleband model.

1 Introduction
A well-known problem in perceptual audio coding and modeling is what is known as
pre-echo distortion or pre-echos (see e.g. [1]). Pre-echos can be defined as the intro-
duction of a modeling error or quantization error that occurs before a transient signal.
These occur in block-based modeling when there is an onset or attack at the end of a
segment.
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Figure 1: Temporal or nonsimultaneous masking properties. Pre-masking occurs before the onset of the
masker and post-masking occurs afterwards (after [2]).

The importance of pre-echo control in audio coding and modeling can be under-
stood by considering the temporal masking properties of the human auditory system.
In audio coding the original signal serves as a masker of the error-signal. This mask-
ing is very effective when the error-signal is simultaneous with, or directly follows the
masker. However, when the error-signal preceeds the masker, very little masking is ob-
served. This is depicted in Figure 1 showing masking thresholds as a function of time.
Pre-masking can be measured to typically last only about 20 ms, whereas post-masking
can last longer than 100 ms [2]. Trained listeners, however, may exhibit little or no
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pre-masking except for very short signals [3]. This means that any artifacts introduced
before an onset are very poorly masked compared to the situation where a signal is
present. The point that motivates this work is that masking phenomena occur on a crit-
ical band basis. Singleband techniques such as window switching [4] or AM as used
in [5] do not take this into account. What may happen is that the choice of window
length or the estimation of the amplitude modulating signal may be dominated by a sta-
tionary low-frequency component while a transient occurs at high frequencies, whereby
audible artifacts are caused. Or it may happen that a short window is chosen because of
some high-frequency transient while stationary low-frequency parts may suffer because
of the decreased frequency resolution.

In sinusoidal coding of speech [6] and audio, fixed segmentation for all frequencies
has also been the standard solution, although multiresolution sinusoidal modeling was
considered in [7]. Rate-distortion optimal time-segmentation [8] leads to an improved
sinusoidal modeling, but still provides only a partial solution because a) the segmen-
tation is still fixed over frequency and b) the minimum segment size is constrained
because of the computational complexity involved in finding the optimum segmenta-
tion. Also, the use of overlap between segments inevitably smears any modeling error
into neighboring frames.

In [9] amplitude modulated sinusoidal models for audio modeling and coding were
introduced and in this paper we build further on this work. We achieve frequency-
dependent temporal modeling using multiband amplitude modulation, where different
amplitude modulating signals are used at different frequencies. Amplitude modulated
sinusoidal models for audio modeling and coding are attractive for modeling of transient
phenomena because constant-amplitude sinusoidal models converge slowly in terms of
rate-distortion for transient signals thus performing badly for low bit-rates.

The paper is organized as follows. In Section 2 the amplitude modulated sinusoidal
analysis-synthesis system is presented. This includes two parts, namely estimation of
amplitude modulating signals and estimation of the parameters of the sinusoidal carri-
ers. In Section 3 the multiband model is compared to the singleband model by listening
tests as well as a perceptual distortion measure. Finally, conclusions about the work are
presented in Section 4.

2 AM Sinusoidal Analysis-Synthesis
We use an amplitude modulated sinusoidal model, that looks as follows:

x̂(n) =

Q∑

q=1

γq(n)

Lq∑

l=1

Al,q cos(ωl,qn+ φl,q), (1)

where γq(n) is the amplitude modulating signal in the q’th subband and Lq is the num-
ber of sinusoids in that subband. ωl,q, Al,q and φl,q are the frequencies, amplitudes and
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phases of the sinusoids. We distinguish between a singleband model (Q = 1) and a
multiband model (Q > 1).

The task is now to find γq(n) for each subband. We start the estimation, which is
based on [9], by splitting the input signal into subbands using the perfect reconstruction
non-uniform filterbank described in [10]. Then we have for each subband a signal xq(n)
and a model of that signal x̂q(n). The instantaneous envelope of the model can then
easily be shown to be

|x̂q,c(n)|2 =

Lq∑

l=1

Lq∑

k=1

γ2
q (n)Al,qAk,q (2)

× exp(j(φk,q − φl,q)) exp(j(ωk,q − ωl,q)n),

with subscript c denoting the analytic signal (see e.g. [9]). The squared instantaneous
envelope is thus composed of a set of auto-terms (l = k) that identifies the amplitude
modulating signal and a set of interfering cross-terms (l 6= k). From this it can be
seen that the frequencies of these cross-terms in the instantaneous envelope are given
by the distances between the sinusoidal components. Thus, the lowest frequency in the
squared instantaneous envelope caused by the interaction of the sinusoids is given by
the minimum distance between two adjacent sinusoids.

These cross-terms can be reduced by constraining the minimum distance between
sinusoids and then lowpass filtering the squared instantaneous envelope of the input
signal, i.e.

γ2
q (n) = αe2q(n) ∗ hLP (n), (3)

where e2q(n) = x2
q(n) + H{xq(n)}2 with H{·} denoting the Hilbert transform. More-

over, α is a positive scaling factor and hLP (n) is the impulse response of an appropriate
lowpass filter with a stopband frequency below half the minimum distance between two
sinusoids, i.e.

2BW < min
l6=k

|ωl,q − ωl,q|. (4)

For quasi-harmonic (pitched) sounds such as voiced speech, this spacing is simply the
fundamental frequency. For a discussion on design issues regarding this filter see e.g. [5,
9].

Given that the amplitude modulating signal has been estimated for the q’th subband,
we can then find the sinusoidal carriers of the subband (note that for convenience we
now change the notation from indexing by subband to indexing by iteration). These
are found by applying the estimated amplitude modulating signals to an overcomplete
dictionary containing complex sinusoids resulting in a subband dictionary Dq contain-
ing atoms gk,q(n). We then perform matching pursuit [11], where in each iteration the
maximizer of the normalized inner product between the atom and the residual is chosen,
i.e.
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gi,q = arg max
gk,q∈Dq

| < gk,q , ri,q > |2
‖gk,q‖2

2

, (5)

where gk,q = [gk,q(0) . . . gk,q(N − 1)]T and ri,q = [ri,q(0) . . . ri,q(N − 1)]T with
ri,q(n) being the residual of the i’th iteration. Now, writing out the inner product using
the AM model, we get

< gk,q , ri,q >=
N−1∑

n=0

γq(n) exp(−jωkn)ri,q(n). (6)

It can be seen, that by defining r̃i,q(n) = γq(n)ri,q(n), the greedy estimation can be
carried out efficiently using an FFT of r̃i,q(n). In a similar way, we can apply the
window w(n) twice to the input and find the solution using an FFT, whereby the error
is minimized in a weighted least-squares sense, i.e.

min
N−1∑

n=0

w2(n)r2i+1(n)

=min

N−1∑

n=0

(w(n)ckgk,q(n) − w(n)ri,q(n))2, (7)

where ck is the coefficient (phase and amplitude in this case) of the k’th atom. This
causes not only the input but also the model to be weighted. This takes the use of
windowing in both analysis and synthesis into account.

Equation (5) minimizes only the subband residual. When minimizing over the en-
tire signal, we simply pick the maximum of the spectral subband maxima. This leads
to the iterative (i being the iteration index) FFT-based algorithm (the FFT is denoted
FFT {·}) described below, where the frequencies, phases and amplitudes of the sinu-
soidal model are found. We initialize the residuals with r1,q(n) = xq(n) ∀q.

1. Find subband

qi = argmax
q

(
|FFT {γq(n)w2(n)ri,q(n)}|2

∑N−1
n=0 γ

2
qi(n)w2(n)

)

and corresponding frequency

ωi = argmax
ω

|FFT {γqi(n)w2(n)ri,qi (n)}|2.

2. Estimate phase and amplitude by the inner product:

ci =

∑N−1
n=0 rqi ,i(n)w2(n)γqi (n) exp(−jωin)

∑N−1
n=0 γ

2
qi(n)w2(n)

,

which can be found from the subband FFT.
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3. Generate new subband residual:

ri+1,qi(n) = ri,qi (n) − 2γqi(n)|ci| cos(ωin+ ∠ci).

This procedure is continued until some stopping criterion is reached. Although the
estimation procedure is dependent on the amplitude modulating signal γq(n), the al-
gorithm still converges if we restrict γq(n) to be strictly positive. Hereby the subband
dictionaries Dq still form overcomplete bases and the algorithm converges on a sub-
band level [11] and because of the perfect reconstruction filterbank, the entire system
converges.

The above algorithm can be implemented much more efficiently than in the form
above. The FFTs of the individual subbands and their maxima can be computed once
at initialization. Then, in each iteration we only need to update the FFT of the subband
residual and find the spectral maximum of it. The search in step 1 then reduces to
searching among the Q spectral maxima.

3 Experimental Results
The importance of multiband temporal modeling has been investigated using both lis-
tening tests in the form of AB preference tests as well as an objective distortion measure.
We compare the singleband model (Q = 1) to the multiband model (Q > 1).

Settings
Value

Parameter ABBA GLCK SPCH
Sampl. freq. [kHz] 44.1 44.1 8

Filterbank order 200 200 200
Filters 25 12 5

LP Filter order 100 100 100
Sinusoids 40 40 40

Cutoff freq. [Hz] 100 500 25

Table 1: Parameter values for different excerpts.

The excerpts used in the tests are: glockenspiel (GLCK), ABBA (ABBA), and Dan-
ish female speech (SPCH). They are all mono signals and have a length in the range of
5-10 s. These represent very different signal types from single source signals to com-
plex music containing multiple sources.

The settings of the sinusoidal analysis-synthesis system for the different excerpts
are shown in Table 1. In all cases a segment size of 20 ms and overlap-add with a 50%
overlap von Hann window was used. Also, the FFT size was 8192. For the demod-
ulation filter (3), we use an FIR filter designed using the window method (Hamming
window).
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In Table 2 the results of the AB preference tests are listed for the individual ex-
cerpts. 9 experienced listeners were used. It can be seen clearly, that there is a strong
preference for the multiband model in the two cases, where the signals contain several
sources, namely ABBA and glockenspiel, whereas for the case of speech, the prefer-
ence tends toward equal. Significance has been determined by a small-sample case sign
test (binomial distribution) using a 0.05 level of significance.

Results of Listening Tests
Preference

Excerpt Singleband Multiband Significant
ABBA 11% 89% Yes
GLCK 11% 89% Yes
SPCH 56% 44% No

Table 2: Results of AB-preference tests.

Also, the results were verified using an objective measure. As a suitable percep-
tual model that also includes temporal masking phenomena, we used the Dau et al.
model [12]. This model consists of a filterbank that resembles critical band filtering,
followed by an inner-haircell model and adaptation loops which account for the tem-
poral masking that occurs in the auditory system. The resulting internal representation
is low-pass filtered and used for a perceptual distortion prediction by calculating the
mean squared difference between the internal representations of the original and mod-
ified signal. The distortions are listed in Table 3. The Dau et al. model confirmed the
results of the listening tests with the multiband model outperforming the singleband
model in two first cases while the difference for the speech is very small. The overall
distortion is highest for the ABBA excerpt, because it is a complex signal, whereas the
total distortion is lowest for the speech signal, due to its limited bandwidth. That there
is a slightly higher distortion for the multiband model for the case of SPCH can be at-
tributed to the additional processing of the multiband system and the shape of the filters
of the filterbank.

The conclusion is that for particular single sources such as speech, the singleband
model performs very well. This is in line with [5], where also members of brass, wood-

Results using the Dau et al. Model
Distortion

Excerpt Singleband Multiband
ABBA 7270 5431
GLCK 931 644
SPCH 412 426

Table 3: Distortions calculated using the Dau et al. model.
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wind, and string instrument families are mentioned as sources being well modeled by
the singleband model. For more complex signals such as superpositions of multiple
sources, there is a great need for multiband modeling and coding, which is clearly indi-
cated by the high preference for multiband modeling of ABBA.

That the singleband model works well for single sources is an indication that the
model in Eq. (1) can indeed form the basis of compression not only in terms of sub-
bands, but also in terms of sinusoids sharing an amplitude modulating signal, i.e. by a
decomposition into sources.

4 Conclusion
In this paper, we have investigated the need for taking temporal phenomena in audio
modeling and coding into account in a way that is frequency dependent. This has
been done in the context of sinusoidal modeling, where we have applied amplitude
modulation in order to achieve better temporal modeling. We have presented a multi-
band sinusoidal analysis-synthesis system that utilizes amplitude modulation to achieve
frequency dependent temporal resolution. Finally, we have compared this multiband
model to a commonly used singleband model and it has been demonstrated using both
an objective perceptual distortion measure as well as listening tests, that significant im-
provements are achieved by this for complex signals containing multiple sources such
as general audio, and that the singleband model performs very well for particular single
sources.
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Abstract
In this paper, methods for improved parametric coding of transients are presented. We
propose a signal model for coding of transients consisting of a sum of sinusoids each
being amplitude-modulated by a different gamma envelope. These envelopes are char-
acterized by an onset time, an attack and a decay parameter. An efficient method for
estimating these parameters is presented. Further, methods are proposed that combine
this transient model with a constant-amplitude sinusoidal model in order to achieve
efficient coding of both stationary and transient signal parts. By rate-distortion opti-
mization using a perceptual distortion measure we combine variable rate bit allocation
and segmentation in an optimal way. Formal as well as informal listening tests show
that significant improvements can be achieved with the proposed model as compared
to a state-of-the-art sinusoidal coder by the combination of optimal segmentation and
amplitude modulated sinusoidal audio coding.

1 Introduction
In the past couple of decades, sinusoidal models for digital processing of speech and
audio have received much attention for a wide variety of applications where sinusoidal
speech coding and modeling [1–4] was among the first and perhaps the most promi-
nent. Also for analysis and synthesis of music [5, 6] the sinusoidal model has been of
interest. In recent years, the growth of the Internet and wireless communication has
spurred renewed interest in sinusoidal models, this time for coding of audio [7–15] at
low bit-rates. In perceptual audio coding, compression is achieved by exploiting sta-
tistical redundancies as well as perceptual irrelevancies of the source (see e.g. [16]).
In parametric audio coding, a compact representation of the source signal is achieved
using parametric models and the statistical redundancies and irrelevancies of the model
parameters are exploited for efficient coding.

A major challenge in audio coding in general is efficient coding of non-stationary
segments (see e.g. [16]). Signal models and transform bases are typically chosen such
that a high coding efficiency is achieved for stationary signal parts, and, as a conse-
quence, coding of non-stationary parts becomes highly inefficient. Sinusoidal coding
using constant-amplitude (CA) sinusoids is an example of this difficulty. The inefficient
coding of transients leads to a number of problems. Firstly, errors introduced before on-
sets are very poorly masked compared to the situation where a simultaneous masker is
present [17]. These types of errors are known as pre-echos. Secondly, bad modeling
of transients leads to very dull sounding attacks and a perceived lack of bandwidth of
the decoded signal. The typical solution to these problems are adaptive segmentation
using window switching [18] and window shape adaptation or rate-distortion (R-D) op-
timal segmentation [14, 19, 20]. Other methods that aim at solving this problem include
wavelet-packets [21], temporal noise shaping (TNS) [22], gain modification [23, 24],
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transient location modification [25], switching from a parametric signal model to a
wavelet or transform representation [7, 9], multi-resolution sinusoidal modeling [26]
and coding of transients using sinusoidal modeling in the transform domain [27]. In
parametric audio modeling and coding, transients can be handled by adapting the sig-
nal model to better fit the input signal. A particularly interesting class of such adapted
models are the amplitude modulated (AM) sinusoidal models1 [28]. In these models,
the signal is decomposed into a sum of sinusoidal components having a time-varying
envelope. The different realizations of damped sinusoids that have been applied to au-
dio modeling in [29–33] are examples of this. In audio coding AM has been applied
in [8, 13]. Like [5] these use a singlebanded model of the modulating signal mean-
ing that the envelope is the same for all components. In [34] it was demonstrated that
significant improvements are achieved by allowing different sinusoidal components to
have different amplitude modulating signals. Since this study focused only on model-
ing of audio signals, the question remains whether frequency-dependent AM methods
are also efficient in terms of bit-rate, i.e., whether they achieve a lower distortion, both
subjectively and objectively, compared to a conventional sinusoidal coder at the same
rate.

In the present paper we seek to answer that question along with some other unan-
swered questions regarding parametric coding of transients. We present a coder based
on a particular model of the amplitude modulating signal known as gamma envelopes.
Figure 1 shows the waveform of a sinusoid modulated by a windowed gamma envelope.
The gamma envelopes are characterized by an onset time, an attack and a decay param-
eter. This model differs from existing models used for parametric modeling and coding
of audio in that each sinusoid can have a different envelope with an onset at an arbitrary
position within a segment, and in that it is characterized by an attack parameter. In
addition to the new signal model, the proposed coder incorporates rate-distortion opti-
mal bit allocation and segmentation. Further, we consider different ways of achieving
efficient coding of both stationary and transient signal parts. Finally, we quantify, by
subjective listening tests, the performance of the different methods for different types
of signals.

The main part of this paper is organized as follows: in Section 2 the proposed
signal model and the perceptual distortion measure which is instrumental in this work
are presented. The rate-distortion optimization used for allocation and segmentation
is presented in Section 3, and Sections 4 and 5 deal with the estimation of sinusoidal
parameters. Implementation details, the experimental setup for perceptual tests and
their results are presented in Sections 6 and 7, respectively. In Section 8 we discuss the
relation to existing work, and, finally, in Section 9 we conclude on our work.

1In this text, AM means either amplitude modulation or amplitude modulated depending on the context.
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Figure 1: Illustration of a sinusoid modulated by a windowed gamma envelope. The gamma envelopes are
parameterized by an onset, an attack parameter and a decay parameter.

2 Fundamentals
The presented coder can be described as comprising the following steps: in the encoder,
the input signal is split into a number of overlapping segments and a window is applied
to each segment. The model parameters are then estimated and subsequently quantized,
entropy coded and finally put into the bit-stream. In the decoder, the bit-stream is
mapped back to the quantized parameters, and the segment is synthesized using overlap-
add with an appropriate window.

In this paper, we propose a coder based on the following amplitude modulated si-
nusoidal signal model for time index n = 0, . . . , N − 1:

x̂(n) =

L∑

l=1

γl(n)Al cos(ωln+ φl), (1)

where Al, ωl, and φl are the amplitude, frequency and phase of the l’th sinusoids,
respectively. The number of components is denoted L and γl(n) is the modulating
signal or envelope when γl(n) ≥ 0 ∀n. Here we use a particular model of the envelopes
which we shall henceforth refer to as gamma envelopes. This model is derived from the
integrand of the gamma function, which is commonly used to characterize the gamma
distribution in statistics. The gamma envelopes are given as

γl(n) = u(n− nl) (n− nl)
αl e−βl(n−nl). (2)

Each envelope is characterized by an onset time nl ∈ Z, an attack parameter αl ∈ N,
and a decay parameter βl ∈ R+. Moreover, u(n) is the unit step sequence. The en-
velopes composed from all possible combinations of these parameters will henceforth
be referred to as the envelope dictionary. Inserting (2) into (1), we get the so-called
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gamma-tones commonly used as stimuli in psychoacoustical experiments and for mod-
eling of the auditory filters [35]. Here, we rather use it as a signal model that, as we
shall see, has been found to perform well for the problem at hand. The distinction be-
tween the model parameters αl and βl in (2) is only figurative since changing βl for a
fixed αl will affect the attack and αl will likewise affect the decay. We note that for
αl = 0, βl = 0 and nl = 0, the lth sinusoid reduces to a constant-amplitude (CA)
sinusoid, i.e. γl(n) = 1. The situation where all components have constant amplitude
will be termed the CA model. For αl = 0 and βl 6= 0 for all l, the model reduces to the
so-called delayed damped sinusoids of [32], and with αl = 0 and nl = 0 it becomes
equivalent to the damped sinusoids of [30, 33]. Compared to the different variations
of damped sinusoids of [29–32], this model has the additional flexibility of the attack
parameter. It is well-known that different instruments do have different attacks, and
studies show that the attacks are in fact important features in the recognition of musical
instruments [36]. This can also be witnessed from the many transient signals on the
SQAM disc [37].

In finding the model parameters and in the R-D optimization, it is advantageous to
use a perceptual distortion measure since we seek to minimize the perceived distortion.
In choosing a distortion measure we face conflicting demands. On one hand we wish to
use a distortion measure that takes as much of the human auditory system into account
as possible. On the other hand we wish to have a distortion measure that is both of rea-
sonably low computational complexity and defines a norm such that it may be subject
to optimization. Consequently, we have chosen the spectral distortion measure of [38],
which is defined as

D =

∫ π

−π

A(ω)|E(ω)|2dω, (3)

where A(ω) is a real, positive perceptual weighting function, and E(ω) denotes the
discrete-time Fourier transform of the windowed error, i.e.,

E(ω) =
N−1∑

n=0

w(n)e(n)e−jωn, (4)

withw(n) being the analysis window, e(n) = x(n)−x̂(n) the modeling error, and x(n)
the observed signal. We note in passing that this and all other Fourier transforms will
in practice be calculated for discrete values of ω. In order to shape the error spectrum
according to the masking threshold, the weighting function A(ω) is set to the recipro-
cal of the masking threshold. Here, we derive the masking threshold from [38]. This
distortion measure improves on other models in that it takes the spectral integration in
the human auditory system into account. Although the measure is strictly only valid
for stationary signals, it does not ignore temporal aspects completely as it is based on
waveform matching. In order to achieve a low distortion, the phase and temporal enve-
lope of the coded signal must match that of the original. As a consequence, temporal



3. R-D OPTIMAL ALLOCATION AND SEGMENTATION C7

errors, such as pre-echos, will not go unpunished by the measure. The spectral dis-
tortion measure has been found to comprise a reasonable tradeoff between complexity
and correlation with perceived quality for coding purposes and as we shall see, good
results can be achieved using it. Henceforth, when we refer to distortions, we mean the
perceptual distortion defined in (3).

The discrete-time Fourier transform of γl(n) denoted Γl(ω) can be shown to be

Γl(ω) =

N−1−nl∑

n=0

nαle−jωnl
(
e−jω−βl

)n
(5)

= jαl
∂αl

∂ωαl

e−jωnl − e−βl(N−nl)e−jωN

1 − e−βle−jω
. (6)

As indicated by (4), an analysis window is applied to the gamma envelopes. In the
decoder, a window is also used in the synthesis, which is performed using overlap-add
with a fixed overlap. Both the encoder and the decoder use tapered von Hann windows
of the same length. With M denoting the overlap in samples and N being the (even)
segment length, the windows are defined for n = 0, . . . , N − 1 as

w(n) =





v(n), 0 ≤ n < M
1, M ≤ n < N −M
v(n−N + 2M), N −M ≤ n < N

(7)

with the even length von Hann window being defined as

v(n) =
1

2
− 1

2
cos

(
π(n+ 0.5)

M

)
. (8)

Let W (ω) denote the discrete-time Fourier transform of the window w(n). Then the
discrete-time Fourier transform of the windowed envelope can be written as the circular
convolution

Zl(ω) =
1

2π

∫ π

−π

Γl(ω − ξ)W (ξ)dξ. (9)

Hence, the window, which has low-pass characteristics, smoothes the spectrum. As the
windowed gamma envelopes have no discontinuities at segment boundaries the spec-
trum of the windowed gamma envelopes will generally be more well-behaved than
when no window is applied. This is important since the distortion measure will punish
spectral distortion due to not only the mainlobe but also the sidelobes. In Appendix A, a
closed-form expression of the discrete-time Fourier transform of the windowed gamma
envelopes is derived.

3 R-D Optimal Allocation and Segmentation
Since audio signals may exhibit varying degrees of stationarity, it is often advantageous
to allow for a flexible segmentation and allow the bit-rate to vary over time. In addition,
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it is observed that the proposed AM signal model is only efficient in terms of rate-
distortion for transient segments, while the CA model is an efficient representation of
tonal stationary segments. In order to combine the two models in an optimal way as well
as doing optimal segmentation of the input signal, we use rate-distortion optimization.
Further, the rate-distortion optimization also results in a rate-scalable coder, which is
advantageous in dealing with critical signal parts. For completeness we now briefly
review the basic definitions, assumptions and results for solving the problem of optimal
segmentation and allocation based on [19, 39]. First, let us start out by introducing some
definitions. We define a segment σs as having a length of a positive integer multiple
m ∈ Z+ of a minimum segment length κ, i.e. `(σs) = κm, and a segmentation as
σ = [ σ1 · · · σS ] consisting of S disjoint, contiguous segments that satisfy

S∑

s=1

`(σs) = κM, (10)

where κM is the total length of the signal to be encoded. Each of these segments, say
segment σs, can then be encoded using a set of coding templates Ts (different models,
model orders, number of bits, etc.). Next, we define R(σs, τs) and D(σs, τs) as the
non-negative cost in bits and distortion associated with coding template τs ∈ Ts for
segment σs. Assuming that the distortions and cost in bits associated with a particular
segmentation σ and coding templates τ = [ τ1 · · · τS ] are additive over the segments,
we can write the total distortion and total number of bits as

D(σ, τ ) =
S∑

s=1

D(σs, τs) R(σ, τ ) =
S∑

s=1

R(σs, τs), (11)

respectively. The problem of distributing a certain number of bits over a number of
quantizers can be cast into the problem of rate-distortion optimization under rate con-
straint. This can be stated as the following constrained optimization problem:

minimize D(σ, τ )

s. t. R(σ, τ ) ≤ R?,
(12)

with R? being the bit budget, i.e. the total number of bits to be distributed. Next,
introducing the Lagrange multiplier λ ≥ 0, the constrained optimization problem in
(12) can be written as the unconstrained minimization problem [39]

J(λ) = min
σ

min
τ

S∑

s=1

D(σs, τs) + λ(R(σs, τs) −R?). (13)

We now have an outer minimization over the segmentation, and an inner minimiza-
tion over coding templates given the segmentation. In (11) we assumed that D(·) and
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R(·) are additive over segments. By also assuming that they are independent over seg-
ments, the inner minimization in (13) can be simplified significantly. Specifically, the
optimization problem reduces to the following, where the coding templates can be op-
timized independently for a segmentation and a particular λ [19]:

J(λ) = min
σ

S∑

s=1

min
τ∈Ts

[D(σs, τ) + λR(σs, τ)] − λR?. (14)

This leads to the following important result: as the rates and distortions are additive
over segments, the outer minimization can be solved using dynamic programming [19].
The optimal λ that leads to the target rate R?, denoted λ?, can be found by maximizing
the concave Lagrange dual function [40], i.e.,

λ? = argmax
λ

J(λ) (15)

This can be done by sweeping over λ until R(σ, τ ) is within some range of the bit
budget [19]. It should be noted that for a discrete problem such as ours, we cannot
guarantee that strong duality holds for the optimization problem, and, as a consequence,
the found solution may be suboptimal, but for a dense set of coding templates the gap
will be small (see [40]). For a fixed segmentation, i.e. given σ, the outer minimization
disappears, and we only have to minimize over the coding templates. This was the
approach used in [41].

4 Parameter Estimation
The distortion measure (3) defines a norm and is in fact induced by an inner product
(see [42]). The parameters for each sinusoid can then be found using a matching pursuit
algorithm [43]. This would guarantee convergence in the distortion as a function of
the number of components. The psychoacoustic matching pursuit (PMP) [42] is an
algorithm that does this, i.e. it performs matching pursuit using the norm (3). The
inner products can be found using FFTs also for the AM case. It would, however,
be very expensive with respect to computational complexity. Since the R-D optimal
segmentation requires that at every segment boundary, all combinations of segment
lengths and coding templates are evaluated, it is critical that the estimation procedure is
fast. In that spirit, we here employ a simpler procedure than PMP. We start out by noting
the number of different combinations of parameters will be dominated by the number of
different frequencies and onset points. Thus, we break the estimation process into three
successive steps: frequency estimation, onset estimation, and, finally, estimation of the
envelope parameters and the corresponding phase and amplitude. A block diagram of
the estimation procedure is shown in Figure 2.
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Figure 2: The iterative AM parameter estimation procedure. Sinusoids are found one at the time and sub-
tracted from the input.

For the frequency estimation we use a fast method somewhat reminiscent of the
weighted matching pursuit [44]. The algorithm operates on the residual, which at iter-
ation i+ 1 is formed as

yi+1(n) = yi(n) − w(n)γi(n)Aie
j(ωin+φi). (16)

The residual is initialized as the discrete-time analytic signal

y1(n) = w(n)x(n) + jw(n)H{x(n)} , (17)

where H{·} denotes the Hilbert transform. This, including windowing, is the prepro-
cessing step in Figure 2. In practice, the Hilbert transform is found using the FFT
method. By operating on the analytic signal, we ignore the spectral contents of x(n)
for negative frequencies. This is done in order to simplify the estimation procedure.
Convergence in the modeling of the analytic signal also ensures convergence in the real
signal since

<{w(n)x(n) + jw(n)H{x(n)}} = w(n)x(n), (18)

however, for a non-zero error, the analytic signal modeling will introduce some error
due to the correlation between negative and positive sides of the spectrum.
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Let Pi(ω) = Y ∗
i (ω)Yi(ω) be the squared magnitude of the discrete-time Fourier

transform of the residual at iteration i , i.e.,

Yi(ω) =

N−1∑

n=0

yi(n)e−jωn, (19)

which may be updated efficiently in the frequency domain. Then the frequency is esti-
mated as

ωi = arg max
ω

A(ω)Pi(ω)

s. t.
∂Pi(ω)

∂ω
= 0 and

∂2Pi(ω)

∂ω2
< 0.

(20)

This estimation criterion can be seen as an asymptotic PMP criterion with N → ∞ for
the CA case. The constraints ensure that the frequency will be a peak in the spectrum.
This is a reasonable restriction also for the AM case as the modulating signals all have
low-pass characteristics. We cannot, however, guarantee that the error converges in a
convex way.

A coarse estimate of the integer onset ni is found in order to limit the search space
using the following simple method: given a model where a sinusoidal component of
frequency ωi is modulated by a unit step sequence u(n− ζ), the modeling error can be
written as

yi(n) − w(n)u(n− ζ)Aie
j(ωin+φi). (21)

This error is minimized in a least-squares sense by maximizing the inner product (with
proper normalization) between the modulated sinusoid and the residual:

Ψ(ζ) =
1

∑N−1
n=ζ w

2(n)

∣∣∣∣∣∣

N−1∑

n=ζ

yi(n)w(n)e−jωin

∣∣∣∣∣∣

2

. (22)

We note that the product yi(n)w(n)e−jωin for n = 0, . . . , N − 1 only has to be com-
puted once for each sinusoid. We then find the onset as the maximizer of (22), i.e.,

ni = arg max
ζ

Ψ(ζ). (23)

Given the frequency and the coarse onset, the combination of envelope parameters,
including a final onset estimate, is found as the minimizer of the distortion measure (3).
This corresponds to performing a PMP on the subset of the dictionary. We assume that
all the dictionary elements have been scaled for a particular segment such that they all
have unit perceptual norm, i.e.,

∫ π

−π

A(ω)Z∗
k (ω − ωi)Zk(ω − ωi)dω = 1 ∀k, (24)
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with Zk being the discrete-time Fourier transform of the windowed envelope k in the
dictionary, i.e. (see Appendix A)

Zk(ω) =
N−1∑

n=0

w(n)γk(n)e−jωn. (25)

The envelope, i.e. the combination of αi, βi and ni, is then found in an analysis-by-
synthesis manner as the minimizer of the perceptual distortion or, equivalently, as the
following maximization of the inner product:

Zi(ω) = argmax
Zk(ω)

∣∣∣∣
∫ π

−π

A(ω)Z∗
k (ω − ωi)Yi(ω)dω

∣∣∣∣
2

. (26)

From this inner product, the phase and amplitude of the i’th sinusoid can also be found
as the modulus and the argument, i.e.

Aie
jφi =

∫ π

−π

A(ω)Z∗
i (ω − ωi)Yi(ω)dω. (27)

In practice the spectra are discrete and the integration is performed as a summation over
point-wise multiplications. As most of the spectral energy ofZi(ω−ωi) is concentrated
in a small region aroundωi, the integration range can also be reduced without much loss
in accuracy but with considerable reduction of computational complexity.

For the segment lengths used here, the analytic signal model (considering only the
positive parts of the spectrum) has been found to perform satisfactorily. We note that it
is also possible to account to some extent for the interaction between different compo-
nents, including the positive and negative sides of the spectrum, in a number of different
ways. The different well-known optimizations of matching pursuit (see e.g. [45]) can
be applied at the cost of additional complexity since (3) defines a norm.

5 Rate-Regularized Estimation
In section 4, the parameter set of each envelope, denoted Ωi = { αi βi ni }, was found
in iteration i as the minimizer of the distortion

Ω̂i = argmin
Ωi

D(Ωi), (28)

or equivalently as the maximization in (26). Since sinusoids having constant amplitude
do not require the envelope parameters to be transmitted, disregarding the rate in the es-
timation results in a parameter set which is suboptimal in a rate-distortion sense. In [41]
every segment was analyzed using a set of constant-amplitude sinusoids and a set of am-
plitude modulated sinusoids and by rate-distortion optimization the best representation
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was chosen for each segment. This was done in order to find an efficient representation
in terms of rate. Suppose we have an estimate, or a guess, of λ? denoted ν, the need
for multiple analyses can be eliminated by instead minimizing in each iteration of the
estimation

Ω̂i = argmin
Ωi

[D(Ωi) + νR(Ωi)] , (29)

where R(Ωi) denotes the rate associated with the parameters Ωi. The rate-distortion
optimization is still performed outside the estimation such that the rate-constraint is
met. The rate-regularized estimation procedure results in coding templates that are op-
timized for the target bit-rate. As an example, consider the choice in iteration i between
an amplitude modulated sinusoid and a constant-amplitude sinusoid. Using the estima-
tion criterion in (28), the amplitude modulated sinusoid may be chosen, while using
(29) may result in the constant-amplitude sinusoid being chosen because the amplitude
modulated sinusoid is more expensive in terms of rate. The estimation criterion (29),
which we from now on shall refer to as the rate-regularized estimation or just regular-
ized estimation, corresponds to optimizing the coding templates for the target bit-rate.
The regularization constant ν does not, however, play the role of the Lagrange multi-
plier in constrained optimization since we do not solve for it. By choosing ν = 0, the
estimation criterion will reduce to (28). Using a large ν will result in an estimation
that will tend to choose constant-amplitude over amplitude-modulated sinusoids, while
for a small ν, the opposite will occur. In the extremes, this will result in a coder con-
taining only constant-amplitude or amplitude modulated sinusoids. It must be stressed
that even if ν = λ?, i.e. if we guessed the optimal ν, the estimation is not optimal as
the individual iterations are not independent. It is of course possible to iterate over ν,
but this would be costly in terms of complexity. In most practical situations, the actual
choice of ν has been found not to be very critical, i.e., it can simply set to a constant
value.

6 Implementation Details

6.1 Sinusoidal Parameter Quantization and Rate Estimates
The phases of the sinusoidal components are quantized uniformly using 5 bits, while
amplitudes and frequencies are quantized in the logarithmic domain using the follow-
ing quantizers.With θ denoting the parameter to be quantized and b·c the truncation
operation, the quantized parameter θ̂ is calculated as

θ̂ = exp

(⌊
log(θ + ε)

log(1 + ∆)
+ 0.5

⌋
log(1 + ∆)

)
, (30)

with a small positive constant ε being added for numerical reasons. With a step-size ∆
of 0.161 for the amplitudes and 0.003 for the frequencies, the quantizers were found



C14 PAPER C

to produce transparent results compared to the original (non-quantized) parameters,
meaning that informal listening tests showed no degradation in the perceived quality
due to the quantization. These quantizers are motivated by studies that show that for
amplitude and frequency the just noticeable differences are nearly constant on a loga-
rithmic scale [46]. Estimated entropies of the quantized parameter sets were used for
the rates in the R-D optimization and as a measure of rate in the experiments to follow.
The entropies of the quantized sinusoidal parameters were also found not to be affected
much by the AM. For the amplitude, phase and frequency the entropy was estimated
as approximately 20 bits/component. Assuming differential encoding [47], this can
be reduced to 16 bits/component. Since the perceptual distortion measure (3) may be
overly sensitive to frequency quantization, we use the original parameters in determin-
ing the distortions. For the same reason the original parameters are used in generating
the residual in the estimation (16).

6.2 Coding Templates and Segment Sizes
In the experiments to follow, a number of different coder configurations were consid-
ered. These are listed in order of rising complexity in Table 1. The table shows what
types of coding templates were used, how they were found and whether R-D optimal
segmentation (SEG) was used. The coding templates are defined as Ts = {χ0, . . . , χL},
where χi means i sinusoids, which may or may not be modulated, depending on the
type of coder. For example, the AM/CA coder uses fixed segmentation and contains
coding templates found by analyzing a particular segment using a set of AM sinusoids
and a set of CA sinusoids. Note that the AM coding templates can contain constant-
amplitude components since these are included as a special case of the model (2), while
the CA coding templates contain only CA components. In order to efficiently code CA
components in the AM coding templates, a one bit AM switch is used per component.
This may be more efficiently encoded using run-length coding. The CA+SEG coder is
comparable in quality to that of [48], which uses the PMP and R-D optimal segmenta-
tion and uses identical quantizers. The segmentation algorithm described in Section 3
requires that the distortions are additive over segments. For this to be true, the segments
have to be disjoint. However, in order to avoid discontinuities at segment boundaries,
some amount of overlap must be introduced between adjacent segments. That the errors
introduced in the overlapping regions may have non-zero cross-terms is then simply ig-
nored. Since the distortions also have to be independent over segments, the amount of
overlap between segments cannot depend on the segment length. Therefore a natural
choice for the amount of overlap is half the size of the minimum segment length. It
is important that the overlap is not too small since this may cause undesirable artifacts
due to quantization and estimation errors. Consequently, a minimum segment length
of 10 ms and an overlap of 5 ms is chosen, meaning that all segment sizes are integer
multiples of 10 ms and may start on a 5 ms time-grid. Further, for very long segments,
the spectral weighting function becomes increasingly inaccurate as the maskers cannot
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Coder Description
CA The CA coder uses coding templates consisting of

constant-amplitude sinusoids only and a fixed seg-
mentation. This is the simplest possible coder.

AM The AM coder uses amplitude modulated coding
templates and a fixed segmentation. This coder
uses the rate-regularized estimation procedure using
a regularization constant of 100.

AM/CA A combination of the CA and AM coder operating
on a fixed segmentation. It switches between the two
on a segment-to-segment basis using R-D optimiza-
tion. It does not use the rate-regularized estimation
procedure, i.e. a regularization constant of 0 is used.

CA+SEG As the CA coder but with R-D optimal segmenta-
tion.

AM+SEG The same as the AM coder but with R-D optimal
segmentation.

AM/CA+SEG This is the AM/CA coder combined with R-D opti-
mal segmentation.

Table 1: Coder configuration for different test cases denoted by coder acronym.

be assumed to be stationary. Therefore a maximum length of 40 ms has been used. For
the coders that use a fixed segmentation, a von Hann window of 30 ms with 15 ms over-
lap was used. In the experiments to follow, we ignore the side information associated
with the segmentation, as this can generally be considered small compared to the total
rate. Moreover, the critical comparisons are between coders that use the same type of
segmentation and thus have the same rate for the side information. The excerpts used
in the tests to follow are fairly short, and the rate-distortion optimization has therefore
been carried out over the entire length of the signals.

6.3 Gamma Envelope Dictionary
It has been found that using the perceptual distortion measure (3) in selecting the en-
velope parameters made the parameter estimation more robust toward introducing ar-
tifacts than using a squared error measure. This can be attributed to the fact that the
spectral distortion measure takes into account that the wide mainlobe and sidelobes of
modulated sinusoids may introduce errors in parts of the spectrum where no masker is
present. However, it was also found necessary to limit the steepness of the attack in
order to prevent artifacts from being introduced. Namely, we found that for small αl,
the coder was prone to introduce roughness and click artifacts due to the discontinu-
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Number Name Type Length
1 Castanets and Guitar Mixed 6 s
2 Claves Solo 7 s
3 Glockenspiel Solo 8 s
4 Grand Piano Solo 11 s
5 ABBA Mixed 10 s
7 Bass Guitar Solo 12 s
8 English Female Speech Speech 6 s
9 Castanets Solo 7 s

10 Harpsichord Solo 9 s
11 Tracy Chapman Mixed 13 s
12 Triangle Solo 9 s
13 Xylophone Solo 8 s

Table 2: List of excerpts used in the tests.

ities introduced by the unit step sequence. We again note that for αl = 0, the model
reduces to that of [32]. Hence, the envelope dictionary was designed empirically from
the results of informal listening tests. With a more refined distortion measure, the enve-
lope dictionary could be designed using standard vector quantization techniques. In the
following tests, an envelope dictionary for a sampling frequency of 48 kHz composed
from αl ∈ {2, 3, 4, 5}, βl ∈ {0.003, 0.005, 0.01, 0.02} and an onset nl step-size of
approximately 0.5 ms was used. As a consequence of this the envelope dictionary size
varies with the segment lengths. Since the frequency and envelopes of transients may
vary much from signal to signal, no entropy coding of the envelope parameters was as-
sumed in the rate estimates, i.e. the upper bound is used. These are 9, 10, 10 and 11 bits
per envelope for 10, 20, 30 and 40 ms segments, respectively. Preliminary experimental
results also suggest that differential coding of onset times may lead to a reduction of
the average bits per component. The spectra of the windowed gamma envelopes were
stored in a lookup table in order to perform fast estimation (equations (26) and (27))
using the spectral distortion measure (3).

7 Experimental Results

7.1 Signal Examples
As an example of a coded signal, the xylophone coded at 30 kbps is shown in Figures
3 and 4. It can be seen that the CA coder introduces a pre-echo and that the transient
is smeared and has lost its sharpness. In the CA+SEG coder, the pre-echo is much
reduced, but the transient is still not as sharp as the original. The AM/CA+SEG coder
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Figure 3: Signal example, xylophone, original (top) and coded at 30 kbps using the CA coder (bottom).
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Figure 4: Signal example, xylophone, coded at 30 kbps using the CA+SEG coder (top) and using the
AM/CA+SEG coder (bottom).

sharpens the attack further and reduces the pre-echo.
In Figure 5 the rate-distortion curves2 for a representative transient sinusoidal sig-

nal, glockenspiel, are shown for the CA coder, the AM/CA coder and the AM coder.
Similarly, in Figure 6, the same is shown for the CA+SEG coder, the AM/CA+SEG
coder and the AM+SEG coder. The signal has a duration of approximately 10 s and
R-D optimization was performed on the entire signal. For the fixed segmentation, it
can be seen that there is a clear improvement for the AM and AM/CA coders in terms
of a reduction of the distortion compared to the CA coder at the same rate. Also, the
proposed coder saturates at lower distortions than the CA coder for glockenspiel. It can
also be seen from Figure 6, that when R-D optimal segmentation is employed, the rate

2In information theory the relation D(R) is traditionally referred to as the distortion-rate curve. We refer
to this relationship using the aesthetically more pleasing term rate-distortion curve.
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of convergence is higher for all coders. An interesting observation is also that the rate-
regularized coder, the AM coder, performs similarly to the AM/CA coder. This means
that the dual analyses of the AM/CA coder can be avoided with very little loss of perfor-
mance. From these figures, it seems that for this particular excerpts, the glockenspiel,
very little is achieved by combining AM and SEG. It looks as if similar performance
can be achieved with either AM or SEG, with the AM coder being less complex than
the CA+SEG coder. For other signals such as the castanets, though, the R-D curves
show that improvements can be gained by the combination of AM and R-D optimal
segmentation.

In Figure 7 the R-D optimal segmentation boundaries are shown for the AM coder
and the AM/CA coder for 30 kbps for the excerpt Castanets. It can be seen that a higher
coding efficiency is achieved as longer segments are chosen around the transients when
AM coding templates are included. It was also found that when R-D optimal segmenta-
tion was used, there was still an advantage of using the onsets, i.e. improvements were
still gained by allowing nl 6= 0 in (2). Constraining nl = 0 ∀l, i.e. reducing the model
to that of [30, 33], led to shorter segments and a loss in perceived quality. The ability
of the model to position onsets of the individual sinusoids at arbitrary positions within
each segment has proven to be an important one. The effect of the rate-regularized
estimation procedure is illustrated in Figure 8, where the rate-distortion curves of the
AM coder for different regularization constants are shown for 2 s of claves. It can be
seen that in the region 20-40 kbps, approximately 5 kbps can be saved compared to no
regularization. Depending on the signal at hand, this result may vary.
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Figure 5: The rate-distortion curves of the CA coder (dash-dotted), the AM/CA coder (dashed) and the AM
coder (solid) using a fixed segmentation for the glockenspiel.
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Figure 6: The rate-distortion curves of the CA+SEG coder (dash-dotted), the AM/CA+SEG coder (dashed)
and the AM+SEG coder (solid) using R-D optimal segmentation for the glockenspiel.

7.2 Test Material
In order to evaluate the proposed method for parametric coding of transients, we con-
ducted a formal listening test. In addition, we report our experience from informal
listening tests to give the reader some indications as to the nature of the improvements
that were made. In the informal and formal listening tests, the excerpts shown in Table
2 were used. These represent a wide variety of different types of signals, many of which
are known to be critical excerpts in perceptual audio coding [37]. All the signals were
monophonic and were 16 bit signals sampled at 48 kHz and they have a length of 6-12 s.
Many more signals were used in the development, but these are the ones that have been
tested extensively. In ITU-R BS.1534-1 [49] it is recommended to use excerpts that are
known to be critical in testing of audio coding algorithms. Problematic transients by
no means occur in all excerpts. Consequently, these tests are concerned mainly with
excerpts that are known to be critical yet different of type. For example, the glocken-
spiel excerpt is very tonal and stationary for the most parts but has very steep attacks,
while the castanet excerpt has very stochastic and strongly modulated characteristics.
The excerpts 5 and 11 are pop music containing mixtures of multiple instruments and
vocal.

7.3 Informal Listening Tests
Informal listening tests revealed that pre-echos are clearly reduced and that the tran-
sients are better modeled using the proposed model than with constant-amplitude si-
nusoids. For many signals, though, the improvements are fairly subtle since they are
already handled well using constant-amplitude sinusoids. Often, the improvements are
perceived as an increase of bandwidth of the coded signal. For critical excerpts, such
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as castanets the improvements are clearly audible. The types of signals that benefit
from the AM coder are signals that exhibit fast onsets, impulse-like signals, transitions
between different stationary parts of signals, and percussive instruments. Any mixture
of these types of signals with stationary ones may also benefit from it. It was also
found that the AM coder improves the perceived quality of sinusoidally coded speech.
Namely, the speech was found to suffer less from the tonal artifact often encountered
in sinusoidal speech coding. Experiments showed that the AM coder proved R-D opti-
mal for plosives, in transitions in pitch and in transitions between voiced and unvoiced
sounds. For speech, it may also be beneficial to incorporate a model for frequency mod-
ulation [50]. Informal listening tests also revealed that the perceptual distortion measure
(3) does not fully reflect the perceived improvement caused by the AM. For example,
the relative improvement in terms of rate-distortion between the CA coder and the AM
coder appears small for the castanets, while the perceived difference is large. This may
be explained by the fact that the model [38] was derived for predicting the masking of
sinusoidal component, and that the castanets are not very sinusoidal by nature unlike
signals like the glockenspiel, claves and xylophone. The perceptual distortion measure
(3) does, though, form a robust measure for estimation of model parameters and for the
R-D optimization. When the R-D optimal segmentation is employed, the effects of the
AM coder are less audible compared to the CA coder for excerpts where the signals
exhibit fast onsets. Examples of this are glockenspiel and claves while for castanets,
the combination of the AM coder and R-D optimal segmentation results in significant
improvements. The use of variable bit-rate and R-D optimization has also been found to
improve performance for transients for all the coders, since more bits can be allocated
for critical signal parts, such as transients, this way.
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Figure 7: Example of R-D optimal segmentation boundaries (indicated by vertical lines) for castanets for the
AM/CA+SEG coder (top) and the CA+SEG coder (bottom) operating at 30 kbps. Note that both the signals
shown are the original.
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Figure 8: The rate-distortion curves of the AM coder for different regularization constants ν for claves
optimized over 2 s.

7.4 MUSHRA Test
In order to quantify the improvements gained by the different methods for handling
of transients, we use a subjective listening test. We use the MUSHRA test (MUlti-
Stimulus test with Hidden Reference and Anchors) [49], which is a double blind test for
subjective assessment of intermediate quality level of coding systems. For each excerpt,
the listeners were asked to rank 8 differently processed versions relative to a known
reference on a score from 0 to 100. These included the hidden reference (denoted HR),
an anchor low-pass filtered at 7 kHz and an anchor low-pass filtered at 3.5 kHz (denoted
Anchor 7 kHz and Anchor 3.5 kHz, respectively). The remaining 5 versions were the
AM, CA, CA+SEG, AM+SEG and the AM/CA+SEG coders all operating at 30 kbps.
In the MUSHRA test the hidden reference is used to verify the consistency of responses
of subjects because a very high score is expected here. The anchors are included to be
able to make comparisons between different listening tests and because they constitute a
well-defined and simple signal modification. In order to limit the length of the listening
test a representative subset of the excerpts listed in Table 2 was chosen. Nine expert
listeners participated in the test (the authors not included). The test was performed on
speakers in a listening room. As the proposed coders do no incorporate residual coding
and are thus not complete parametric coders, a reference coder has not been included
in this test. In MUSHRA tests the hidden references define known points on the scale.
In Figure 9 the resulting MOS (Mean Opinion Score) scores of the different coder
configurations averaged over all excerpts and listeners are shown. Since we are dealing
with particular critical excerpts, it is of interest to investigate the performance for the
individual excerpts. These are shown in Table 3 with the excerpt being identified by
the number in Table 2. From Figure 9 we see that the AM/CA+SEG coder scores about
10 points higher at average than the CA+SEG coder, and more than 20 points higher
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Figure 9: Results of the MUSHRA listening test. MOS scores for different coders averaged over all excerpts
and all listeners. The error bars indicate the 95% confidence intervals.

than the CA coder. Although the AM coder does not seem to perform significantly
better than the CA coder in this test, the AB preference test in [41] showed a significant
preference for the AM/CA coder over the CA coder. In the table, it can be seen that
for particular excerpts, such as the castanets (excerpt 9), there is a huge improvement
in the combination of AM and the R-D optimal segmentation over the CA coder both
with and without optimal segmentation, in fact the R-D optimal segmentation helps
very little without the AM model. It can also be seen that there is a fairly small loss on
average in the rate-regularized estimation procedure of the AM+SEG coder compared
to the AM/CA+SEG, except for the glockenspiel (excerpt 3). Taking the confidence
intervals into account, this difference is too small to be of any statistical significance.
The reason for the fairly poor performance of the AM+SEG coder compared to the
AM/CA+SEG coder for the glockenspiel is that the same regularization constant was
used for processing all excerpts, and for the glockenspiel, this constant is not close to
the optimal λ. It is interesting to note that the glockenspiel scores the highest among
all excerpt. This is not surprising because the glockenspiel signal is very tonal and the
AM model is well-suited for handling the non-stationary parts of this signal. This also
holds for the very similar signals of SQAM, such as the claves, xylophone, triangle and
others.

8 Discussion
As can be concluded from the listening test results, the proposed parametric coding
of transients in combination with R-D optimal segmentation leads to a significant gain
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Excerpt 1 3 5 7 9 10 11
AM 42 70 41 45 43 56 39
AM+SEG 67 79 58 71 66 68 58
AM/CA+SEG 65 92 62 68 72 71 59
CA 32 60 41 42 29 65 43
CA+SEG 47 84 64 63 35 65 55
HR 99 99 99 100 100 99 100
Anchor 7 kHz 47 66 56 62 47 42 52
Anchor 3.5 kHz 22 33 24 27 22 24 27

Table 3: Results of the MUSHRA listening test. MOS scores for different coder configurations for the
individual excerpts.

in audio quality as compared to constant-amplitude sinusoidal coding. Switching be-
tween different window lengths and shapes or coders (e.g. [9, 18]) has traditionally been
achieved by transient detection schemes. However, there may be a mismatch between
the classification of transients and the R-D optimal coder. Based on R-D optimiza-
tion and/or the rate-regularized estimation method robustness against such problems
is gained, but this comes at the cost of additional complexity. We also note that the
R-D optimal allocation scheme is similar to the so-called bit reservoir method for han-
dling of transients (see [16]). Rate-distortion optimal allocation (variable rate) in itself
does not, however, ensure that more bits are spent when transients are present. Rather,
it spends the bits where most distortion can be reduced, and hence it depends on the
appropriateness of the signal model.

The scores from the MUSHRA test reported here may be further improved by resid-
ual coding since noise components are not efficiently coded using sinusoids. Many
parametric audio coders employ residual noise coding that only encodes a spectral and
a coarse temporal envelope (e.g. [13, 51]). It is also possible to improve performance
of parametric audio coders for transient signals by employing waveform approximating
residual coding as done in [52, 53]. In such coding schemes, the residual coder may
compensate for errors introduced by the sinusoidal coder.

Recently, preliminary results on linearization of the spectro-temporal psychoacous-
tical model [54] have been reported in [55]. Such a linearization results in a distortion
measure that defines a norm and would thus be applicable to the AM estimation prob-
lem at the cost of increased complexity. Further, if such a measure is shown to reflect
temporal aspects better than (3), this could lead to improved coding of transients as
presented here as well as to more refined envelope dictionary design.

Compared to the singlebanded AM of e.g. [15], the model proposed in this paper
has the advantage that different envelopes are allowed for different sinusoids, which is
a particular advantage for mixtures of sources (see e.g. [34]). Some interesting parallels
can be drawn to related work in audio coding. In [25] transient locations are modified
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in order to achieve more efficient coding of transients. This is, in a sense, what is
happening when the onsets are quantized, and seen in the light of [25], onsets should be
estimated very precisely and then quantized jointly to a coarse grid. A successful tool
in dealing with efficient coding of transients in transform coding is TNS [22]. TNS is
based on linear predictive coding of transform coefficients. Since amplitude modulation
may just as well be interpreted as a frequency domain filtering, there is a duality in TNS
and AM. One conceptual difference between TNS and gain modification [23] as applied
in transform coding on the one hand and AM as presented here on the other hand is that
TNS and gain modification operate on the input and output signals and hence shape the
noise, whereas in AM, the signal model is modified to fit the input signal.

9 Summary
In this paper, methods for efficient parametric coding of transient audio signals have
been presented. We propose a specific model for handling of transients based on am-
plitude modulated sinusoids. In this model, each sinusoid is modulated by a different
envelope known as a gamma envelope each being characterized by an onset, an attack
and a decay parameter. These degrees of freedom have proven to be important in effi-
cient coding of transients. Existing methods assume either that the modulating signal is
the same for all components, that the onset always occurs at the start of a segment, or
that no attack parameter is necessary. Combined with a constant-amplitude sinusoidal
model, efficient coding of both stationary and transient signals is achieved using rate-
distortion optimization based on a perceptual distortion measure. The rate-distortion
optimization leads to optimal allocation and segmentation and therefore eliminates the
need for transient detectors. Informal and formal listening tests reveal that for critical
excerpts the combination of amplitude modulation and rate-distortion optimal segmen-
tation leads to large improvements over a sinusoidal coder using only the optimal seg-
mentation. This shows that segmentation techniques are not substitutes for good signal
models.

Appendix A: Fourier Transform of Windowed Gamma
Envelope
The estimation of model parameters and calculation of distortions require that the spec-
tra of the windowed gamma envelopes are computed. Doing this by FFTs may be pro-
hibitive for low complexity applications and storing them in memory may also not be
feasible. Here, we instead derive a closed-form expression for generating the discrete-
time Fourier transform directly in the frequency domain. The discrete-time Fourier
transform of the windowed gamma envelope can be found from the following finite
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sum:

Zl(ω) =

N−nl−1∑

n=0

nαle−βlnw(n+ nl)e
−jω(n+nl), (31)

with w(n) being the tapered von Hann window (7). In finding the discrete Fourier
transform we shall use the following transform pair:

nax(n) ↔ ja ∂a

∂ωa
X(ω). (32)

Assuming that nl < M − 1 and splitting the sum (31) up into three different sums
having different window parts, we get

Zl(ω) =

M−1−nl∑

n=0

nαle−βlnv(n+ nl)e
−jω(n+nl)

+

N−M−1−nl∑

n=M−nl

nαle−βlne−jω(n+nl)

+

N−1−nl∑

n=N−M−nl

nαle−βlnv(n−N + 2M + nl)

× e−jω(n+nl).

(33)

with v(n) being the modified von Hann window in (8). Tedious calculations now lead
to the following closed-form expression of the discrete-time Fourier transform of the
windowed gamma envelopes:

Zl(ω) = jαl
∂αl

∂ωαl

(
1

2
e−jωnl

1 − (e−βl−jω)M−nl

1 − e−βl−jω

− 1

4
e−jωnl+j π

M
nl+j π

2M
1 − (e−βl−jω+j π

M )M−nl

1 − e−βl−jω+j π
M

− 1

4
e−jωnl−j π

M
nl−j π

2M
1 − (e−βl−jω−j π

M )M−nl

1 − e−βl−jω−j π
M

+ e−jωnl
(e−βl−jω)M−nl − (e−βl−jω)N−M−nl

1 − e−βl−jω
(34)

+
1

2
e−jωnl

(e−βl−jω)N−M−nl − (e−βl−jω)N−nl

1 − e−βl−jω

− 1

4
e−jωnl+j π

2M−j π
M

(N−nl)

× (e−βl−jω+j π
M )N−nl−M − (e−βl−jω+j π

M )N−nl

1 − e−βl−jω+j π
M
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− 1

4
e−jωnl−j π

2M+j π
M

(N−nl)

× (e−βl−jω−j π
M )N−nl−M − (e−βl−jω−j π

M )N−nl

1 − e−βl−jω−j π
M

)
.

In evaluating these expressions for particular parameter values and frequencies L’Hospital’s
rule must be used. For the coder presented in [41], where the window is simply a von
Hann window with a fixed length, the corresponding expression is much simpler.
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Abstract
A method for amplitude modulated sinusoidal audio coding is presented that has low
complexity and low delay. This is based on a subband processing system, where, in
each subband, the signal is modeled as an amplitude modulated sum of sinusoids. The
envelopes are estimated using frequency-domain linear prediction and the prediction
coefficients are quantized. As proof of concept, we evaluate different configurations in
a subjective listening test, and this shows that the proposed method offers significant im-
provements in sinusoidal coding. Furthermore, the properties of the frequency-domain
linear prediction-based envelope estimator are analyzed.

1 Introduction
Parametric coding of audio and speech has received considerable attention in the re-
search community and standardization bodies in recent years [1–3]. In order to achieve
good performance at low bit-rates, parametric coding relies on signal models that de-
scribe the signal in few physically meaningful parameters. Parametric audio coders per-
form extremely well when the signal fits the signal model. However, when this is not the
case, the coded signal may be of very low perceived quality. This can be observed from
subjective listening tests where the scores may vary greatly depending on the signal
(see e.g. [4]). In [4] it was shown that even when using rate-distortion optimal segmen-
tation [5], constant-amplitude sinusoids do not lead to satisfactory results for critical
transients excerpts such as those from SQAM [6]. It was demonstrated that an ampli-
tude modulated (AM) sinusoidal audio coder lead to significant improvements over a
sinusoidal coder for such signals. The coder was based on an analysis-by-synthesis pa-
rameter estimation procedure using a perceptual distortion measure. As a consequence,
the coder suffered from high complexity and delay. Further, it was also shown in [4]
that significant improvements are gained by the combination of rate-distortion optimal
segmentation and amplitude modulated sinusoidal audio coding, i.e. that model adap-
tation and flexible segmentation are complementary tools. The rate-distortion optimal
segmentation requires that all possible segment lengths at different starting positions
be coded. This, of course, adds considerable complexity and delay, which may be pro-
hibitive for some applications. For example, the MPEG-4 Low Delay Audio Coder [7]
does not use block switching and minimizes the use of the bit reservoir due to the delay
associated with these methods. A powerful and successful method for efficient coding
of transients in the context of transform coding is the so-called temporal noise shaping
(TNS) [8], which is part of the MPEG-2/4 AAC and is used in the Low Delay Audio
Coder instead of block switching [7]. In TNS, a coding gain is achieved for transient
signals by predictive coding of transform coefficients, and the optimal linear predictor
can be derived efficiently in the frequency domain using standard methods [9]. While
linear prediction has found use in predictive coding of speech, it is also a widely used
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method for spectral estimation of auto-regressive (AR) stochastic processes. Likewise,
TNS can be interpreted as either a method for predictive coding in the frequency domain
or as an envelope estimator, or, in modulation theoretical terms, a demodulator. Aside
from being an envelope estimator, the frequency-domain linear predictor is also an effi-
cient parametric representation of the envelope that can be quantized using well-known
methods.

In this paper, we explore an alternative amplitude modulated sinusoidal coding tech-
nique based on frequency-domain linear prediction (FDLP) that has considerably lower
complexity and delay than [4]. Further, we also analyze the properties of the FDLP-
based envelope estimator. We apply the sinusoidal coding in the subbands of a criti-
cally sampled filterbank. The advantage of doing this is twofold. Firstly, it has a lower
computational complexity than the full-band system and, secondly, it allows for dif-
ferent envelopes in the individual subbands, which may be desirable for some, but by
no means all, signals [4, 10]. The sinusoidal parameters are found, given the subband
envelopes, using matching pursuit based on a perceptual distortion measure.

The remaining part of this paper is organized as follows: Section 2 contains an
overview of the proposed system. The envelope estimator and its properties are pre-
sented in Section 3 and subsequently the matching pursuit algorithm used for sinusoidal
parameter estimation is treated in Section 4. In Sections 5 and 6 implementation details
and experimental results are presented, and, finally, Section 7 concludes on the work.

2 System Overview
The method proposed in this paper is implemented in a system that consists of an anal-
ysis and a synthesis system. In the analysis system the input signal is first split into
Q critically sampled subbands using a uniform analysis filterbank. Then in each sub-
band, an envelope is estimated using FDLP and the associated parameters are quan-
tized. Given the subband envelopes a number of sinusoidal parameters are extracted
and quantized and finally all parameters are then entropy coded. In the synthesis sys-
tem, the parameters are reconstructed and the subband signals are synthesized using
overlap-add. Finally, the signal is reconstructed using a synthesis filterbank that com-
bined with the analysis filterbank has perfect reconstruction. Now, let us introduce
some definitions and the notation. First, we define the subband signal for subband q as
xq(n) =

∑M−1
m=0 hq(m)x(n−m) for n = 0, . . . , N−1 with hq(n) being the impulse re-

sponse of the qth analysis filter of lengthM . From these subband signals, the input sig-
nal can be reconstructed (with a delay d) as

∑Q
q=1

∑M−1
m=0 gq(m)xq(n−m) = x(n−d)

using the impulse responses of the synthesis filters gq(n). In the envelope estimation
and in the sinusoidal parameter estimation, we will make use of the so-called discrete-
time analytic signal for a particular segment. For n = 0, . . . ,K − 1 with K = N/Q
this is defined as

aq(n) = xq(Qn) + jH{xq(Qn)} , (1)
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where H{·} denotes the Hilbert transform. Here we have assumed that the segment
lengthN is an integer multiple ofQ. Note that the calculation of the analytic signal may
be integrated into the filterbank implementation since hq(n) ∗ (x(n) + jH{x(n)}) =
x(n)∗(hq(n) + jH{hq(n)}). The model of the analytic subband signal used in this pa-
per can be written as the following sum of sinusoids where the sinusoids are modulated
by the (complex) amplitude modulating signal γ̂q(n),

âq(n) =

Lq∑

l=1

γ̂q(n)Aq,le
jωq,ln+jφq,l , (2)

where each sinusoid is characterized by a frequency ωq,l, a phase φq,l and an amplitude
Aq,l. This signal model is built using a matching pursuit algorithm [11] based on the
perceptual distortion measure presented in [12] and a redundant dictionary consisting
of modulated complex sinusoidal components. This dictionary can be seen as being
signal adaptive since the amplitude modulating signal γ̂q(n) varies with the signal over
time and subbands.

In the decoder, the subband signal is recovered by taking the real-value of (2), up-
sampling the signal by a factor of Q and subsequent filtering by the synthesis filter
gq(n).

3 Envelope Estimation
In this section we briefly present the main results of the envelope estimator based on the
FDLP principle first introduced in [8] as temporal noise shaping for transform coding.
Further, we also provide some additional analysis of the properties of this estimator.
It must be emphasized that the application of FDLP considered here is fundamentally
different from that of [8]. First, we define the Fourier transform of the analytic signal
for k = 0, . . . ,K − 1 as

Aq(k) =

K∑

n=0

aq(n)e−j2π k
K

n. (3)

We then write the frequency-domain prediction error Eq(k) as a linear combination of
Aq(k) having the I (complex) prediction coefficients bi ∈ C:

Eq(k) = Aq(k) −
I∑

i=1

biAq(k − i). (4)

The optimal prediction coefficients are then found in such a way that the squared pre-
diction error is minimized, i.e.,

{bi} = argmin

K−1∑

k=0

|Aq(k) −
I∑

i=1

biAq(k − i)|2, (5)
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which can be solved efficiently using well-known methods [9]. Then, by taking the
Fourier transform of the squared instantaneous envelope, we get the spectral autocorre-
lation sequence estimate Cq(τ):

K−1∑

n=0

|aq(n)|2e−j2π τ
K

n =
1

K

K−1∑

k=0

Aq(k)A
∗
q(k − τ) (6)

=Cq(τ), (7)

from which the prediction coefficients also can be found. Taking the inverse Fourier
transform of both sides of (4), we get

eq(n) = aq(n)

[
1 −

I∑

i=1

bie
j2π i

K
n

]
. (8)

Rearranging this, we get the (complex) envelope estimate for n = 0, . . . ,K,

γ̂q(n) =
aq(n)

eq(n)
=

1

1 −∑I
i=1 bie

j2π i
K

n
. (9)

Specifically, the squared instantaneous envelope estimate is

|γ̂q(n)|2 =
1

|1 −∑I
i=1 bie

j2π i
K

n|2
. (10)

As the prediction filter is minimum-phase, the phase of γ̂q(n) can be determined uniquely
from log |γ̂q(n)| since they form a Hilbert transform pair, i.e.,

∠γ̂q(n) = H{log |γ̂q(n)|}. (11)

Using Parseval’s theorem, we can write the minimization in (5) of the sum of the
squared prediction in the time domain:

min

K−1∑

k=0

|Eq(k)|2 = min

K−1∑

n=0

|aq(n)|2
|γ̂q(n)|2 . (12)

From these equations, we can make a number of interesting observations. From (12) we
see that minimizing the prediction error a least-squares fashion corresponds to minimiz-
ing the sum of the ratio between the squared instantaneous envelope and the estimate.
The frequency-domain linear predictor models the time-domain envelope in exactly the
same way as the time-domain linear predictor models the spectral envelope, and, hence,
they share the same properties and suffer from the same problems (e.g. the cancellation
of errors and overemphasis on peaks [9]). One notable property is that the envelope
estimate converges to the squared instantaneous envelope as the model order I grows.
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From (7) and (12) we see that a decorrelation of the transform coefficients results in a
flattening of the squared instantaneous envelope since Cq(τ) = 0 for τ 6= 0 implies
a flat envelope. It can easily be shown that the squared instantaneous envelope of two
sinusoids that are modulated by the same signal contains cross-terms that are due to
the sinusoidal carriers (see [10]). In sinusoidal modeling these cross-terms are modeled
by the sinusoids and should hence not be captured by the envelope estimator. For si-
nusoids that are well-separated in frequency these cross-terms will occur as long-term
correlation in Cq(τ), and hence FDLP has the (at least in this particular application) un-
desirable property that it will seek to model these cross-terms. Consequently, the model
order should be chosen sufficiently low such that this does not happen and this order
cannot, contrary to common practice in transform coding, simply be chosen from the
prediction gain. Moreover, the envelope estimator will fail when the sinusoids and the
modulating signal are not well-separated in frequency (since Bedrosians theorem [13]
does not hold in this case) or when sinusoids are closely spaced [10].

4 Subband Matching Pursuit
The individual sinusoidal parameters, i.e. frequencies, phases and amplitudes, are found
in each subband using a psychoacoustic matching pursuit [11] given the subband en-
velopes γ̂q(n). The subband envelope adapts the dictionary to the subband signal, and,
as a consequence, a higher rate of convergence, in terms of the distortion as a function
of the number of components, can be achieved. In each iteration, with i being the it-
eration index, the algorithm operates on the F point Fourier transform of the subband
residuals Rq,i(k) which are initialized for k = 0, . . . , F − 1 as

Rq,1(k) =
K−1∑

n=0

w(n)aq(n)e−j2π k
F

n, (13)

with w(n) being the analysis/synthesis window. The algorithm finds in each iteration
the subband and the parameters that minimize the weighted squared absolute value of
the Fourier transform of the residual, i.e., Dq,i =

∑F−1
k=0 Pq(k)|Rq,i(k)|2, where Pq(k)

is a perceptual weighting function for the frequency region associated with subband
q. This weighting function is derived, for each segment, from the auditory masking
model presented in [12]. The combination of frequency (index) f̂ and subband q̂ that
minimizes the perceptual distortion are chosen as:

{q̂, f̂} = arg max
{q,m}

|Ψq(m)|2
Φq(m)

, (14)

with the numerator containing the inner product

Ψq(m) =

F−1∑

k=0

Pq(k)Z
∗
q (k −m)Rq,i(k), (15)
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and the denominator the norm

Φq(m) =

F−1∑

k=0

Pq(k)Z
∗
q (k −m)Zq(k −m). (16)

Zq(k) is defined as the Fourier transform of the windowed subband envelope, i.e.,

Zq(k) =

K−1∑

n=0

w(n)γ̂q(n)e−j2π k
F

n. (17)

The optimum phase and amplitude associated with the estimated complex sinusoid of
frequency f̂ in subband q̂ can be found as

Aq̂,ie
jφq̂,i =

Ψq̂(f̂)

Φq̂(f̂)
. (18)

Finally, having found the subband, frequency, phase and amplitude we update the
Fourier transform of that subband residual as

Rq̂,i+1(k) = Rq̂,i(k) −Aq̂,ie
jφq̂,iZq̂(k − f̂). (19)

Note how the numerators of equations (18) and (14) contain the same inner product. It
can be seen from the following that, like for the constant-amplitude case treated in [11],
these inner products can be efficiently computed for differentm using FFTs:

Ψq(m) =
K−1∑

n=0

vq(n)w(n)γ̂∗q (n)e−j2πm
F

n, (20)

with vq(n) =
∑F−1

k=0 Pq(k)Rq,i(k)e
j2π k

F
n. Similarly, the denominator of equations

(18) and (14) can be found using Fourier transforms:

Φq(m) =

K−1∑

n=0

[
F−1∑

k=0

|Zq(k)|2e−j2π k
F

n

]
pq(n)e−j2πm

F
n, (21)

with pq(n) being the inverse Fourier transform of the perceptual weighting function,
i.e., pq(n) =

∑F−1
k=0 Pq(k)e

j2π k
F

n. Finally, we note that since the subband signals are
orthogonal, the total distortion is simply the sum of the subband distortions and can
hence be subject to rate-distortion optimization. It follows from the perfect reconstruc-
tion of the filterbank and the convergence of the matching pursuits in the subbands that
the entire system will converge.
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Statistic AM CA Anchor 1 Anchor 2 HR
Mean 62 54 29 54 95
Conf. (±) 7.4 6.6 4.0 5.8 2.8

Table 1: Results of MUSHRA test. Scores for all excerpts and listeners (means and 95% confidence inter-
vals).

5 Implementation Details
In assessing the improvement that the higher update-rate of the amplitude, i.e. amplitude
modulation, results in, we compare two different configurations of the proposed system:
The first uses only constant-amplitude sinusoids (denoted CA) while the second uses
multiband amplitude modulation with Q=8 (denoted AM). The optimal segment length
has been determined empirically by informal listening tests to be about 35 ms for the
CA configuration using a von Hann window with 50% overlap. This segment length
was also used for the AM configuration. The frequencies and amplitudes are quan-
tized using the logarithmic quantizer described in [4] while the phases are quantized
uniformly using 5 bits. At average this results in approximately 15 bits per sinusoidal
component. The complex prediction coefficients were quantized by mapping the re-
flection coefficients to the log-area ratios which were then quantized uniformly. The
associated rate has been estimated from the entropy of the quantization indices, which
resulted in approximately 9 bits per complex prediction coefficient, and a 5th order
complex prediction filter was used in the simulations. Both configurations were set to
run at 30 kbps. In order to achieve efficient coding of stationary sinusoids, the envelope
is not used when it has a correlation coefficient of more than 90% with a constant enve-
lope. Alternatively, the rate-distortion optimization-based coder switching architecture
proposed in [4] can be used for this. Subband FFTs of 1024 points were used for the
AM configuration while the CA configuration uses 8192 point FFTs in the matching
pursuit. Further, we have used an FFT-based implementation of the Hilbert transform.
In practice we have found the orthogonality between subbands not to be of critical im-
portance for the task at hand. Hence, we have used a uniform 8-band pseudo QMF
filterbank for the AM configuration with a prototype filter of length 512.

6 Results and Discussion
In Figure 1 we illustrate the order selection problem of the envelope estimator for two
sinusoids 2 cos(2π0.1n) + sin(2π0.11n+ π/3). It can be seen that the FDLP models
the cross-terms that are due to the carriers and that the low-order model is better than
the high-order model when cross-terms are present.

The subband processing has been verified to produce good results compared to a
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Figure 1: Illustration of the problem of cross-terms in the squared instantaneous envelope for multiple sinu-
soids. The top panel shows the true squared envelope (solid) and the squared instantaneous envelope (dashed).
The squared instantaneous envelope of one sinusoid estimated using a 5th order predictor (solid), and using
a 25th order predictor (dashed) are shown in the middle panel. And similarly, in the bottom panel, for two
sinusoids estimated using a 5th order predictor (solid), and using a 25th order predictor (dashed).

full-band system using constant-amplitude sinusoids, i.e. no AM. This verifies that the
subband processing does not introduce any noticeable artifacts, although it has some
inherent drawbacks. There is a significant reduction of complexity of the subband sys-
tem compared to the full-band system. Where the full-band system would require FFTs
of size F , the subband system requires FFTs of size F/Q and only one subband has to
be updated per iteration of the matching pursuit.

As proof of concept of the proposed method, we use a subjective listening test.
Specifically, we use the MUSHRA test [14] for quantifying the improvements of the
AM configuration compared to the CA configuration. For each excerpt, the listeners
were asked to rank 5 differently processed versions relative to a known reference on
a score from 0 to 100. These included the hidden reference (denoted HR), an anchor
low-pass filtered at 3.5 kHz and an anchor low-pass filtered at 7 kHz (denoted Anchors
1 and 2). The remaining two versions were the different configurations, AM and CA.
The excerpts were 5 different critical 10 s transient (mono) signals from SQAM [6],
namely castanets, claves, glockenspiel, triangle and xylophone. 12 inexperienced lis-
teners participated and the test was conducted using headphones. In Table 1 the results
of the listening test are shown. As can be seen from the anchors, the sometimes large
confidence intervals can largely be attributed to variations over the excerpts and listen-
ers. Testing instead for the differences in scores, the mean of the difference between
the AM and the CA configuration was found to be 8.3 with a 95% confidence interval
of ±7.4. Since the confidence interval does not include zero, we conclude that the AM
configuration performs significantly better than the CA configuration. In interpreting
the results it should noted that due to the temporal integration in the human auditory
system, events of a short duration, such as onsets, may only result in small improve-
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ments in scores. We also note that, as shown in [4], both the CA and AM configurations
may be further improved and even combined using rate-distortion optimal segmentation
and allocation [5] at the cost of significantly increased delay and complexity.

7 Conclusion
We have presented a method for amplitude modulated sinusoidal audio coding based on
frequency-domain linear prediction for estimation and efficient coding of time-domain
envelopes. This has been found, in a subjective listening test, to improve on sinusoidal
coding for critical transient signals. Further, the properties of the envelope estimator
have been analyzed and it has been demonstrated that special care must be taken in
selecting the model order.
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Abstract
In this paper, we present a novel decomposition for sinusoidal audio coding using am-
plitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The
proposed method, which incorporates a perceptual distortion measure, is based on a re-
laxation of a non-linear least squares minimization. It offers benefits in the modeling
of transients in audio signals. We compare the decomposition to constant-amplitude
sinusoidal coding using rate-distortion curves and listening tests. Both indicate that,
at the same bit-rate, perceptually significant improvements can be achieved using the
proposed decomposition.

1 Introduction
The problem of decomposing a signal into amplitude modulated sinusoids is encoun-
tered in many different applications, for example in parametric audio coding (see,
e.g., [1]) where modulated sinusoidal models are of interest for handling transients.
Even when dynamic time segmentation [2, 3] is employed, there is a need for efficient
modeling of transients. In [4], it was shown that perceptually significant improvements
can be achieved by applying amplitude modulation (AM) in a frequency dependent way
as opposed to single-banded AM (see, e.g., [5]). Furthermore, it was shown in [6] that
frequency dependent AM achieves lower distortions compared to constant-amplitude
(CA) sinusoidal coding at the same rate. Sinusoidal modeling using both amplitude
and frequency modulation, in the form of a linear combination of basis vectors such as
low-order polynomials, has been explored for a variety of applications (see, e.g., [7, 8]).
Although such models perform well for slowly evolving signals like voiced speech, they
do not handle the transients often encountered in audio signals well.

In this paper, we extend the work in [4, 6] by introducing a signal decomposition
based on a set of preselected, linearly independent, real-valued basis vectors that de-
scribe the amplitude modulating signal. Furthermore, we examine how to incorporate
such a decomposition in parametric audio coding, especially noting that it is not always
efficient in terms of rate and distortion to use the AM technique. The rest of the paper
is organized as follows: In Section 2, both the signal decomposition and the solution
to the associated minimization problem are presented, followed in Section 3 with the
incorporation of a perceptual distortion measure. Section 4 describes sinusoidal audio
coding using the proposed AM decomposition. Experimental results are presented in
Section 5, and Section 6 concludes on our work.
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2 Proposed Decomposition
In the proposed decomposition, the signal of interest is modeled as a sum of amplitude
modulated sinusoids, i.e.,

x(n) =

L∑

l=1

γl(n) cos(ωln+ φl), (1)

where ωl and φl denote the lth carrier frequency and phase, respectively, and γl(n) is
the amplitude modulating signal formed as the linear combination

γl(n) =

I∑

i=1

b(n, i)ci,l, (2)

where b(n, i) and ci,l denote the ith basis function evaluated at time instance n and the
(i, l)th AM coefficient, respectively. We will here assume that the L carrier frequencies
are distinct, so that ωk 6= ωl for k 6= l. The additional flexibility in (1), as compared to
the traditional constant-amplitude models with γl(n) = Al, gives improved modeling
of transient segments. We note that the constant-amplitude model is a special case of the
modulated model, with the amplitude modulating signal being DC. Let xa(n) denote
the discrete-time “analytical” signal constructed from x(n) by removing the negative
frequency components, such that the resulting signal may be down-sampled by a factor
two without loss of information [9] provided that there is little or no signal of interest
near 0 and π. The signal model xa(n) can then be written as

xa(n) =
L∑

l=1

I∑

i=1

b(n, i)ci,le
jωln+jφl (3)

Choosing N to be even, and introducing

xa =
[
xa(1) xa(3) · · · xa(N − 1)

]T
, (4)

where (·)T is the transpose operator, the down-sampled discrete-time “analytical” sig-
nal may be put into matrix-vector notation

xa = [(BC) � Z] a, (5)

where � denotes the Schur-Hadamard product, i.e., [E�F]kl = [E]kl[F]kl, with [E]kl

being the (k, l)th element of E. Further, Z ∈ CN/2×L with L < N/2 is constructed
from the L complex carriers, i.e., [Z]kl = ejωl(2k−1), a =

[
ejφ1 · · · ejφL

]T . The
amplitude modulating signal is written using the known AM basis vectors, [B]kl =
b(2k − 1, l), and the corresponding coefficients, [C]kl = ck,l. Here, B ∈ RN/2×I with
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I < N/2 and C ∈ RI×L. The problem of interest is given a measured signal, y(n),
find x(n) such that

min
C,{φk},{ωk}

N∑

n=1

|y(n) − x(n)|2 (6)

or, equivalently,
min

C,{φk},{ωk}
‖ya − xa‖2

2 (7)

where ya is formed similar to xa, and ‖ · ‖2 denotes the 2-norm. This problem is non-
linear in the frequencies {ωk}L

k=1, and is thus called a nonlinear least squares (NLS)
minimization. Typically, this type of problem requires a multidimensional minimiza-
tion which is computationally infeasible in most situations. For the sinusoidal estima-
tion problem, several suboptimal approaches based on relaxation of the original prob-
lem have been suggested to reduce the computational complexity of the minimization,
such as the greedy matching pursuit [10] or recursive methods such as RELAX [11].
Herein, we propose an iterative method for the minimization of (7), reminiscent to both
the above mentioned methods. The suggested method exploits the fact that for given
{ωk}L

k=1, the minimization problem with respect to C for fixed {φk}L
k=1 is quadratic,

and conversely the minimization of {φk}L
k=1 for fixed C. We propose to iteratively

find C and {φk}L
k=1, minimizing the residual for each frequency in a given finite set of

frequencies, Ω. Let
ck =

[
c1,k · · · cI,k

]T
. (8)

At iteration k, assuming the k − 1 carriers and corresponding coefficients known (i.e.,
found in prior iterations), we find, for each frequency ω ∈ Ω, the model parameters φk

and ck, minimizing the residual for that particular frequency. The kth carrier is then
found as the parameter set minimizing the residual over Ω, i.e.,

ω̂k = arg min
ω∈Ω

‖rk −Dke
jφkBck‖2

2, (9)

where Dk is the diagonal matrix constructed from the kth carrier, with zk = ejωk , i.e.,

Dk = diag
([

z1
k z3

k · · · zN−1
k

])
. (10)

Further,
rk =

[
rk(1) rk(3) · · · rk(N − 1)

]T (11)

contains the kth residual, obtained as

rk(n) = ya(n) −
k−1∑

l=1

I∑

i=1

b(n, i)ĉi,le
jω̂ln+jφ̂l . (12)
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For each frequency ω, we iteratively solve for φk and ck (with superscript (p) denoting
the pth iteration of the alternating minimization); for given ĉ

(p−1)
k ,

φ̂
(p)
k = ∠





N∑

n = 1,
n odd

I∑

i=1

b(n, i)ĉ
(p−1)
i,l e−jωnrk(n)




. (13)

Given φ̂(p)
k , the minimization wrt. the AM coefficients reduces to

ĉ
(p)
k = B†u

(p)
k , (14)

with
B† =

(
BT B

)−1
BT , (15)

which can be pre-computed. The vector u
(p)
k is defined as

u
(p)
k =

[
u

(p)
k (1) u

(p)
k (3) · · · u

(p)
k (N − 1)

]T
, (16)

which is the real part (recall that ci,l ∈ R) of the residual shifted towards DC by the
carrier, i.e.,

u
(p)
k (n) = Re

{
rk(n)e−jωn−jφ̂

(p)
k

}
. (17)

The parameters in (13) and (14) are then found alternately, given the other, until some
stopping criterion is reached. For a given ω the problem is convex, and the algorithm
converges to a global maximum. Hence, the 2-norm of the residual is a non-increasing,
convex function of the number of iterations. We note that for the special case of constant
amplitude (DC basis), the estimates (9), (13) and (14) reduce to those of a matching
pursuit [10] with complex sinusoids.

3 Incorporating Perceptual Distortion
It is well-known that the 2-norm error measure does not correlate well with human
sound perception. The problem of finding a suitable distortion measure is one of com-
putational complexity and mathematical convenience and tractability. On one hand, we
would like to have a measure that takes as much as possible of the processing in the
human auditory system into account, while on the other hand, we would like to have a
measure that defines a mathematical norm and leads to efficient, simple estimators and
quantizers. Here we apply the perceptual distortion measure presented in [12]. For a
particular segment, the distortion D can be written as

D =

∫ π

−π

A(ω)|F [w(n)e(n)] |2dω, (18)
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where F [·] denotes the Fourier transform, A(ω) ∈ {x ∈ R|x > 0} is a perceptual
weighting function, w(n) is the analysis window, and e(n) = y(n) − x(n) is the mod-
eling error. When the weighting function is chosen as the reciprocal of the masking
threshold, the resulting error spectrum will be shaped like the masking threshold. While
this measure is a spectral one, it is still inherently based on waveform matching since it
operates on the Fourier transform of the time domain error, meaning that pre-echos, for
example, will not go unpunished by the measure. With respect to audibility, the actual
distortion values for non-stationary segments should be interpreted with care. In prac-
tice the spectral weighting functionA(ω) is a discrete function, as is the error spectrum,
and the distortion (18) is calculated as a summation of point-wise multiplications in the
frequency domain. This corresponds to a circular filtering in the time domain. Putting
this into matrix-vector notation, we get [13]

D = ‖HW(y − x)‖2
2, (19)

where H is an circular matrix constructed from the impulse response of the filter cor-
responding to

√
A(ω) and W is a diagonal weighting matrix containing the elements

of the analysis window w(n). Depending on the filter length, it may still be advanta-
geous to implement the filtering operation in the frequency domain. For further details
on this procedure, we refer to, e.g., [13]. Using the perceptual distortion allows us to
minimize a perceptually more meaningful measure than the 2-norm. However, doing
so makes the pseudo-inverse B†, defined in (15), frequency and segment dependent,
forcing it to be re-calculated for each frequency and segment. Experimentally, we have
found that the use of the perceptual distortion measure is much more important when
minimizing wrt. the frequency in (9) than when solving for the AM coefficients in (14)
and the phase in (13). Minimizing the perceptual distortion measure in (9) leads to the
selection of the perceptually most important sinusoids. Thus, in order to minimize the
complexity, we only apply the perceptual distortion measure in (9).

4 Audio Coding using the Decomposition
Many audio segments are well-modeled using a CA sinusoidal model, and applying the
proposed AM decomposition is not always preferable from a rate-distortion point of
view. Rather, to enable efficient coding of both stationary and transient segments, we
propose the use of combined coder, containing both a CA sinusoidal coder and a coder
based on the AM decomposition. Herein, the AM decomposition has been incorporated
into the experimental coder described in [6]. Based on rate-distortion optimization, it
is determined in each segment whether an AM or CA sinusoidal model should be used.
We refer to such a combined coder as the AM/CA coder, using the term CA coder for the
pure CA-based coder. Let Ts be a finite, discrete set of coding templates for segment
s and R(τ) and D(τ) be the rate and distortion associated with coding template τ .
Then, the problem of rate-distortion optimization under rate constraint (i.e., finding
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the optimum distribution of R? bits over S segments) can be written as the following
unconstrained problem (see [2, 14] for further details)

S∑

s=1

min
τ∈Ts

[D(τ) + λR(τ)] , (20)

with λ ≥ 0. This follows from the assumption that the (nonnegative) distortions and
rates are independent and additive over the segments s. This means that the cost func-
tion can be minimized independently for each segment, for a given λ. Here we use
the coding templates Ts = {ψ1, . . . , ψLψ , χ1, . . . , χLχ} with ψk being k constant-
amplitude sinusoids and χk being k amplitude modulated sinusoids for segment s.
When the optimal λ that leads to the target bit-rate R?, denoted λ?, has been found,
the rate-distortion optimization simply becomes a matter of choosing the optimum cod-
ing template as

τ?
s = argmin

τ∈Ts

[D(τ) + λ?R(τ)] . (21)

The optimal λ is found by maximizing the concave Lagrange dual function:

λ? = arg max
λ

(
S∑

s=1

[
min
τ∈Ts

D(τ) + λR(τ)

]
− λR?

)
. (22)

Typically, this is done by sweeping over λ (using some fast method exploiting the con-
vexity of R(D)) until the rate R(λ) is within some range of the target bit-rate [2]. We
then chose between AM and CA using the following criterion

min
k

[D(χk) + λ?R(χk)] < min
k

[D(ψk) + λ?R(ψk)] . (23)

Thus, AM coding template χk is chosen when it is the rate-distortion optimal choice
among Ts for a particular segment.

5 Experimental Results

5.1 Configuration
In the experiments to follow, von Hann windows of length 30 ms were used in both anal-
ysis and overlap-add synthesis with 50% overlap. Sinusoidal parameters are quantized
as follows: Phases are quantized uniformly using 5 bits/component, whereas amplitudes
and frequencies are quantized in the logarithmic domain. Since entropy coding of the
quantization indices is commonly used in audio coding, we estimate the resulting rates
as the entropies of the quantization indices, which gives approximately 9 bits/compo-
nent for frequencies and 6 bits/component for amplitudes. The AM coefficients are also
quantized using the amplitude quantizer. This leads to an average of 30 bits/component
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Figure 1: AM bases used in the experiments.

for amplitude modulated sinusoids and 20 bits/component for constant-amplitude. The
quantizers were found to produce perceptually transparent results compared to original
parameters. In the rate-distortion optimization, distortions are calculated using unquan-
tized values as the measure (18) may be overly sensitive to frequency quantization.
Note that the rates can be reduced significantly by differential encoding [15].

5.2 Informal Evaluation
Informal listening tests indicate that the combined AM/CA coder results in high per-
ceived quality of coded excerpts for both stationary and transient parts. Generally, the
type of signals that benefit from AM are signals that exhibit sharp onsets and stops, per-
cussive sounds and changing signal types, such as transitions from unvoiced to voiced
in speech signals. Often, the improvements are perceived as an increase in bandwidth.
In Figure 2, the rate-distortion curves (or more correctly the distortion-rate curves) of
the CA coder and the AM/CA coder are shown. These were found by sweeping over
λ in (20) and finding the associated optimal rate and distortion point. It can be seen
that there is a significant improvement in the rate-distortion tradeoff resulting from the
proposed decomposition. It can also be seen that the curve saturates at higher rates,
meaning that lower distortions cannot be achieved.

5.3 Listening Test
A blind AB preference test with reference was carried out on headphones using 6 dif-
ferent transient excerpts from SQAM with 7 inexperienced listeners participating. The
listeners were asked to choose between the CA coder and the AM/CA coder, both oper-
ating at a bit-rate of approximately 30 kbps. Each experiment was repeated 8 times in
a randomized, balanced way. The results are shown in Table 1. Significance was deter-
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Figure 2: The rate-distortion curves of the CA coder (solid) and that of AM/CA coder (dashed) for for the
excerpt Glockenspiel.

Results of Listening Tests
Preference [%]

Excerpt AM/CA CA Significant
Castanets 100 0 Yes

Claves 80 20 Yes
Glockenspiel 63 37 Yes
Harpsichord 63 37 Yes
Vibraphone 57 43 No
Xylophone 78 22 Yes

Total 74 26 Yes

Table 1: Results of AB-preference test.

mined using a binomial distribution and a one-sided test with a level of significance of
0.05. The test shows that performance can be improved significantly using the proposed
decomposition.

6 Conclusion
In this paper, we have proposed a linear decomposition technique for amplitude mod-
ulated sinusoidal signals, showing that such a method might be used for high quality
audio coding. Experiments indicate that a significantly higher rate of convergence, in
terms of rate-distortion, can be achieved for transient segments when incorporating the
proposed method in a combined coder. This is also confirmed by listening tests, show-
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ing that for a given bit-rate, significant improvements can be gained for the coder using
the proposed decomposition. These results are promising for applications of amplitude
modulation in low bit-rate audio coding.
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Abstract
In this paper, we present a framework for perceptual error minimization and sinusoidal
frequency estimation based on a new perceptual distortion measure and we state its
optimal solution. Using this framework, we relate a number of well-known practi-
cal methods for perceptual sinusoidal parameter estimation such as the pre-filtering
method, the weighted matching pursuit and the perceptual matching pursuit. In partic-
ular, we derive and compare the sinusoidal estimation criteria used in these methods.
We show that for the sinusoidal estimation problem, the pre-filtering method and the
weighted matching pursuit are equivalent to the perceptual matching pursuit under
certain conditions.

1 Introduction
The problem of estimating the parameters of a set of sinusoids in noise arises in many
different applications. In digital processing of speech, the sinusoidal estimation prob-
lem arises in such applications as speech modeling and coding [1–5] and speech en-
hancement [6] and more recently, renewed interest in sinusoidal coding of speech has
been spurred by the increasing interest in voice over packet-based networks [7–10].
Also in the field of audio processing, the sinusoidal signal model has been of interest
for music analysis and synthesis [11–13], and parametric coding of audio [14–20]. In
speech and audio processing the sinusoids can be seen as a parametric representation of
the quasi-periodic, i.e. tonal, signal components, while the noise can be seen as the un-
voiced, stochastic signal components [13]. The latter could, for example, be unvoiced
speech, the bow noise of a violin, quantization errors or processing noise.

The applications mentioned above have in common that it is of interest to find a
compact representation, or in other words to represent the signal in as few, physically
meaningful parameters as possible. Since the end receiver of these signals is the human
auditory system, it is also of interest to represent the perceptually most important com-
ponents. In audio coding in particular, it is of interest to estimate and transmit only the
parameters of audible sinusoids and in recent years, much effort has been put into this
problem. Many different methods for solving this have been proposed, e.g. [21–28] all
implement this in what seem to be different ways. Often, these methods rely heuris-
tic rules taken from psychoacoustic experiments, while estimation theory, on the other
hand, relies on statistical signal processing in finding model parameters. In [25] sinu-
soidal components are found in an iterative manner by assigning a perceptual weight
to the spectrum and then picking the most dominant peak of the weighted spectrum.
Another method is the so-called pre-filtering method, where the observed signal is fil-
tered using a perceptual filter in order to achieve a weighting of the sinusoidal compo-
nents, c.f. [26]. The methods of [27] and [28] are different methods yet—they rely on
loudness and excitation pattern similarity criteria for sinusoidal component selection,
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respectively.
In coding applications it is of particular interest to state the estimation criterion in a

way that defines a distortion measure or metric. A globally optimal solution that min-
imizes this distortion measure ensures that at a given bit-rate (for a certain number of
sinusoids in the case of sinusoidal coding), the lowest possible distortion is achieved.
When the distortion measure is a perceptual one, meaning that it reflects the human au-
ditory system, we can then claim that the perceived distortion is minimized at the given
bit-rate. In linear predictive speech coding, for example, perception is traditionally
taken into account using a fairly simple approach, where the noise spectrum is shaped
by a perceptual weighting filter, which is derived directly from the linear prediction
filter of the speech signal [29].

A recently published psychoacoustic masking model for audio coding has been
shown to form a distortion measure [30, 31], and this distortion measure has been ap-
plied successfully to the sinusoidal estimation problem in [15, 23, 32, 33]. Based on
this we define the perceptual frequency estimation problem and its optimal solution. We
then analyze and relate a number of different practical perceptual frequency estimators
that are all based on least-squares in this framework. In particular, we study the estima-
tion criteria of these estimators. This allows us to analyze, quantify and understand the
nature of the approximations made in these estimators. An important result is that the
estimation criteria of the pre-filtering method and the weighted matching pursuit can be
derived from the perceptual matching pursuit from the same assumption. Since many
applications rely on a physical interpretation of the estimated parameters, the statistical
properties of the estimators in question are also of significant importance. In that spirit
we also investigate how the least-squares based estimators relate to estimation theory
and maximum likelihood frequency estimation.

The rest of this paper is organized as follows. In Section 2 the frequency estima-
tion problem is introduced along with the nonlinear least-squares frequency estimator.
Then, in Section 3, we relate this to a simpler, common estimator, namely matching pur-
suit. In Section 4 we proceed to introduce a perceptual distortion measure that can be
written in the form of a circulant, symmetric perceptual weighting matrix. In Section 5
we use this measure to formulate the perceptual frequency estimation problem and its
optimal solution in terms of the perceptual nonlinear least-squares estimator. More-
over, we relate this to an approximation, namely the perceptual matching pursuit. The
eigenvalue decomposition (EVD) of the perceptual weighting matrix and approxima-
tions with application to the problem at hand are studied in Section 6. In Section 7 we
then show how this can be used to relate a number of well-known perceptual sinusoidal
frequency estimators. We present some illustrative numerical examples in Section 8,
and we summarize the results and give conclusions in Sections 9 and 10, respectively.
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2 The Frequency Estimation Problem
The basic problem addressed in this paper can be stated as follows. Given a real ob-
served signal x(n) for n = 0, . . . , N − 1, find the parameters of the signal of interest
x̂(n) in additive noise e(n):

x(n) = x̂(n) + e(n). (1)

In our case the signal of interest x̂(n) is a sum of sinusoidal components

x̂(n) =

L∑

l=1

Al cos (ωln+ φl) , (2)

with each component having a constant amplitude Al, initial phase φl, and frequency
ωl. The problem is then to estimate these parameters, in particular the frequencies
ω = [ ω1 · · · ωL ]

T . In the same process, the amplitudes and phases are usually also
found, but as we shall see, these can written as complex linear parameters and can then
be found in straightforward way.

Supposing that e(n) is zero-mean white, i.i.d. (independent and identically dis-
tributed over observations) Gaussian noise of varianceσ2, the likelihood function p(x; ω),
which is a function of the observed signal and the model parameters (here only the fre-
quencies) can be written as (see e.g. [34])

p(x; ω) =

N−1∏

n=0

1√
2πσ2

exp

[
− 1

2σ2
|x(n) − x̂(n)|2

]

=
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑

n=0

|x(n) − x̂(n)|2
]
. (3)

Introducing a vector containing the observed signal x = [ x(0) · · · x(N − 1) ]
T and a

vector containing the modeled signal x̂ = [ x̂(0) · · · x̂(N − 1) ]T , this can be written
as

p(x; ω) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2
‖x− x̂‖2

2

]
. (4)

Taking the logarithm, we get the log-likelihood function

ln p(x; ω) = −N
2

ln
(
2πσ2

)
− 1

2σ2
‖x− x̂‖2

2. (5)

We see that for white Gaussian noise, maximizing the likelihood function is the same
as minimizing the squared error between the observed signal and the signal model.
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In the nonlinear least-squares frequency estimator (NLS), the sinusoidal frequencies
are estimated by minimizing exactly this error in a least-squares sense. The method
is known as nonlinear least-squares as the cost function is nonlinear in the unknown
frequencies. It is interesting, but perhaps not surprising, that in this particular case, the
statistical approach of maximum likelihood (ML) turns into a deterministic method that
matches the signal model to the outcome of the random process. The resulting estimator
can be stated as the solution to the following problem [35]:

min ‖x − x̂‖2
2 = min ‖x− Za‖2

2. (6)

Here, the matrix Z ∈ CN×2L (N > 2L) is a so-called Vandermonde matrix1 defined as

Z =




z0
1 z−0

1 · · · z0
L z−0

L

z1
1 z−1

1 · · · z1
L z−1

L
...

...
...

...
zN−1
1 z

−(N−1)
1 · · · zN−1

L z
−(N−1)
L


 , (7)

where signal poles zl = exp(jωl) come in complex conjugate pairs. Assuming that the
signal poles are distinct, the matrix has full rank. Furthermore, we have that a ∈ C2L,
a = [ a1 a

∗
1 · · · aL a

∗
L ]

T with

al =
Al

2
exp(jφl). (8)

The NLS frequency estimates are then the combination of L frequencies (with ·̂ denot-
ing estimates) that minimizes the squared error, i.e.,

ω̂ = arg min
ω

‖(x− Za)‖2
2. (9)

This can be formulated as a maximization problem using the principle of orthogonality:

ω̂ = argmin
ω

xHx − xHZ
(
ZHZ

)−1
ZHx (10)

= argmax
ω

xHZ
(
ZHZ

)−1
ZHx. (11)

The corresponding amplitude and phase estimates are the solution to (6) given the fre-
quencies:

â =
(
ZHZ

)−1
ZHx. (12)

For more on estimation of amplitudes and phases, we refer the reader to the study
in [37]. In order to solve the frequency estimation problem this way, we have to search

1Vandermonde matrices are sometimes defined to be square [36].
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(numerically) for the combination of the L complex sinusoids that minimize the 2-
norm of the error signal. This is essentially the subspace pursuit of [38] with the sum
of sinusoids being the target subspace. Clearly, this is a complex procedure and it is
not easily solved. In most real-time applications, solving this problem directly is not
feasible. For more on the intractability of this problem, we refer the reader to [39].

One may argue that this point of view is unrealistic both in terms of solving the
problem optimally and in terms of the assumptions with respect to the noise, but the
NLS frequency estimator is very interesting from a theoretical point of view because it
has excellent statistical performance. For the white Gaussian noise case, it is efficient
and unbiased—it attains the Cramér-Rao Bound (see e.g. [35, 40, 41]).

In speech and audio processing the noise cannot generally be assumed to be white.
For the colored noise case, with the Gaussian noise e(n) now having the positive defi-
nite (non-diagonal) covariance matrix Σ, the likelihood function is [41]

p(x; ω) =Q exp

[
−1

2
(x− x̂)H

Σ−1 (x − x̂)

]
, (13)

with
Q =

1

(2π)
N
2

√
det(Σ)

. (14)

The corresponding maximum likelihood estimator is then

ω̂ = argmin
ω

(x − x̂)
H

Σ−1 (x − x̂) . (15)

Without prior knowledge of the noise covariance matrix Σ, this problem is clearly more
difficult to solve than for white noise where Σ = σ2I and det(Σ) = σ2N . However,
as shown in [41], the NLS estimator in (11) is also asymptotically efficient for colored
noise under some mild conditions. For more details on the relation between the NLS
and ML estimators for the colored noise case and the associated Cramér-Rao bound, we
refer the reader to [41], and for a practical method that achieves the Cramér-Rao bound
see [42]. For non-Gaussian noise, the NLS estimator loses its maximum likelihood
interpretation [41]. Here it must be stressed that we are not arguing as to the nature of
noise in audio signals but rather as to the optimality of some commonly used methods
that are based on least-squares.

3 Relaxation of the NLS Estimator
In this section we treat the relationship between the NLS frequency estimator and a
well-known method for sinusoidal parameter estimation, namely matching pursuit [43].
As we shall see, there is a close relation between the two, although originally proposed
in two entirely different contexts.



F8 PAPER F

In matching pursuit a signal model is built iteratively by solving for one component
at a time. This is done by finding the component from a dictionary, in this case com-
posed of a set of complex sinusoids of different frequencies, that minimizes some norm
(here the 2-norm) of the residual, which is formed by subtracting the i-th component
from the i-th residual, i.e.,

ri+1(n) = ri(n) − Âi cos(ω̂in+ φ̂i), (16)

with the residual being initialized as r1(n) = x(n). The Vandermonde matrix Z now
contains the vector z =

[
exp(jω0) · · · exp(jω(N−1))

]T and its complex-conjugate:

Z =
[

z z∗
]
. (17)

The frequency is then estimated as the minimizer of the 2-norm of the residual at itera-
tion i+ 1

ω̂i =argmin
ω

‖ri+1‖2
2 = argmin

ω
‖ri − Za‖2

2 (18)

=argmax
ω

rH
i Z

(
ZHZ

)−1
ZHri, (19)

where ri =
[
ri(0) · · · ri(N − 1)

]T . After i iterations, the signal model is simply

x̂i(n) =
i∑

l=1

Âl cos(ω̂ln+ φ̂l). (20)

Writing out the estimation criterion (19) (here denoted J), we get

J = rH
i Z

(
ZHZ

)−1
ZHri (21)

= rH
i

[
z z∗

] [ zHz zHz∗

zT z zHz

]−1 [
zH

zT

]
ri. (22)

We see that this is still a subspace pursuit, but in this case the subspace is a function
of one variable ω. This is sometimes referred to as a conjugate-subspace pursuit [38].
Assuming that the complex sinusoid and its complex-conjugate are well separated in
frequency (not close to 0 or π relative to N ), the inner product between the two can be
assumed to be zero2:

zHz∗ ≈ 0. (23)

The estimation criterion (22) can then be reduced significantly:

J = rH
i

[
z z∗

] [ zHz 0
0 zHz

]−1 [
zH

zT

]
ri (24)

= 2

∣∣zHri

∣∣2

zHz
. (25)

2For the 2-norm case considered here, the conjugate-subspace pursuit can be solved efficiently without
this assumption. However, this is not the case for the methods considered later in this paper.
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The sinusoidal frequency estimation criterion can now be written in the well-known
form

ω̂i = arg max
ω

| 〈z, ri〉 |2
N

, (26)

with < ·, · > denoting the inner product. The associated optimum complex scaling is

âi =
〈z, ri〉
N

, (27)

which relates to the amplitude and phase in (16) as described in (8). We see that for the
case of a sinusoidal dictionary MP is the NLS estimator in the one sinusoid case. It can
be solved efficiently since the inner products 〈z, ri〉 can be found using FFTs. Clearly,
matching pursuit is a simplified approximation to (11). It can be seen as a relaxation of
the original problem, where instead of solving the multidimensional nonlinear problem,
we break it into several one-dimensional minimizations that have efficient implementa-
tions. Matching pursuit converges in the respective norm as i grows and the distortion
is a non-increasing function of i (see [43]). It does not, generally, converge to zero in
a finite number of iterations for the sinusoidal case as later iterations may introduce
new spectral components due to the non-orthogonality of the components of redundant
dictionaries. Sometimes this is also referred to as the readmission problem [44]. There
are several ways to compensate for these problems (see for example [39, 44–47]).

On a historical note, the estimation procedure of [5, 11] first introduced in [48] is
similar to that of matching pursuit for complex sinusoids later introduced in [43]. The
RELAX algorithm [42] is an iterative sinusoidal frequency estimation algorithm, where
the efficient solution to the one-sinusoid estimation problem is exploited in a recursive
manner. It has been demonstrated to have excellent statistical performance achieving
the Cramér-Rao bound for both white and colored Gaussian noise [41].

4 A Perceptual Distortion Measure
It is well-known that the 2-norm error measure does not correlate well with human
sound perception. The choice of a distortion measure involves a trade-off between
many factors. On one hand we would like to have a measure that takes as much of
the processing in the human auditory into account as possible, while on the other hand
we would like to have a measure which defines a mathematical norm. Another desir-
able property of the measure is that it can be incorporated in an efficient algorithm. A
generalized perceptually weighted 2-norm can be written as

‖W (x − x̂)‖2
2 , (28)

where W is a so-called perceptual weighting or sensitivity matrix (e.g. [25, 49]). Even
very sophisticated distortion measures can be expressed this way. For example, in [49]
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the model of [50, 51] is linearized and put into the form of (28). Since we are here
concerned with the estimation of stationary sinusoids, we assume the observed signal
to be stationary. For stationary signals, the masking in the human auditory system is
predominantly caused by simultaneous masking. Masking analysis in audio coding
usually only considers distortions in the individual auditory filters, see e.g. ISO 11172-
3 (MPEG-1) Psychoacoustic Model 1 described in [52]. Recently, it has been shown
that significant improvements are gained by taking spectral integration into account
[30, 31]. Using the masking model proposed in [30, 31], which was derived specifically
for sinusoidal coding, the distortion D for a particular segment can be written as

D =

∫ π

−π

A(ω)|E(ω)|2dω, (29)

where A(ω) is a real, positive perceptual weighting function and E(ω) is the discrete-
time Fourier transform of the error e(n) = w(n) [x(n) − x̂(n)] wherew(n) is the anal-
ysis window. When the weighting function is chosen as the reciprocal of the masking
threshold, the error spectrum which results from minimizing D will be shaped like the
masking threshold.

In the coming analyses, we assume a rectangular window (w(n) = 1 ∀n) for sim-
plicity and mathematical convenience since we shall rely on asymptotic properties. In
practice, the weighting functionA(ω) and the error spectrum E(ω) are uniformly sam-
pled spectra A(k) and E(k), respectively, and the integral (29) can be calculated as a
summation of point-wise multiplications in the frequency domain:

D =

K−1∑

k=0

|
√
A(k)E(k)|2. (30)

The point-wise spectral multiplication corresponds to circular convolution in the time-
domain, i.e.

K−1∑

m=0

h(m)e((k −m) (modK))↔
√
A(k)E(k), (31)

with ↔ denoting Fourier transform pairs. Furthermore, from Parseval’s theorem, we
have that the inner product can be calculated in the frequency domain as

K−1∑

n=0

x∗(n)y(n) =
1

K

K−1∑

m=0

X∗(k)Y (k). (32)

This means that the discrete distortion measure (30) can be written as the 2-norm of a
circular convolution:

D =

K−1∑

k=0

|
K−1∑

m=0

h(m)e((k −m) (modK))|2. (33)
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The sampling frequency of the reciprocal of the masking curve A(k) (and thus the
length of the corresponding filter) is determined by the human auditory system and not
by the input signal.

The distortion measure can now be put into the more convenient matrix-vector no-
tation:

D = ‖He‖2
2 (34)

with H being the perceptual weighting matrix, in this case a filtering matrix, having the
following structure

H =




h(0) h(K − 1) · · · h(1)
h(1) h(0) · · · h(K − 1)

...
...

. . .
...

h(K − 1) h(K − 2) · · · h(0)


 , (35)

and e = [ e(0) · · · e(K − 1) ]
T . This means that there is a duality between the spectral

distortion measure and the two-norm of the circularly filtered error signal. This inter-
pretation offers insights into the relation between a number of methods for perceptual
frequency estimation. We will return to this later in the paper.

We now discuss how to derive an appropriate filter from the perceptual weighting
function A(k). As the perceptual filter has to be derived for each segment, computa-
tional complexity is of considerable importance. The simplest solution is to compute
the impulse response as the inverse Fourier transform of

√
A(k) for n = 0, . . . ,K− 1,

i.e.,

h(n) =
1

K

K−1∑

k=0

√
A(k) exp (j2πkn/K) (36)

=
1

K

K−1∑

k=0

√
A(k) cos (2πkn/K) , (37)

where the last line follows from A(k) being real and symmetric (A(k) = A(K − k)),
which also means that h(n) is symmetric, i.e. h(n) = h(K − n). This procedure
leaves us with an impulse response of length K while our observed signal is of length
N . Typically, the required length of the spectral weighting function is higher than the
number of time-samples, i.e. N < K. The signal and model vectors can then easily be
zero-padded to length K or the last K −N columns of H can be truncated. Filters of
arbitrary order can be obtained using standard methods, and in the following sections
we assume that the impulse response has been derived such that it has length N .
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5 Perceptual NLS and MP
In many applications such as audio modeling and coding, it is of interest to extract only
the perceptually most relevant sinusoidal component of the observed signal. Indeed, in
audio coding, where the problem can be stated as minimizing the perceived distortion
given some rate constraint, convergence in the perceptual distortion as we increase the
number of sinusoids (and thus the rate) is desirable. Using the definitions in Section 4,
we can restate the NLS frequency estimator as the following perceptually meaningful
least-squares problem

min ‖H(x− x̂)‖2
2. (38)

Let ω = [ ω1 · · · ωL ]T be the set of frequencies that describe the Vandermonde
matrix Z ∈ CN×2L. Then the perceptual NLS estimates of the frequencies (and the
corresponding optimal amplitudes and phases) are the solution to the problem

ω̂ = argmin
ω

‖H(x − Za)‖2
2. (39)

The vector ω̂ is the vector containing the set of the frequencies of L sinusoids that
minimize the filtered, weighted 2-norm and the vector â contains the amplitudes and
phases of those sinusoids in polar form. Since the filtering matrix is real and symmetric,
i.e. HHH = H2, these can be estimated as

â =
(
ZHH2Z

)−1
ZHH2x. (40)

Substituting this into (39), we get

ω̂ =arg min
ω

‖H(x− Za)‖2
2 (41)

=arg max
ω

xHH2Z
(
ZHH2Z

)−1
ZHH2x. (42)

This re-statement of the NLS frequency estimator allows us to estimate only the per-
ceptually significant sinusoids and disregard inaudible ones, and to find the amplitudes
and phases in such a way that artifacts are not introduced in the decoded signal. This
formulation is only relevant when we are interested in a subset of the total number of
sinusoids. Otherwise, there is no need for the spectral weighting of the error in the
frequency estimation. However, the total number of sinusoids is generally unknown
and robustness with respect to the number of sinusoids is desirable. We mention in
passing that it also may be advantageous to incorporate the perceptual distortion in the
estimation of amplitudes and phases as in (40) since erroneous estimates may introduce
components in parts of the spectrum where no masker is present.

In terms of projections and transformations, the filtering matrix H can be thought
of as a transformation to a perceptual domain and the problem of finding the optimal
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Figure 1: Orthogonal projection of the filtered input onto the column space of the filtered signal model.

signal model can be seen as a projection problem. Then, the transformed input signal
is projected orthogonally onto the column space of the transformed signal model. This
introduces an error which is orthogonal to the signal model in the perceptual domain.
This is illustrated in Figure 1 with R(·) denoting the range.

In the perceptual matching pursuit [23], which is a special case of the psychoa-
coustic adaptive matching pursuit with no adaptive norm, the dictionary element that
minimizes the perceptual norm of the residual ri is chosen. As in Section 3, this is
just the one-sinusoid nonlinear least-squares estimator operating on the residual. The
matrix Z again reduces to the vector z =

[
exp(jω0) · · · exp(jω(N − 1))

]T , and the
estimator is

ω̂i = argmin
ω

‖H(ri − za)‖2
2. (43)

with ri again being the residual at iteration i (see section 3). Rewriting (43), we get the
frequency estimator

ω̂i = argmax
ω

rH
i H2z

(
zHH2z

)−1
zHH2ri (44)

= argmax
ω

| 〈Hz,Hri〉 |2
‖Hz‖2

2

, (45)

and the associated optimal scaling, i.e. amplitude and phase, is

âi =
〈Hz,Hri〉
‖Hz‖2

2

. (46)

The perceptual MP converges in the perceptual distortion measure rather than the 2-
norm. We see that as with matching pursuit and the one-sinusoid NLS estimator, there
is an equivalence between the perceptual matching pursuit and the perceptual NLS. The
perceptual MP can be implemented efficiently using two FFTs in each iteration.
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6 EVD of the Perceptual Weighting Matrix

6.1 Signal Model Assumption
We now consider the example of a signal model component being an eigenvector v of
the perceptual weighting matrix H with eigenvalue λ such that

Hv = λv. (47)

As we shall see in Section 7, this assumption leads to some interesting results and is
indeed valid for certain important cases. It is well-known that complex sinusoids are
eigenvectors of convolution operators, i.e.

v = [ exp(jω0) · · · exp(jω(N − 1)) ]T . (48)

For notational simplicity, we omit the dependence of the eigenvalue λ on the frequency
ω. Strictly speaking, (47) holds only in general (i.e. for any ω) for the asymptotic case
N → ∞. For the following analysis, consider (47) to be simply an approximation.

The above simplification requires the calculation of eigenvalues for the different
eigenvector approximations. The optimal approximation of the eigenvalue for the vec-
tor v in a least-squares sense can be stated as

λ̂ = argmin
λ

‖Hv − λv‖2
2, (49)

which is the Rayleigh coefficient, i.e.,

λ̂ =
vHHv

vHv
. (50)

We see that when the vector v is in fact an eigenvector of H, this will result in the
correct eigenvalue. The goodness of the eigenvalue approximation can conveniently be
measured as

‖Hv − λ̂v‖2
2. (51)

6.2 EVD of Circulant Matrices
In Section 6.1 we considered the assumption that the signal model components are
eigenvectors of the filtering matrix. Now we take a look at the eigenvalue decompo-
sition of circulant matrices, i.e. the filtering matrix H, which is also symmetric. A
circulant matrix, say C ∈ RM×M , has the following structure

C =




c0 cM−1 · · · c1
c1 c0 · · · cM−1

...
...

. . .
...

cM−1 cM−2 · · · c0


 , (52)
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which is uniquely defined by the vector c = [ c0 · · · cM−1 ]T . Defining the discrete
Fourier transform (DFT) matrix as

F =
1√
M

[
f0 f1 · · · fM−1

]
, (53)

with the individual Fourier bases fk =
[
f0

k · · · fM−1
k

]T
being composed from fk =

exp(j2πk/M). It then follows that the eigenvalue decomposition of the matrix C can
be written as [36]

C = UΛUH , (54)

with U = FH and Λ =
√
M diag(Fc). We see that the eigenvalues in the diagonal

matrix Λ are simply the DFT coefficients of c and the eigenvectors contained in U are
the Fourier bases of a DFT. For the special case of a symmetric c, i.e. cm = cM−m, the
eigenvalues are real.

6.3 Equivalent Forms
We now use the EVD to write the perceptual distortion measure in a number of different
but equivalent forms. First, we write the perceptual distortion as

D = ‖H(x− x̂)‖2
2 = (x − x̂)HH2(x − x̂), (55)

where H2 is also symmetric and circulant and has the eigenvalue decompositionUΛ2UH .
Here it is also interesting to note that comparing (55) to (15), we see that there is an
inherent contradiction in the use of the perceptual weighting matrix and the inverse co-
variance matrix in the maximum likelihood estimator for the colored noise case since
H2 6= Σ−1. Now the perceptual weighting can be rewritten into the following diagonal
form:

D = (x − x̂)HUΛ2UH (x − x̂) (56)

= (UHx −UH x̂)HΛ2(UHx−UH x̂). (57)

We note that the signal model x̂ may be chosen such that UH x̂ can be found analytically
or pre-computed and stored in memory. Windowed sinusoids, for example, have simple
Fourier transforms. As another example of this, we now treat the case of transform
coding with the signal model components being equivalent to the eigenvectors, i.e. x̂ =
Uy. In transform coding, the optimization problem concerns the transform coefficients
y. Bits are allocated such that the perceptual error is minimized. Now, the perceptual
distortion can be rewritten as

D = (UHx − y)HΛ2(UHx− y), (58)
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or the equivalent form where the input signal x is pre-filtered:

D = ‖Hx −HUy‖2
2 = ‖Hx−UΛy‖2

2 . (59)

It can be seen that distortion calculations can be simplified this way. This is a signifi-
cant advantage in coding based on rate-distortion optimization [53], which requires the
calculation of distortions for different allocations and quantizers.

7 Relation to Simplified Estimators

7.1 Pre-filtering Method
Using the eigenvector assumption in (47) the sinusoidal frequency estimation criterion
(38) can be significantly simplified:

min ‖H(ri − r̂i)‖2
2 = min ‖H (ri − va) ‖2

2 (60)

= min ‖Hri − λva‖2
2, (61)

where a is a complex scale factor (amplitude and phase in polar form), which is included
here since we do not restrict the norm or the phase of v. The optimal value of this scale
factor can then easily be found as

â =
vHλ∗Hri

vH |λ|2v . (62)

Next, expressing the perceptual NLS in terms of the unknown eigenvector, the fre-
quency estimation criterion is simplified significantly:

ω̂i =arg min
ω

‖Hri − λva‖2
2 (63)

=arg max
ω

rH
i HHλvvHλ∗Hri

vHλ∗λv
(64)

=arg max
ω

|〈v,Hri〉|2
N

. (65)

We see that the estimator reduces to maximizing the inner product between the eigen-
vector v and ri filtered by the perceptual filter. This inner product is just the peri-
odogram of the perceptually filtered observed signal since v is a complex sinusoid.
The modification of the signal model due to the filtering cancels out in the selection
criterion and can be ignored. This is, however, not the case for damped sinusoids and
pre-filtering is not well justified in that case. In practice this means that the input has
to be filtered by the perceptual filter and then a squared error measure may be mini-
mized in the estimation procedure if the model component is an eigenvector of H or is
a reasonable approximation thereof.

The pre-filtering method has been applied to the perceptual estimation problem in
e.g. [26, 54].
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7.2 Pre- and Post-filtering Method
In the pre- and post-filtering approach of [55, 56], modeling is performed in the percep-
tual domain, i.e. operating on the pre-filtered signal:

min ‖Hri − p̂‖2
2 = min ‖p− p̂‖2

2. (66)

Afterward, the modeled signal p̂ has to be mapped back to the signal domain by the
inverse filter (also called the post-filter)

r̂i = H−1p̂, (67)

which means that the post-filter has to be sent to the decoder in coding applications.
Otherwise, this approach differs from the pre-filtering method in algorithmic form in
that the signal model is modified after the estimation/quantization rather than before.
This has the advantage that the structure of the model, which may be lost by the fil-
tering, is preserved in the estimation/quantization process. However, to argue that the
signal model p̂ should be posed in the perceptual domain rather than in the signal do-
main seems somewhat contrived as the physical meaning of the model parameters is
potentially lost in the transformation.

If the signal model component p̂ is an eigenvector of the inverse perceptual filter
H−1, the post-filtering can be reduced to a simple scaling,

r̂i = λp̂, (68)

in which case the signal model is valid also in the perceptual domain and can be modi-
fied directly. Also, the post-filter does not have to be transmitted to the receiver in this
case.

For some types of estimators, though, the pre-filtering of the input signal has some
serious drawbacks. Since it colors the signal, any noise will also be colored. The
performance of subspace-based estimators degrades when the noise is not white [35].
Typically, this would be solved by applying pre-whitening but that is not an option for
this application. These arguments favor NLS-based approximations such as matching
pursuit for perceptual frequency estimation since NLS is still asymptotically efficient
for colored noise [41].

7.3 Weighted Matching Pursuit
Since the filtering matrix H is symmetric, i.e. HH = H, the inner product in the
numerator of (65) can be written as

〈v,Hri〉 = vHHri = (λv)
H

ri, (69)
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such that the component selection criterion becomes

ω̂i =argmax
ω

|〈v,Hri〉|2
N

= argmax
ω

|λ|2 |〈v, ri〉|2
N

. (70)

The perceptual filtering approach can thus be reduced to a simple weighting of the inner
products, where the weight is the absolute value of the eigenvalue associated with the
eigenvector v. This is in fact what the weighted matching pursuit does [25]. In the
weighted MP the eigenvalue of a sinusoid of frequency ω is approximated as

λ̂ ≈
√
A

(⌊
ωK

2π
+

1

2

⌋)
, (71)

rather than the computationally more demanding least-squares approximation in (50).
We see from (70) that under certain conditions on the perceptual filter, the sinusoidal
estimator weighted MP is identical to the pre-filtering method. In [25], the weighting is
introduced as a heuristic for incorporating psychoacoustics. Here, we have established
the method as an approximation of the perceptual NLS.

The weighted MP has the problem that due to the perceptual weighting, the selected
components may not be spectral maxima and spectral distortion introduced by the side-
lobes of the sinusoidal components are not taken into account. This may cause audible
artifacts. In the perceptual MP these problems are solved, and listening tests in [23]
demonstrated its superior performance. The problems of the weighted MP can though
easily be fixed by adding the constraints that the estimates have to be spectral maxima.

8 Numerical Examples
In this section we illustrate some of the points made in the previous sections using an
example of a sinusoidal audio signal, the trumpet signal of SQAM [57]. In Figure 2 a
segment of this signal is shown. The signal is sampled at 44.1 kHz. The masking curve
is derived using the model in [30] and the corresponding perceptual weighting function
is shown in Figure 3 along with the periodogram of the segment in Figure 2. Note the
very distinct peaks and the harmonic structure in the periodogram.

The convergence of the perceptual MP in the perceptual norm is illustrated in Figure
4, again for the trumpet signal in Figure 2. Note how the perceptual distortion is a non-
increasing function of the number of components. The sinusoidal frequencies that are
estimated in the individual iterations of the perceptual MP (indicated by numbers) are
shown in Figure 5. The effect of the perceptual distortion measure can been observed
in that although more energy is present at peak 2, the perceptual MP picks peak 1 first.
From the figure it is clear that the effect of the perceptual distortion measure is one of
ordering. In Figure 6 an illustration of the error introduced by the eigenvector/-value
approximation is shown. The figure shows the perceptual weighting for a segment of
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Figure 2: Example of an audio segment, trumpet. The trumpet signal is a fairly stationary, tonal signal.
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Figure 3: Perceptual weighting function (dashed), masking curve (dotted) and spectrum for the trumpet
signal (solid) in Figure 2.

the trumpet signal and the error as defined by (51) introduced as a function of frequency
with the eigenvalues being approximated using (50). Also shown is the signal-to-noise
ratio (SNR), which is calculated as

SNR = 10 log10

‖Hv‖2
2

‖Hv − λ̂v‖2
2

[dB]. (72)

The perceptual weighting was derived with a frequency resolution of 4096 uniformly
spaced points, and the corresponding filter was calculated by taking the inverse discrete
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Figure 4: Convergence of the perceptual matching pursuit in the perceptual distortion for the trumpet signal
in Figure 2.

Fourier transform of its square-root. The complex sinusoids were windowed by a Han-
ning window having a length of 1544 samples and then zero-padded to length 4096 to
match the length of the perceptual filter. These are fairly typical choices of constants in
audio coding. From this figure, it is very clear that these windowed, zero-padded com-
plex sinusoids are not eigenvectors of the filtering matrix, since the SNR is far from
the numerical noise floor (64 bit floating point). The loss in estimator performance in
terms of distortion may well be worth it, though, as considerable complexity reductions
can be achieved. It can also be seen that the goodness of the approximation is highly
frequency dependent with the approximation performing well at high frequencies for
this particular perceptual weighting function. This can be attributed to the perceptual
weighting function being flatter in this region. Note that the perceptual weighting func-
tion will be dominated by the threshold in quiet for very low and high frequencies.
When the length of the perceptual filter and the complex sinusoids are the same and
no window is applied, the error hits the numerical noise floor as the complex sinusoids
become eigenvectors of the filtering matrix.

9 Results
In this section we briefly summarize and discuss the main results of this paper. In
particular we recapitulate the conditions under which the different methods that have
been discussed are equivalent and optimal.

• When estimating the frequencies of sinusoids in additive white and Gaussian
noise, the nonlinear least-squares method is the maximum likelihood estima-
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Figure 5: Frequencies estimated (crosses) in the individual iterations (indicated by number) by the perceptual
matching pursuit.
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Figure 6: The error (solid) and SNR (dashed) as function of frequency introduced by the eigenvector approx-
imation for a particular perceptual weighting function (dotted).

tor. The nonlinear least-squares method is efficient, i.e. in this case it attains
the Cramér-Rao bound and is hence optimal.

• Under the condition that the noise is Gaussian but colored, there is an equiva-
lence between maximum likelihood and (weighted) least-squares based estima-
tion. The non-linear least-squares method is still asymptotically optimal in this
case.
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• The matching pursuit algorithm is a (one-dimensional) relaxation of the subspace
pursuit of nonlinear least-squares. It converges in the respective norm, here the
2-norm, as a function of the number of components and has an efficient imple-
mentation for the frequency estimation problem.

• A recently established perceptual distortion measure, which shapes the error
spectrum according to the masking threshold, can be shown to form a circu-
lant and symmetric perceptual weighting matrix, which can be interpreted as a
filtering matrix. Circulant and symmetric weighting matrices have eigenvectors
that are rectangularly windowed complex sinusoids of uniformly spaced frequen-
cies. Asymptotically, sinusoids of arbitrary frequencies are eigenvectors of the
weighting matrix.

• When this perceptual weighting matrix is applied in solving the least-squares
problems in the NLS and MP estimators, we get the perceptual nonlinear least-
squares estimator and the simpler perceptual matching pursuit. The perceptual
matching pursuit now converges in the perceptual distortion.

• The pre-filtering method and the weighted matching pursuit are equivalent to the
perceptual matching pursuit when the model components are eigenvectors of the
perceptual weighting matrix. This allows for very efficient implementation of
the perceptual weighting. In some applications of the pre-filtering method and
the weighted matching pursuit, the model components are not eigenvectors of the
weighting matrix; then, these methods are only approximations of the perceptual
matching pursuit.

10 Conclusion
We have introduced the perceptual frequency estimation problem based on a spectral
distortion measure and its optimal solution, the nonlinear least-squares frequency esti-
mator. The nonlinear least-squares method has a strong background in statistical signal
processing and estimation theory and is well-known to have excellent statistical perfor-
mance. We have related this to a number of well-known methods for perceptual param-
eter estimation, namely the perceptual matching pursuit, the weighted matching pursuit
and the pre-filtering method. It has been shown that these methods can be seen as relax-
ations and approximations of the optimal solution. Specifically, we have established the
perceptual matching pursuit as a relaxation of the nonlinear least-squares estimator, and
we have shown that it reduces to the pre-filtering method and the weighted matching
pursuit under certain conditions.
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1. INTRODUCTION G3

Abstract
This paper addresses complexity reduced rate-distortion optimized audio coding under
rate constraint. A technique where distortion minimizing coding templates, chosen from
a set of templates, are jointly selected for a set of segments. This optimization requires
knowledge of rate-distortion pairs for all segments, and for each coding template, which
often are costly to obtain. The proposed framework exchanges true rate-distortion pairs
with predicted ones, thereby allowing for complexity reduction. The prediction is based
on a property vector extracted for each segment, from which distortion predictions,
using Gaussian mixture models, are performed. Here, we evaluate the proposed frame-
work in a sinusoidal coding context. The results show that the proposed framework can
increase the distortion performance, compared to a fixed sinusoidal coding scheme.

1 Introduction
Rate-distortion (R-D) optimization is of interest for audio coding for several reasons.
It allows for adaptive coding schemes, where the coder is adapted to user and network
constraint as well as source characteristics, thereby increasing the overall distortion
performance. For example, parametric coders typically outperform transform coders at
low bit-rates, and LPC-based coders perform very well for speech but not for audio. An
R-D optimized selection among such a set of coders is thus of interest.

There are a multitude of different applications that can be put into the R-D opti-
mization framework: 1) Coder selection for specific segments [1], 2) Distribution of
bits over stages in multistage structures [2], 3) Variable bit-rate (optimal distribution
of bits over segments) [3], and 4) Dynamic time-segmentation [3, 4]. All of these ap-
plications require knowledge of the incurred distortion in the current audio segment
for all of the coders (coding template, number of sinusoids, etc), in order to perform
R-D optimization. For some of the above applications, we end up having to do distor-
tion calculations, which sometimes require both signal analysis and synthesis, for many
different coding templates, not necessarily useful in the final coder synthesis.

The complexity of these distortion calculations may be severe, preventing the use
of R-D optimized coders in many applications. Thus, we here propose an open loop
approach to the R-D optimization problem. We exchange coding distortions with pre-
dicted ones, thereby allowing for complexity reduction. For the prediction purpose we
employ an open loop framework for distortion prediction proposed in [5]. The frame-
work is based on a property vector extracted from the segment to be coded, from which
distortion predictions, using a Gaussian mixture model (GMM) of the joint property-
distortion pdf, are performed. We evaluate the proposed framework in a sinusoidal
coding context. Based on predicted R-D curves we perform R-D optimized distribution
of sinusoids over sets of segments matching a given bit-budget. The results are com-
pared with a sinusoidal coder optimized on original R-D curves, and a sinusoidal coder
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using a fixed number of sinusoids per segment.
The paper is organized as follows. In Section 2 we discuss the basics of R-D opti-

mized coding, and in Section 3 we present the prediction framework. This is followed
by a presentation of the experimental setup in Section 4. In Section 5 we evaluate the
goodness of the proposed system. Finally, we conclude in Section 6.

2 Rate-Distortion Optimization
The problem of distributing a certain number of bits over a set of segments, S, consti-
tuting an optimization viewport, can be cast into rate-distortion optimization under rate
constraint. This optimization can be stated as the following constrained optimization
problem:

min D

s. t. R ≤ R?,
(1)

where D is the distortion, R is the resulting rate, and R? is the target rate. Let Ts be
a finite, discrete set of coding templates (ways of encoding, etc.) for segment s, and
R(τ) and D(τ) be the rate and distortion associated with coding template τ ∈ Ts. The
distortion D and the rate R are the sum of distortions and rates over the segments, S,
associated with a particular set of coding templates τ = [τ1 · · · τS ] with τi ∈ Ti, i.e.,

D =

S∑

s=1

D(τs) and R =

S∑

s=1

R(τs). (2)

The problem (1) can then be written as the following unconstrained problem [4]

min
τ

S∑

s=1

D(τs) + λR(τs) =

S∑

s=1

min
τ∈Ts

D(τ) + λR(τ), (3)

where λ is the non-negative Lagrange multiplier. The right side follows from assuming
that distortions and rates are additive and independent over segments. This means that
the optimization problem can be solved independently for each segment for a particular
λ. The Lagrange multiplier λ can be interpreted as the slope of the R-D curve for a
certain rate. The problem is then to find the λ? that leads to the target bit rate R?.
Such a λ cannot be guaranteed to exist for discrete problems such as ours. We can,
however, find a solution close to the optimal one provided that the {R(τ), D(τ)} points
are sufficiently dense. The optimal λ is found by maximizing the concave Lagrange
dual function:

λ? = arg max
λ

[
S∑

s=1

(
min
τ∈Ts

D(τ) + λR(τ)

)
− λR?

]
. (4)
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Figure 1: Illustration of the evaluation of the incurred distortion, D(τs), for one particular coding template,
τ , and one particular audio segment, s. Qτ (·) represents the coding or modeling associated with template,
τ , and δ(·) is the distortion criterion.

This can be done by sweeping over λ using simple bisection until the rate R(λ) is
within some range of the target bit rate [4]. Given the optimal λ?, the rate-distortion
optimization simply becomes a matter of choosing the optimum coding template for a
particular segment s as

τ?
s = argmin

τ∈Ts

[D(τ) + λ?R(τ)] . (5)

For the rate-distortion optimization to result in improvements in perceived quality, the
chosen distortion criterion, δ(·), must reflect human sound perception. In this work
we have chosen to work with the distortion criterion proposed in [6], which is further
described in Section 4.

3 Rate-Distortion Prediction
To perform R-D optimized coding over a set of segments, S, using a set of coding
templates, Ts, we require knowledge of R-D points for each segment and each coding
template,

{R(τs), D(τs)} : ∀ s ∈ S, ∀ τs ∈ Ts. (6)

Ideally these points are found by coding each segment with each of the coding tem-
plates, as visualized in Figure 11. This approach is highly complex, and in general
therefore not feasible. Thus we here suggest an open loop alternative, where distor-
tions, {D(τs)}, are predicted from the current segment of audio, s, as visualized in
Figure 2. In essence the structure in Figure 1 is exchanged for the structure in Figure
2. Below, we discuss the predictor employed to predict the incurred distortion for one
particular coding template. In practice we require one predictor, as described below, for
each coding template.

1The structure in Figure 1 needs to be processed NxM times, if we perform a joint optimization over N
segments, using M coding templates for each segment.
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Figure 2: A framework for prediction of the incurred distortion, D(τs) = δ(s,Qτ (s)), when coding a
random vector s, using coding template τ . A dimension reducing property vector extraction, f(·), is followed
by a distortion prediction, gτ (·).

3.1 Property Vector Based Prediction
We employ distortion prediction as suggested in [5]. The overall prediction is separated
into a property extraction, f(·), and a prediction, gτ (·), as visualized in Figure 2. Each
audio segment, s, is processed into a dimension reduced property vector P, from which
a prediction, D̂(τs), of the coding distortion, D(τs) is to be found. For simplicity, we
below drop segment and coding template indices. The random variable representing the
incurred distortion will be denoted D, and the corresponding outcomes will be denoted
δ.

The selection of a set of properties, p, from the input segment, s, is of great impor-
tance for the performance of the proposed framework. The selected set of properties
should be a representative for the incurred distortion in the current segment for the given
coder. In more theoretical terms, the random input segment, s, is processed into two
random variables, the distortion variable, D, with outcomes δ, and the property vector,
P. The basic task for the property extractor, f(·), is to extract properties, P, that con-
tain sufficient information about D for a required predictor accuracy. The amount of
information that P contains about D, or the goodness of a given property vector, can be
measured by the mutual information I(D;P). In this work we have chosen to rely on
standard audio properties. Our choice of property vector is further discussed in Section
4.

The aim of the predictor, g(·), is to find a prediction, δ̂, of the incurred distortion, δ,
based on an observation of the property vector, P = p. Utilizing a pre-trained GMM
for the joint distortion property pdf, f (M)

D,P (δ,p), we approximate the MMSE at each
coding instant as

δ̂ = g(p) =

∫
δf

(M)
D|P (δ|P = p)dδ, (7)

where f (M)
D|P (δ|P = p) is the conditional model pdf, which can be shown to be a mix-

ture of Gaussian densities, and is easily derived from the joint model pdf, f (M)
D,P (δ,p).
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In practice, this predictor calculates a weighted sum of conditional means,

δ̂ =
M∑

i=1

ρ′imi,D|P=p, (8)

where M is the number of mixture components, and {ρ′i} and {mi,D|P=p} represent
the weights and the means of the conditional model pdf, f (M)

D|P (δ|P = p), respectively.

3.2 Performance
The employed prediction scheme is designed to minimize the variance of the prediction
error, Z = δ − δ̂. Assuming an unbiased predictor, the variance of the prediction error
can be expressed as

σ2
Z = E

[
(Z)2

]
= E

[
(δ − δ̂)2

]
. (9)

The minimum mean square error estimator (MMSE) for this task, i.e., the one minimiz-
ing σ2

Z , is the conditional mean estimator,

δ̂mmse = E[D|P = p] =

∫
δfD|P(δ|P = p)dδ. (10)

The employed predictor is an approximation of the MMSE estimator, and the predictor
output (8) will approach the true conditional (10), as the model pdf approaches the true
pdf.

As discussed above, the performance of the predictor is dependent on the chosen
property vector. In [5] the relation between the property goodness, I(D;P), and the
overall prediction error, σ2

Z was studied. It was shown that for a given property vector,
P, the overall prediction error, σ2

Z , can be bounded as

σ2
D ≥ σ2

Z ≥ 1

2πe
22(h(D)−I(D;P)), (11)

where σ2
D is the variance of the distortion variable to be predicted, h(D) is the differen-

tial entropy of the distortion random variable D, and I(D;P) is the mutual information
between D and P.

4 Experimental Setup
Here, we present the experimental framework, separated into the source coding system
(sinusoidal coder, R-D optimization , distortion criterion), and the distortion predictor
(GMM, property vector, audio database).



G8 PAPER G

4.1 Source Coding System
We employ a sinusoidal coder based on a simplified version of psychoacoustic match-
ing pursuit (PAMP) [7]. Using a PAMP based coder, the distortion (12) will decrease
in a monotone way as a function of the number of iterations (sinusoids). The analysis/-
synthesis is performed for segments of length 35 ms, sampled at 48 kHz. The coder
employs a Hanning window and has a 50 % segment overlap. Phases are quantized
uniformly using 5 bits per component, whereas amplitudes and frequencies are quan-
tized in the logarithmic domain. Using entropy coding and differential encoding, we
obtain perceptually transparent quantization at an average rate of approximately 16
bits/sinusoid.

R-D optimization, c.f. Section 2, is here employed to distribute sinusoids (bit-
allocation) over optimization viewports, S, of length 1 s, matching a target rate of 25
kbits/s2. For each segment the algorithm allocates a number of sinusoids in the range
0−85. The optimization is performed using the sinusoidal modeling distortion as input,
using a cost of 16 bits/sinusoid.

We employ a distortion criterion, δ(·), based on the model in [6]. For a particular
segment the distortion can be written as

δ(e(n)) =

∫ π

−π

A(ω)|F {w(n)e(n)} |2dω, (12)

where F{·} denotes the Fourier transform, A(ω) ∈ {x ∈ R|x > 0} is a perceptual
weighting function and w(n) is the analysis window and e(n) = s̃(n) − s(n) is the
modeling error. The quantization distortion is disregarded in the optimization as the
distortion criterion may be overly sensitive to frequency quantization.

4.2 Distortion Predictor
The key component of the predictor described in Section 3 is a GMM for the joint
property-distortion pdf, f (M)

D,P (δ,p), which is to be trained off-line. All GMM’s em-
ploy 16 mixtures, and the training was conducted using the expectation maximization-
algorithm (EM). For GMM training purposed we have extracted a training set, consist-
ing of 180.000 joint property-distortion vectors from the SQAM database (up-sampled
to 48 kHz). All test excerpts are disjoint from the training set.

We have chosen to work with a 4-dimensional property vector consisting of: 1)
The loudness, which is calculate as the log of the average energy of the segment, 2)
The spectral centroid, which is calculated as mean of the spectrum with respect to
frequency, 3) Spectral bandwidth, which is calculated as the second moment of the
spectrum with respect to frequency, 4) Spectral flatness, which is calculated as the ratio
of the geometric mean and the arithmetic of the power spectrum. We do not claim to

2In this context coding templates, referred to in Section 2, correspond to a sinusoidal coder using different
number of sinusoids.
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Figure 3: Original and predicted R-D curves for one segment (35 ms) in the excerpt “glockenspiel”.

excerpt E[δorg] ∆E[δpre] ∆E[δuni]
glockenspiel 6.55 · 102 50 % 103 %

german speech 2.42 · 104 3.8 % 9.9 %
castanets 2.68 · 104 2.7 % 7.6 %

harpsichord 9.63 · 103 7.6 % 18 %
jazz 2.79 · 104 3.2 % 4.2 %

Table 1: Average segment distortion, E[δorg ], for various excerpts. ∆E[δsys] =
E[δsys]−E[δorg]

E[δorg ]
represents

the increase in average distortion compared to an R-D optimized system based on original R-D curves. Here
shown for a system using predicted R-D curves(pre), and for a system using uniform bit allocation over the
segments (uni).

have chosen the best property for the task at hand, rather we have chosen to rely on
simple (low-complexity) standard audio properties, used in audio classification [8].

5 Experimental Results
We have tested the proposed open loop R-D optimization, for the purpose of R-D opti-
mized bit-allocation (distribution of sinusoids) over optimization viewports, S, c.f. Sec-
tion 2. In the experiments we have exchanged original R-D pairs, c.f. equation (6),
with predicted R-D pairs. For our particular setup, this means that we have exchanged
86 original R-D pairs, below referred to as a R-D curve, with predicted ones for each
segment, as visualized in Figure 3. Predicted distortion values are only used in the op-
timization, meaning that presented distortion values are based on original R-D curves.
For comparison purposes we have included the performance of a coder with a uniform
sinusoidal distribution, i.e. the same number of sinusoids per segment.

In Table 1 we compare the performance of the systems, by averaging the distortion
in equation (12) over a number of different excerpts. The results show that the proposed
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Figure 4: Bit allocation for the first 200 segments of the excerpt “Glockenspiel”. The solid line represents
an R-D optimized system based on original R-D curves (org), the dashed line represents an R-D optimized
system based on predicted R-D curves (pre), and the dotted line represent a system with uniform bit allocation
(uni). The periodically changing shaded and white fields represents optimization viewports.

system outperforms a uniform sinusoidal distribution for all the excerpts. Naturally,
there is a loss compared to the reference system. The gains of optimized systems com-
pared to a system using a fixed number of sinusoids vary. The achievable gain of R-D
optimized coding is large for “glockenspiel”. The non-stationary character of the sig-
nal, results in an R-D optimized bit distribution which is far from uniform, c.f. Figure
4. The result is a far too high distortion at onsets for the uniform case, c.f. Figure 5. For
the “jazz” excerpt the R-D optimized distribution of sinusoids is not far from uniform,
and thus a uniform distribution can compete with the RD optimized, c.f. Table 1. It
should be mentioned that the poor performance for the proposed system on the “glock-
enspiel” excerpt, a 50 % loss, can be traced back to the R-D optimization procedure.
Due to the non-convexity of predicted RD-curves, c.f. Figure 3, the optimization fails
in selecting the correct operating point. By simple post processing of predicted R-D
curves, smoothing and forcing convexity, the loss can easily be reduced to around 20
%.

An alternative application is up-front coder selection for each optimization view-
port, S, i.e. selection of the coder that minimizes the distortion for the current set of
segments, S. For this purpose viewport R-D curves are useful. Viewport R-D curves
are achieved by sweeping over λ?, c.f. equation (4). In Figure 6 R-D curves for the
first viewport in the “glockenspiel” excerpt are shown. The solid line represents the
viewport R-D curve based on original distortion values, the dashed line represents the
predicted viewport R-D curve and the dotted line represent the R-D curve for a sinu-
soidal coder employing a fixed number of sinusoids per segment. Comparing the solid
and the dotted curve indicate that we should select the R-D optimized system instead of
the fixed system for all rates on this viewport. We can also note that the choice would
be the same if we based our decision on the predicted curve, the dashed line, instead
of the original. This is obviously a dummy selection, as an optimized system always
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outperforms a fixed system, but if the dotted curve would have represented for example
a waveform coder, such a selection can be of interest. Note that the dashed line repre-
sents a prediction of the performance of the R-D optimized system (solid line), and it
can therefore indicate a performance better than the performance of the actual system3.
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Figure 5: Distortion distribution for 200 segments of the excerpt “Glockenspiel”. The solid line represents
an R-D optimized system based on original R-D curves (org), the dashed line represents an R-D optimized
system based on predicted R-D curves (pre), and the dotted line represent a system with uniform bit allocation
(uni). The periodically changing shaded and white fields represents optimization viewports.
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Figure 6: Viewport R-D curves for the first optimization viewport (1 s) in the excerpt “glockenspiel”. The
solid line represents an R-D optimized system based on original R-D curves (org), the dashed line represents
an R-D optimized system based on predicted R-D curves (pre), and the dotted line represent a system with
uniform bit allocation (uni).

3Here all figures are based on predicted distortion values, as opposed to above, where predicted distortion
values only are used for the optimization, and the results are based on original distortion values.
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6 Discussion
In this paper we have studied complexity reduced R-D optimized coding, where R-D
curves are exchanged for predicted ones. The proposed framework was applied in a
sinusoidal coding context, for the purpose of distributing sinusoids over sets of audio
segments. The results show that the proposed framework works, in the sense that the
performance is improved compared to a system with a uniform sinusoidal distribution.
It should be noted that we lose compared to an R-D optimized system based on the true
R-D curves. This loss can be decreased if our rather raw system is further optimized,
meaning a better choice of property vector, and a set of training data better matching
the expected audio input.
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Abstract
In this paper, we investigate a reduced complexity approach to rate-distortion optimized
time-segmentation in audio coding. Instead of the conventional closed-loop approach
for determining the coding distortions, they are estimated from a set of features ex-
tracted from the audio signal. Care is taken to ensure that properties such as convex
and non-increasing rate-distortion curves carry over from the training data to the esti-
mated rate-distortion pairs. With computational complexity reductions of a factor close
to 10, perceptual listening tests reveal a slight reduction of the signal quality, while
maintaining a large improvement over fixed segmentation.

1 Introduction
Adaptive time-segmentation has been shown to be an efficient method for improving
the rate-distortion trade-off in speech- and audio coding [1–4]. These methods usually
employ an analysis-by-synthesis procedure in which full encoding-decoding operations
are required for each and every candidate segment, including those not actually used
in the final signal representation. This is necessary in order to determine the distortion
and rate if the segment is used in the signal representation. The distortions are obtained
by explicitly comparing the encoded-decoded segments to the corresponding original
segments, and the optimal segmentation is then found as the one minimizing the total
distortion, usually subject to a rate constraint. If the encoding-decoding processes are
computationally extensive, as is the case e.g. in the psychoacoustic matching pursuits
(PMP) schemes of [5, 6], this may lead to impractical execution times, even for off-line
applications such as audio compression. However, [7] proposed a strategy for estimat-
ing, at low complexity, the distortion arising from coding a signal segment. In [8], this
approach was used to predict the optimal distribution of sinusoidal components in a
fixed segmentation PMP coder. In this work we shall use a slightly modified approach
to estimate the optimal time-segmentation in the same coder.

The rest of this paper is structured as follows: first, rate-distortion optimized time-
segmentation is reviewed in Section 2. Next, Sections 3 and 4 describe how to incorpo-
rate the distortion estimation approach of [7] into such a scheme. Objective as well as
subjective results are given in Section 5 before Section 6 concludes on the work.

2 Rate-Distortion Optimized Time-Segmentation
The rate-distortion optimized time-segmentation algorithm of [1] is based on the con-
strained optimization problem:

minimize : D(τ, c(τ))
s.t. : R(τ, c(τ)) ≤ RC .

(1)
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Here, τ =
{
s1, s2, . . . , sσ(τ)

}
denotes the time-segmentation consisting of σ(τ) vari-

able length segments si, each having a length equal to an integer number of grids (e.g. 5
ms). The vector c(τ) =

{
c1(τ), c2(τ), . . . , cσ(τ)(τ)

}
denotes the coding templates,

(i.e. different ways of encoding each segment in a segmentation τ ). RC is the target
bit budget, whereas R is the total number of bits used and D is the total distortion, the
latter two found by summation over the segments:

R(τ, c(τ)) =

σ(τ)∑

i=1

r(ci(τ)) and D(τ, c(τ)) =

σ(τ)∑

i=1

d(ci(τ)).

Here, r(ci(τ)) is the number of bits used for encoding segment si using template ci(τ)
and d(ci(τ)) is some measure of the distortion between the original segment and the
one encoded using template ci(τ). Usually, the constrained optimization problem (1) is
solved by recasting it as an unconstrained problem with cost-function:

J(τ, c(τ)) = D(τ, c(τ)) + λR(τ, c(τ)). (2)

Now, by setting λ to some value (say λx) and minimizing J over {τ, c(τ)} we will
obtain a pair (Dx, Rx) optimal for λx. Thus, λ can be iterated and J minimized in each
step, until a rate R / RC is obtained. In each iteration, the minimization of J is a
two-step procedure: first, the coding templates c?

i (τ) optimal for λx are found for each
segment:

∀i, τ : c?i (τ) = argmin
ci(τ)

{d(ci(τ)) + λxr(ci(τ))} . (3)

By denoting j?
i (τ) = d(c?i (τ)) + λr(c?i (τ)), the optimal segmentation τ ? is the one

minimizing the sum over j?
i (τ):

τ? = argmin
τ

σ(τ)∑

i=1

j?
i (τ). (4)

This minimization is carried out at reasonable complexity using a dynamic program-
ming technique, see [1] for details.

The computational problems of the procedure described above appears in (3): in
order to find the optimal coding templates, we need the distortion if the coding tem-
plate is used in the signal representation. Thus, we must encode all segments with all
coding templates, even for the segments and coding templates not used in the final rep-
resentation. If we denote the number of grids in the signal byG and all segment lengths
from 1 toG grids are allowed, the total number of possible segments in the signal equals
K = G2+G

2 . Alternatively, if the maximum segment length is limited atLwithG � L,
K ≈ GL. This is significantly larger than the number of segments actually used in the
signal representation, σ(τ) ≤ G.
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The number and nature of the coding templates depends directly on the type of
coder(s) employed. In the rest of this paper, we shall focus on (psychoacoustic) MP-
based coders, e.g. [5, 6, 8]. In such a coder, the signal segments are iteratively de-
composed into a weighted sum of basis functions. In each iteration, a basis function
is chosen from an over-complete dictionary as the one minimizing a perceptual error
norm (a distortion). In that the representation of each basis function requires a certain
amount of bits, varying the number of components results in different coding templates
with corresponding {r(ci(τ)), d(ci(τ))} pairs. Due to the MP approach, these pairs
will lie on a non-increasing (and sometimes also convex) hull. Unfortunately, the PMP
algorithm is computationally extensive, primarily because accurate modeling of certain
signal segments such as transients requires quite a large number of iterations, (e.g. [8]
applied 0-85 sinusoids in each segment). Even with the efficient implementation of [6]
requiring 3 FFTs per iteration, this results in up to 255 high-order FFTs for each of
the K frames; clearly, means for reducing this complexity is called for. One way of
doing so is based on the observation that running the MP on all K possible segments is
wasteful, because only σ(τ) of them are used in the final segmentation. This motivates
estimating the distortions d(ci(τ)) used in (3) instead of calculating them explicitly.

3 Distortion Estimation
The principle of [7] is to estimate the coding distortion from a vector of features ex-
tracted from each candidate audio segment; the computational complexity required to
determine these features should be low, or little complexity reduction is gained. Sec-
tion 4 will account for the features explicitly used, but they should be descriptive of the
signal, such as spectral information, periodicity, stationarity, power, etc. The P features
are stacked in a vector pi, i denoting the candidate segment index. Now, the distortions
arising if assigning 1, 2, ..., C components for representing the segment are added to
this vector1:

oi =
[
d
(1)
i d

(2)
i · · · d

(C)
i pT

i

]T
=

[
di

pi

]
∈ R

C+P (5)

Now, from a set of training data (we used a subset of the SQAM database [9]), a pdf in
the form of a multivariate Gaussian mixture is estimated:

oi ∼
M∑

m=1

wmN (µm,Σm), (6)

where M is the number of mixture components, wm denotes the mixture weights
(
∑M

m=1 wm = 1), and µm, Σm are the Gaussian mean vectors and covariance ma-

1Actually, the vector is built from normalized distortions, d
(c)
i

/‖si‖
2
2, with the estimates being rescaled

accordingly. This reduces the dynamic range of the distortions and thus eases the statistical modeling to be
described in the following.
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trices, respectively. wm, µm and Σm are found using the expectation maximization
algorithm [10], with a model being build for each possible segment length. In the fol-
lowing, we shall drop the subscript i leaving the frame index implicit.

At this point, we have obtained a pdf in the form of a Gaussian Mixture Model
(GMM) describing the features and the distortion arising from coding jointly. The task
at hand is: given the features extracted from a segment and the GMM, estimate the
vector of distortions. It can be shown that the conditional MMSE estimator is of the
form:

d̂ = E[d|p] =

M∑

m=1

w̃mµ̃m, (7)

where 0 ≤ w̃m ≤ 1 depends on p (see [7] for details), and

µ̃m = µm,d + Σm,dp (Σm,pp)
−1 (

p− µm,p

)
, (8)

with µm,d ∈ RC and µm,p ∈ RP being sub-vectors of µm,

µm =

[
µm,d

µm,p

]
, (9)

whereas Σm,dp ∈ RC×P and Σm,pp ∈ RP×P are sub-matrices of Σm,

Σm =

[
Σm,dd Σm,dp

Σm,pd Σm,pp

]
. (10)

In some cases, the approach reviewed above leads to a problem reported in [8], in
that there is no guarantee that the estimated distortion vector d̂ will be a non-increasing
sequence. This leads to certain problems, for example, the algorithm does not recog-
nize that adding sinusoidal components never leads to increased distortion. However,
this problem is easily circumvented by confining the covariance matrices to a diagonal
structure, implying that Σm,dp = 0 so that (8) reduces to:

µ̃m = µm,d. (11)

Now, the estimator in (7) is a positively weighted sum of the GMM mean sub-vectors
µm,d and thus non-increasing if the individual µm,d are. This is indeed true because in
the EM-algorithm, the µm updates are positively weighted sums of the training vectors
[10]. Thus, because the distortion vectors di extracted for training are non-increasing,
so are µm,d, and in turn d̂. Also, note that convexity carries over in the same way,
which is a coveted property because it prevents ambiguity in the minimization (3).

Also, it should be noted that constraining the covariance matrices to be diagonal
has the beneficial side effect of significantly reducing the computational complexity
associated with finding w̃m and µ̃m. Specifically, the main complexity in calculating
w̃m stems from evaluatingM Gaussians in the GMM, which has complexity O(MP 2)
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for full covariance matrices, but only O(MP ) for diagonals. Also for full covariance
matrices, determining µ̃m for all m using (8) has complexity O(MPC), whereas the
diagonal case of (11) is cost free. On the other hand, a somewhat larger number of
mixtures M will be necessary to obtain a precise model.

4 The Feature Vector
A problem not addressed in the preceding work is how to select which features to in-
clude in the vector p. For this, a “deflation” strategy is employed, the idea being to
start out with a large number of parameters and then sequentially remove one at a time
until the estimation performance begins to degrade on a test set. Such a large number
of parameters requires many degrees of freedom in the model, and we therefore used
M = 320 mixture components. The initial length P = 22 parameter vector contained
the parameters listed in Table 1.

Number Description Used
1. Signal power No
2. Number of zero-crossings No
3. Loudness (log-power) Yes
4. A spectral flatness measure Yes
5. A spectral centroid measure Yes
6. A spectral bandwidth measure Yes
7. An LPC flatness measure Yes
8. A periodicity measure No

9.-20. 12 mel-cepstrum coefficients No
21. A power stationarity measure Yes
22. A spectral stationarity measure Yes

Table 1: The features included in the initial feature vector p. The used column indicates whether the feature
was used in the listening test.

An example illustrating the behavior of the deflation strategy is shown in Figure 1.
The left-hand plot seems to indicate that no feature is much more important than any
other; the estimated distortion MSEs obtained are quite similar. However, since the
case where the signal power is removed gives a slightly better overall performance,
this parameter is eliminated. Then, in the next iteration, parameter number 3 (log-
power) becomes very important, since the information contained in this parameters is
no longer redundant with the rest. Also, this plot indicates that the next parameter to
be removed from the model should be number 8, the periodicity measure. Using this
approach, the features sequentially removed from the parameter vector were the mel-
cepstrum coefficients, the signal power, the periodicity measure, and the number of
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zero-crossings, resulting in a final parameter vector length of P = 7. It should be noted
that different parameters (and coders) could be applied for different segment lengths;
doing so, however, is beyond the scope of this paper.
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Figure 1: Example illustrating the deflation strategy for a segment length of 30 ms. The legend number refers
to which feature has been removed, corresponding to the numbers in Table 1. “ref” represents the MSE when
none of the parameters are removed.

5 Experiments
In the following, experimental results will be presented with 4 different segment lengths
being allowed in the segmentation: 10 ms, 20 ms, 30 ms and 40 ms (including 5 ms
overlap). For fixed segmentation, a window update rate of 15 ms was used, correspond-
ing to the 20 ms window in adaptive segmentation. Through informal listening, these
windows were found appropriate for the 30 kbps target bit rate used. For further details,
see [8].

An example of the optimal and the estimated segmentations is shown in Figure 2 for
a section of the SQAM “claves” signal. We see that the estimation captures the onset,
whereas the segmentation deviates in the more stationary signal areas. This is a typical
behavior that seems sensible, in that adaptive segmentation has its greatest impact in
non-stationary signal areas.

To assess the perceptual degradations (if any) induced by the proposed segmenta-
tion approach as compared to optimal segmentation a MUSHRA [11] listening test was



5. EXPERIMENTS H9

5.9 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8

x 104

−0.2

−0.1

0

0.1

0.2
Optimal segmentation

5.9 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8

x 104

−0.2

−0.1

0

0.1

0.2
Estimated segmentation

Samples

Figure 2: Comparison of the optimal segmentation and that yielded by the proposed method. The vertical
lines represent the segmentation.
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Figure 3: Average scores of MUSHRA listening test. The vertical lines indicate the 95% confidence intervals.

carried out. The test set consisted of 6 different audio samples (3 single instrument, 1
solo, 1 orchestra, and 2 pop), none of which were included in the training. The samples
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were presented for the proposed method based on estimated distortions (“estimated”),
for fixed segmentation (“fixed”), and for rate-distortion optimal segmentation (“opti-
mal”). Moreover, signals low-pass filtered at 3.5 kHz, 7 kHz and 10 kHz were included
as anchors 1 to 3, whereas the original was included as a hidden reference (HR). Aver-
aged results for 8 listeners are shown in Figure 3. Typically, the ratio between the total
number of segments, K, and the number of segments actually used, σ(τ), lay between
10 and 15.

6 Conclusion
The scores in Figure 3 indicate that the perceptual quality is slightly degraded for the
distortion estimation based approach as compared to optimal segmentation. However,
there is still a significant quality gain over fixed segmentation. These results should be
compared to computational complexity of the methods. While the optimal segmentation
approach requires K executions of the PMP, the distortion estimation based approach
requires only σ(τ), with the ratio K

σ(τ) > 10. On top of this, the distortion estimation
approach requires a feature vector extraction as well as the GMM-based estimation
procedure described in Section 3 for each of the K segments. However, the complexity
of these steps is low compared to the +200 FFTs required by the PMP, so realistically the
complexity reduction is in the neighborhood of 10. This is supported by the observed
MATLAB execution times.
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Abstract
In this paper we consider the problem of packet loss concealment for Voice over IP
(VoIP). The speech signal is compressed at the transmitter using a sinusoidal coding
scheme working at 8 kbit/s. At the receiver, packet loss concealment is carried out
working directly on the quantized sinusoidal parameters, based on time-scaling of the
packets surrounding the missing ones. Subjective listening tests show promising results
indicating the potential of sinusoidal speech coding for VoIP.

1 Introduction
In packet-switched communication systems, such as the Internet, packets may be de-
layed or even lost during transmission. This is not critical in most applications since
the receiving end can request retransmission of the packet in question. However, in a
real-time constrained application such as VoIP, retransmission is not feasible since this
would introduce a considerable delay prohibiting proper two-way conversation. Thus
lost and delayed packets must be compensated for at the receiving end. This is usually
attempted by storing a number of recently arrived packets in a jitter buffer before play-
out. If the packet delay is lower than the time extension of the jitter buffer it can be
used to compensate for packet delay variations (jitter). However, packets delayed more
than the length of the jitter buffer are considered lost and have to be replaced.

The simplest approaches in case of packet loss are silence or noise substitution but
these methods have a highly negative impact on perceived speech quality. Better ap-
proaches rely on waveform substitution from neighboring frames, see e.g. [1]. More re-
cently, missing frames were estimated through a combination of LPC analysis and inter-
polation/extrapolation of the residual signal using sinusoidal modeling [2], [3]. Instead
of estimating the missing packet, another approach is to stretch the packets preceding
the missing one in order to allow more time for delayed packets to arrive [4], [5]. In a
VoIP application the speech signal would normally be compressed to achieve a lower
bit rate. An important design criterion for such speech coding schemes is robustness
towards packet losses, see e.g. [6]. Moreover, the data made available by the speech
coder at the receiver should be sufficient to facilitate packet loss concealment.

In this paper we utilize a speech coding algorithm based on sinusoidal modeling
which is described in Section 2. In Section 3 we then propose a packet loss conceal-
ment algorithm based on time-scale modification which works directly on the sinusoidal
parameters. The sinusoidal coding scheme is a modified version of that presented in [7]
whereas the packet loss concealment is based on [8]. Experimental results are presented
and discussed in Section 4 before Section 5 concludes on the work.
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2 Sinusoidal Coder
Speech coding for use in packet switched networks should be designed for robustness
towards packet losses. One way of achieving this is to ensure that decoding of frames
can be performed independently. Also, it is desirable to design the coder in such a way
that it is possible to perform packet loss concealment in the compressed domain. These
properties can easily be incorporated into a sinusoidal coder. We have developed a fixed
bit-rate sinusoidal coder operating at 8 kbit/s suitable for packet switched networks as a
reference system for testing the packet loss concealment method proposed. This is done
to ensure that the method can operate under realistic conditions with quantized param-
eters. The coder of [7] has been modified to fit the requirements of packet switched
networks. It is based on a harmonic sinusoidal model, where the speech segment is
represented as a finite sum of harmonically related sinusoids:

s(n) =

L∑

l=1

Al cos(ω0ln+ φl) (1)

Here ω0 is the fundamental frequency and L is the number of components in the seg-
ment, and Al and φl are the amplitude and phase of the l’th harmonic respectively.
After segmentation the parameters of this model are estimated. Here, the speech is
split into segments of 20 ms with 50% overlap. First, the pitch is estimated using the
correlation based method proposed in [9]. The problem of finding the optimum am-
plitudes and phases then turns into a linear least-squares problem that is solved using
weighted least squares (WLS), see e.g. [8] for details. Although the harmonic sinu-
soidal model is only physiologically founded for voiced speech, it is well-known that
it can be used for modeling of noise-like signals [10] such as unvoiced speech, pro-
vided that the frequency spacing is sufficiently small. A frequency spacing of 100 Hz
for unvoiced speech has been found to form a reasonable tradeoff between model per-
formance and the number of parameters. The cumulative mean normalized difference
function in [9] is used for voiced/unvoiced decision and to estimate a voicing depen-
dent cut-off frequency, ωc. The amplitudes are represented using a 10th order discrete
all-pole model (DAP) [11]. In this model the spectral envelope is optimized to match
only at the discrete harmonic frequencies rather than the continuous spectrum. It is
then represented using line spectral frequencies and finally "transparently" coded us-
ing perceptually weighted split vector quantization with a 24 bit codebook as described
in [12]. The fundamental frequency and the gain are quantized in the log-domain using
7 and 5 bits respectively. The phases can be represented efficiently by exploiting the
near-linear relationship between the phases of the harmonics of voiced speech. This
has been done by fitting a line to the unwrapped phases and the parameters of the line
are encoded using a total of 7 bits. As the phases are only approximately linear and
only in perfectly voiced regions, there are non-zero phase residuals or errors. These
are then quantized using a scalar uniform quantizer in the range ]− π, π]. Bits are allo-
cated in accordance with the power distribution (the quantized DAP envelope) such that
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the phases of the largest components receive more bits than smaller ones. In unvoiced
regions the phases are simply quantized directly. The reason for using bits for phase
quantization in unvoiced segments is that it provides better modeling as waveform ap-
proximating capabilities are achieved. This is important in e.g. the burst of a plosive,
where the phases are not stochastic. Also, it has been found to generally improve the
perceived quality as well as improving robustness due to the waveform approximating
property. In Table 1 the bit allocation per frame of the coder for operation at 8 kbit/s
is shown. In the decoding process phase randomization inversely proportional to the

Parameter Voiced Unvoiced
V/UV 1 1
Pitch 7 0
Linear Phase Coefs 7 0
Cut-off Frequency 2 0
Phase Residuals 34 50
LP Gain 5 5
LSF VQ Index 24 24
Total 80 80

Table 1: Fixed rate bit allocation (per frame).

number of bits allocated for a given component should be applied with different ranges
depending on the voicing of the components to avoid unnatural onsets.

3 Packet Loss Concealment
The basic principle in the packet loss concealment method is to stretch the packets on
each side of the missing packet interval, as illustrated in Figure 1. In this figure, S is the
synthesis frame length when no packets are lost, which due to the 50% overlap is equal
to half the analysis frame length. ∆p and ∆a are the additional lengths of the playout
frames prior to and after the packet loss(es), respectively. We see that ∆p +∆a = K ·S
whereK is the number of consecutive packet losses. Note the difference in the analysis
frame index m and synthesis frame index k as a consequence of lost packets not being
given a synthesis index.

In the work presented here, we used ∆a = ∆p but this could easily be relaxed. For
example, if the packet after the loss interval is not yet present in the jitter buffer one
could pick a large value for ∆p and start playout of this packet and then calculate ∆a

when a packet arrives. Furthermore, if both packets are known it might be perceptually
better to stretch one more than the other depending on the contents of the packets.

As indicated in Figure 1 the stretching of packets is carried out by modifying the
point of time in which the amplitudes and frequencies of each packet occurs. This
time-scale modification is carried out through a mix of parameter interpolation and
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Figure 1: Principle for packet loss concealment scheme. Shaded frames symbolize packet losses.

overlap-add (OLA). Specifically, the l’th harmonic sinusoidal component is classified
for interpolation or OLA by comparison to the corresponding harmonic from the previ-
ous synthesis frame. A component in the k’th frame is classified for interpolation if the
following three conditions are met (â(k) denotes the decoded model parameter a in the
k’th frame):

• Both frequencies are below the voicing cut-off frequency of their respective frames,
lω̂

(k)
0 < ω̂

(k)
c and lω̂(k−1)

0 < ω̂
(k−1)
c .

• The frequency difference is below 70 Hz,
|lf̂ (k)

0 − lf̂
(k−1)
0 | < 70 Hz

• The amplitude ratio is below 5,

max

{
Â

(k)
l

Â
(k−1)
l

,
Â

(k−1)
l

Â
(k)
l

}
< 5

The first criterion means that unvoiced components will be overlap-added, where-as the
other two prevent interpolation of dissimilar components. Note that unvoiced frames
will be synthesized by OLA only.

3.1 Parameter Interpolation
For components matched by the three conditions above amplitudes are simply interpo-
lated linearly over each synthesis frame, i.e. for n = 0 . . . S(k) − 1:

Ã
(k)
l (n) = Â

(k−1)
l +

Â
(k)
l − Â

(k−1)
l

S(k)
n (2)

Here S(k) denotes the length of the k’th synthesis frame. Likewise, frequencies evolve
linearly over the frame, i.e. for t ∈ [0, S(k)]:

ω̃
(k)
l (t) = lω̂

(k−1)
0 +

lω̂
(k)
0 − lω̂

(k−1)
0

S(k)
t (3)
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From this continuous frequency model we determine the discrete phase function:

θ̃
(k)
l (n) = θ̃

(k)
l (0) +

∫ n

0

ω̃
(k)
l (t)dt (4)

= θ̃
(k)
l (0) + lω̂

(k−1)
0 n+ lα(k)n2

where α(k)
l = 1

2

(
ω̂

(k)
0 − ω̂

(k−1)
0

)
/S(k).

In order to avoid discontinuities at frame boundaries the initial phase θ̃(k)
l (0) is the

final phase of the same component in the previous frame:

θ̃
(k)
l (0) = θ̃

(k−1)
l

(
S(k−1)

)
= θ̃

(k−1)
l (0) + lω̂

(k−1)
0 S(k−1) + lα(k−1)

(
S(k−1)

)2

(5)

That is, the initial phase is determined recursively from the pitch of previous synthesis
frames back to the frame where the interpolation track was started.

3.2 Overlap-add Synthesis
The remaining, unmatched components are synthesized by OLA simply by stretching
the overlap region of the analysis frames as sketched in Figure 2. However, after a
packet loss the initial phases should be modified in order to compensate for the time
offset ∆a introduced here. Specifically:

φ̃
(k)
l = φ̂

(k)
l − ∆alω̂

(k)
0 (6)

This step ensures that overlap-added components are properly matched to components
synthesized by interpolation.

S + ∆p S + ∆a S

(k) (k + 1) (k + 2) (k + 3)

(m) (m + 1) (m + 2) (m + 3) (m + 4)

S

Figure 2: Overlap-add synthesis in case of packet loss. Shaded frames symbolize packet losses.
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4 Experimental Results
In Figure 3 an example waveform resulting from the proposed method is shown for the
case of 30 % random independent packet losses. We see that the structure of the missing
parts is well synthesized. Simple listening tests have been carried out to investigate the
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Figure 3: Example of packet loss concealment. The “Decoded, no concealment” sequence is obtained by
silence substitution in lost frames.

performance of the method employed. The tests were conducted using a five point
degradation score (Degradation Category Rating): degradation inaudible 5, audible but
not annoying 4, slightly annoying 3, annoying 2, and very annoying 1 (see [13]). 12
untrained listeners participated. The test subjects were asked to grade the degradation
of the signals relative to the original. Two test signals were used with each consisting of
one speaker uttering one sentence. Three different realizations of four different cases of
random independent packet losses were graded. In Table 2 the results of the listening
tests are shown in the form of a mean score and a standard deviation for each test
case. It can be seen that the average degradation due to the coding process has been

Packet loss Mean Score Std. Dev.

0% 3.8 0.9
10% 3.3 0.8
20% 3.2 0.9
30% 2.6 0.7

Table 2: Results of listening tests (mean score and standard deviation).

graded a little below 4 (audible but not annoying). The effectiveness of the proposed
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packet loss concealment strategy is evident in that both the 10% and 20% packet loss
cases are graded above 3 (slightly annoying), whereas the degradation in the 30% cases
is more distinct and thus have received lower scores. These tests show that at average
packet loss concealment can be successfully conducted in the compressed domain using
the proposed methods. In fact, the degradation is only about 0.5 for packet losses of
10 − 20% relative to the coded speech. The degradation is generally perceived as the
synthesized speech becoming increasingly more tonal for higher packet losses. Also,
the coded signal is slightly more tonal than the original.

5 Conclusion
In this paper a method for compressed domain packet loss concealment along with
a sinusoidal speech coder for packet switched networks have been presented. The
method has been evaluated by means of listening tests indicating that it reduces the
consequences of packet losses with respect to perceived quality greatly. We therefore
conclude that the combination of a sinusoidal coder and packet loss concealment oper-
ating on the compressed parameters provides an appealing solution for packet switched
networks.
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Abstract
In this paper, we present a subspace-based fundamental frequency estimator based on
an extension of the MUSIC spectral estimator. A noise subspace is obtained from the
eigenvalue decomposition of the estimated sample covariance matrix and fundamental
frequency candidates are selected as the frequencies where the harmonic signal sub-
space is closest to being orthogonal to the noise subspace. The performance of the
proposed method is evaluated and compared to that of the non-linear least-squares
(NLS) estimator and the corresponding Cramér-Rao bound; it is concluded that the
proposed method has good statistical performance at a lower computational cost than
the statistically efficient NLS estimator.

1 Introduction
The problem of estimating the fundamental frequency of a periodic signal is a classical
problem in signal processing, and throughout the years many different solutions have
been suggested to solve it. It is encountered in such applications as, for instance, coding
of speech and audio, automatic music transcription and determination of rotating targets
in radar. The problem of fundamental frequency estimation can be stated as follows;
consider a harmonic signal with the fundamental frequency ω0 that is corrupted by an
additive white complex circularly symmetric Gaussian noise, w(n), i.e.,

x(n) =
L∑

l=1

Ale
j(ω0ln+φl) + w(n), n = 0, . . . , N − 1 (1)

where Al and φl are the (real-valued) amplitude and the phase of the l’th harmonic,
respectively. The problem considered in this paper amounts to estimating the funda-
mental frequency ω0 from a set of N measured samples, x(n). Note that the complex-
valued signal model in (1) can also be applied to real-valued signals, when there is little
or no spectral contents of interest in the frequencies near 0 and π, by the use of the
discrete-time “analytical” signal [1]. The classical fundamental frequency estimators
are typically time-domain techniques based on auto-correlation, cross-correlation, the
average magnitude difference function (AMDF), or average squared difference function
(ASDF). For a historical review of these methods, we refer to [2, 3], and for examples of
more recent work we refer to [4–6]. While subspace techniques, such as the MUltiple
SIgnal Classification (MUSIC) algorithm [7], have a rich history in spectral analysis in
general, they have only rarely been used in fundamental frequency estimation. In [6, 8],
MUSIC is used for finding the individual harmonics independently, and in [9], a noise
estimate is obtained from MUSIC and used in a cepstral pitch estimator. In this paper,
we propose an extension of the classical MUSIC algorithm by imposing the assumed
harmonic structure in (1) on the MUSIC criterion. The paper is organized as follows. In
Section 2, the covariance matrix model of the signal model (1) is presented along with
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some definitions. Then, in Section 3, we present the proposed fundamental frequency
estimator termed the harmonically constrained MUSIC estimator. In Section 4, some
numerical results are presented and, finally, Section 5 concludes on the work.

2 Covariance Matrix Model
In this section, we present the covariance matrix model and introduce some useful vec-
tor and matrix definitions before we proceed to discuss the proposed extension. By
assuming that the phases of the harmonics are independent and uniformly distributed in
the interval [−π, π], the covariance matrix R ∈ CM×M can be written as [10]

R = E
{
x̃(n)x̃H (n)

}

= A(ω0)PAH(ω0) + σ2
wI, (2)

where E {·} denotes the statistical expectation, (·)H the conjugate transpose, and x̃(n)
is a signal vector containingM samples of the observed signal, i.e.,

x̃(n) =
[
x(n) x(n− 1) · · · x(n−M + 1)

]T
, (3)

with (·)T denoting the transpose. Further,

P = diag
([

A2
1 · · · A2

L

])
(4)

and the full rank Vandermonde matrix A(ω0) ∈ CM×L is defined as

A(ω0) =
[

a(ω0) · · · a(ω0L)
]
, (5)

where
a(ω) =

[
1 e−jω · · · e−jω(M−1)

]T
. (6)

Also, σ2
w denotes the variance of the additive noise, w(n), and I is the M ×M identity

matrix. We note that
rank

(
A(ω0)PAH (ω0)

)
= L, (7)

and that the number of harmonics in A(ω0) is bounded by

L =

⌊
ωmax

ω0

⌋
, (8)

where ωmax may go up to π for real signals, although it is typically well below this.
This is, for example, the case for audio sampled at 44.1 kHz or speech signals sampled
at 16 kHz. Here, the constant M ≥ L + 1 is a user parameter that determines the ac-
curacy of the resulting MUSIC frequency estimator, with larger M yielding increasing
resolution. Thus, M should be selected as large as possible while still allowing for a
reliable estimate of the covariance matrix [10].
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3 The Harmonic MUSIC Algorithm
The MUSIC algorithm [7, 11] (see also [12]) is based on the eigenvalue decomposition
(EVD) of the covariance matrix R, exploiting the structure in (2). Let

R = UΛUH (9)

where U is formed from the M orthonormal eigenvectors of R, i.e.,

U =
[

u1 · · · uM

]
, (10)

and Λ is a diagonal matrix with the eigenvalues, λk , on the diagonal. The following
decomposition requires a priori knowledge of the number of harmonic components,L.
Here, we will instead determine L using (8), and as a result this L will be frequency
dependent; hereafter, we will use the notationL(ω0) to stress this dependence. Now, let
G(ω0) be formed from the M − L(ω0) eigenvectors corresponding to the M − L(ω0)
least significant eigenvalues (G(ω0) is a function of ω0 through L(ω0)), i.e.,

G(ω0) =
[

uL(ω0)+1 · · · uM

]
. (11)

Then, it can be shown that the noise subspace spanned by G(ω0) will be orthogonal to
the Vandermonde matrix A(ω0) spanned by the L harmonic sinusoids [10], i.e.,

AH(ω0)G(ω0) = 0. (12)

We stress that where A is a function of the set of frequencies {ωl}L
l=1 in MUSIC,

it is here only a function of the fundamental frequency ω0 as the frequencies of the
harmonics are given by ωl = ω0l. As R is typically unknown, one needs to form an
estimate of it; here, we estimate the sample covariance matrix as

R̂ =
1

N

N∑

n=M

x̃(n)x̃H (n). (13)

and note that the orthogonality in (12) will only hold approximately for the eigenvec-
tors found from this matrix. Exploiting the harmonic structure in (1), the estimated
fundamental frequency can be found as

arg min
ω0

‖AH(ω0)G(ω0)‖F , (14)

where ‖ · ‖F denotes the Frobenius norm. By the Cauchy-Schwarz inequality, we have
that

‖AH(ω0)G(ω0)‖F ≤ ‖AH(ω0)‖F ‖G(ω0)‖F . (15)

As the M − L(ω0) columns of G(ω0) are orthonormal, and all the L(ω0) columns of
A(ω0) have norm

√
M , we get

‖AH(ω0)G(ω0)‖F ≤
√
L(ω0)M

√
M − L(ω0) (16)
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and thus
‖AH(ω0)G(ω0)‖F√
L(ω0)M(M − L(ω0))

≤ 1. (17)

We now define the harmonic pseudo-spectrum as

P (ω0) =
L(ω0)M(M − L(ω0))

‖AH(ω0)G(ω0)‖2
F

, (18)

and find the estimated fundamental frequency as

ω̂0 = arg max
ω0∈Ω0

P (ω0). (19)

Thus, the fundamental frequency candidates can be found from (18) by sweeping ω0

over a finite set of frequencies Ω0 and then projecting the harmonic subspace onto the
noise subspace. In the rest of this paper, we refer to this estimator as the harmonically
constrained MUSIC or HMUSIC in short. The algorithm can be summarized as the
following steps:

1. Estimate R̂ using (13).

2. Perform an EVD of R̂.

3. For each ω0 ∈ Ω0,

(a) Determine L(ω0) from (8).

(b) Construct A(ω0) using (5), and G(ω0) using (11).

(c) Compute P (ω0) using (18).

4. Find fundamental frequency candidates as the maxima of P (ω0).

We note that it is possible to use a noise subspace with a fixed dimension by estimating
an upper bound on L. For example, in speech the fundamental frequency is typically
limited to the range 60 Hz - 400 Hz, which would result in an upper bound of the
dimension of the signal subspace

L =

⌊
ωmaxfs

2π60

⌋
, (20)

with fs being the sampling frequency. In our experience, the peaks of the harmonic
pseudo-spectra computed using a fixed L are often more distinct and thus appear less
noisy compared to the variable dimension approach, but the latter seems to give a better
response at low frequencies.
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A classical problem in fundamental frequency estimation is erroneous estimates at k
or 1/k times the true fundamental frequency for k = 2, 3, . . ., commonly referred to as
doublings and halvings. These problems also exist in HMUSIC. Especially, doublings
of the fundamental occur, because A(kω0), for k = 2, 3, . . ., is spanned by the col-
umn space of A(ω0) and these columns are thus also orthogonal to the noise subspace
when this is kept fixed. This is less of a problem for variable dimension noise subspace.
Halvings of the fundamental frequency also occur, but these are generally much weaker
than the doublings as only a subset of the harmonics will be orthogonal to the noise
subspace. In order to build a practical fundamental frequency estimator from HMU-
SIC, we need to limit the search space Ω0 of ω0 to some interval that does not include
doublings and halvings. This can, for example, be achieved by pitch tracking, some
coarse initial estimate, or by some post-processing of the harmonic pseudo-spectrum.
In this paper, we defer from any further discussion of this and instead concentrate on
the statistical performance of the estimator.

4 Experimental Results

4.1 Reference Methods
For reference, we use a non-linear least-squares (NLS) fundamental frequency estima-
tor similar to that of [6]. This is a particularly simple version of the NLS frequency
estimator (see, e.g., [10]) because of the harmonic relation between the sinusoidal com-
ponents. As is well known, the NLS frequency estimator is statistically efficient under
white noise conditions; furthermore, it can be shown that the NLS estimator is asymp-
totically efficient also for the coloured noise case [13]. We note that the NLS fundamen-
tal frequency estimator can be stated as the minimizer of the squared error between the
signal and the harmonic sinusoidal model, and be found by sweeping over a finite set
Ω0 of frequencies. Here, we use the same grid as in HMUSIC. We refer to this method
as harmonically constrained NLS (HNLS). While the HMUSIC gives strong false peaks
at integer multiples of the fundamental frequency, the HNLS estimator is very prone to
halvings (1/k with k = 2, 3, . . .) because a fundamental frequency of 0.5ω0 will cap-
ture more signal energy than the true fundamental, especially under noisy conditions.
Thus, like the HMUSIC, we need to limit the search range Ω0 in order to get the cor-
rect result. For each grid point in Ω0, HNLS is computationally more complex than
HMUSIC as HNLS involves a matrix inversion and matrix products whereas HMUSIC
involves only a matrix product for each frequency point. There is, however, some addi-
tional computational overhead associated with HMUSIC as it requires the calculation
of the sample covariance matrix and an EVD. As the resolution of the grid increases,
the relative influence of this overhead decreases. As an additional reference, we also
use spectral MUSIC [7, 11] on the same grid as HMUSIC and HNLS to locate the fre-
quency of the first harmonic. This method does not take the harmonic structure of the
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spectrum into account.

4.2 Speech Signal
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Figure 1: (a) Voiced speech segment, (b) harmonic pseudo-spectrum of speech segment using a fixed noise
subspace, and (c) using a variable dimension subspace.

In this section, we show harmonic pseudo-spectra of a speech signal (female speaker,
sampled at 8 kHz) and illustrate the difference between using a fixed dimensional noise
subspace and a variable dimensional one. In Figure 1(b), the harmonic pseudo-spectrum
of the segment of voiced speech in Figure 1(a) is depicted. This pseudo-spectrum has
been calculated using a fixed noise subspace in the sweep over ω0. It can be seen that
the fundamental frequency stands out very clearly at approximately 159 Hz and that the
double is very noticeably present at 318 Hz. As a comparison, the harmonic pseudo-
spectrum with a variable dimension noise subspace is shown in Figure 1(c), clearly
illustrating the reduced risk for a pitch-doubling. It can also be seen that the peaks of
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Figure 1(b) are more distinct compared to the noise floor than those of 1(c).

4.3 Synthetic Signals
To investigate the statistical efficiency of HMUSIC, we perform an evaluation of the
fundamental frequency estimator on a synthetic signal using a technique similar to
those of [6, 14]. As a comparison, we also show the asymptotic Cramér-Rao bound
(CRB) as derived in [14]. First, we investigate the effects of varying SNR for a fixed
segment length. The SNR is defined as SNR = 10 log10(σ

2
s/σ

2
w), with σ2

s being the
variance of the sinusoidal part of (1) and σ2

w being the variance of the noise. In Figure
2, the standard deviation of MUSIC, HNLS, HMUSIC and the CRB are shown as a
function of the SNR for a segment length of 256 samples. These were found by 200
Monte Carlo simulations, where in each run the additive noise sequence and the phases
of the harmonics have been randomized. A fundamental frequency of ω0 = 2π0.08
(corresponding to 640 Hz at 8 kHz sampling frequency) was used in all simulations.
Five real harmonics (L = 10) were used, all with an amplitude of 1, and the stepsize of
the grid searches of MUSIC, HNLS and HMUSIC was set to 0.01 Hz. Further, Ω0 was
constrained to be in the vicinity of ω0 by ±10%, and M was set to 128.
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Figure 2: Standard deviation of the estimates ω̂0 and the CRB for varying SNR for N = 256.

The effects of varying segment lengths, N , for a fixed SNR have also been investi-
gated. The results are shown in Figure 3 for an SNR of 10 dB. Here a stepsize of 0.1 Hz
was used and the dimensions of the sample covariance matrix was set to M = bN/2c.
Note that the HMUSIC and MUSIC algorithms are sensitive to the choice of M rela-
tive to N . From these figures, it can be seen that HMUSIC has very good statistical
performance approaching the Cramér-Rao bound. From observing the performance of
HMUSIC compared to MUSIC, it can also be seen that there is a big gain in taking the
harmonic structure into account in the estimation.
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Figure 3: Standard deviation of the estimates ω̂0 and the CRB for varying segment lengths N with SNR =
10dB.

5 Conclusion
In this paper, a subspace-based fundamental frequency estimator has been proposed.
This estimator is based on a harmonic extension of the classical MUSIC estimator,
letting the dimensionality of the noise signal subspace depend on the underlying fun-
damental frequency. The resulting estimator is obtained by sweeping over a set of
frequencies. The performance of the estimator has been evaluated and compared to
both the non-linear least-squares estimator, the classical MUSIC algorithm, and the
Cramér-Rao bound. From the simulations, we conclude that the estimator has good sta-
tistical performance at a computational complexity, which is lower than the nonlinear
least-squares for high resolutions.
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