
VLSI
Solution y

Public Document

PlusV Specification

“VLSI Solution PlusV”

Revision History

Rev. Date Author Description
1.0 2001-10-12 HH The official, first public release.
0.8 2001-10-10 HH MP3 interleaving redone.
0.72 2001-09-04 HH PO release.
0.7 2001-08-29 HH Changed order inside FDB.
0.6 2001-08-29 HH Allowed wrapping for lSinFreq.
0.5 2001-08-28 HH Delay issues addressed properly.
0.4 2001-08-27 HH Slight changes to sine, all concepts and bits

ought to be there now.
0.01 2001-07-12 HH Initial documentation.

Rev. 1.0 2001-10-12 Page 1(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

Contents

1 Abstract 5

1.1 References . 6

1.2 Definitions . 6

1.3 Conventions . 7

1.4 Patents . 7

1.5 Summary . 7

2 Introduction 8

3 Concepts 11

4 The Bitstream 12

4.1 Different Data Blocks . 12

4.1.1 Fat Data Block . 12

4.1.2 Lean Data Block . 14

4.2 Bit-Code Tables . 16

4.2.1 Bit-Code Table 1 (RMult = 4 dB) 16

4.2.2 Bit-Code Table 2 (RMult = 2 dB) 16

4.2.3 Bit-Code Table 3 (RMult = 1 dB) 17

5 Block Playback Implementation 18

5.1 Changes Inside Blocks . 18

5.2 Parameters that May Change During a Bitstream 19

5.3 Remembering Old Values . 19

5.3.1 What to Remember with an FDB 19

5.3.2 What to Remember with an LDB 19

6 Decoder Compliance 20

Rev. 1.0 2001-10-12 Page 2(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

6.1 Upsampling . 20

6.2 Sine Generation . 20

6.3 Noise Generation . 20

6.4 Delay . 20

7 MP3+V 21

7.1 General . 21

7.2 Using fPrivate Bits . 21

7.3 Embedding PlusV to an MP3 Bitstream 22

7.3.1 Building a PlusV Frame . 22

7.3.2 Location of PlusV Frame Inside MP3 22

7.3.3 Matching Decoder Delays 24

7.4 Minimum Number of FDBs . 25

8 Disclaimer 26

9 License 26

10 Contact Information 27

Rev. 1.0 2001-10-12 Page 3(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

List of Figures

1 Original Signal Spectrum . 8

2 Low-Pass Filtered Signal Spectrum 9

3 High-Pass Filtered Signal Spectrum 9

4 High-Pass Filtered Signal Spectrum After Sin Removal 10

5 Reconstructed Signal Spectrum . 10

6 Example MP3+V Decoder Data Path 11

7 Fat Block Structure . 13

8 Lean Block Structure . 15

9 Signal Change in Normal Block . 18

10 Signal Change in Transition Block, fTrPos/lTrPos=2 19

11 PlusV Frame Types, fPrivate = 0 22

12 PlusV Frame Types, fPrivate = 1 22

13 MP3 Bitstream Organization . 23

14 MP3+V Bitstream Organization . 23

15 MP3 and PlusV Delay Matching . 24

Rev. 1.0 2001-10-12 Page 4(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

1 Abstract

Traditional lossy compression formats like MP3 are very good at compressing data
that has high correlation. However, at high frequencies, where most of the energy
consists of noise, these compression standards spend lots of bits trying to represent
accurately noise waveforms, which essentially cannot be compressed properly.

In this document, a completely new audio compression enhancement decoder for-
mat, called PlusV, is presented. PlusV is not a stand-alone compressing format.
Instead, PlusV uses an existing encoder to handle the lower half of the available
bandwidth while using specialized bit-saving techniques for encoding the higher
half of the audio spectrum. PlusV can compress the upper half of the bandwidth of
an audio file typically with slightly less than 8 kbit/s. Then, the lower half of the
bandwidth can be sent to an already existing traditional encoder, which now has a
much easier task in compressing the rest of the bandwidth. After compression has
finished, the bitstreams of the traditional encoder and PlusV may be combined.
It is also possible to create bitstreams that can both be played with a traditional
decoder with lower quality, and with a PlusV aware decoder with full quality.

With PlusV, a 44.1 kHz near-CD quality stereo bitstream can be created with 64
kbits/s, and a 32 kHz moderate quality stereo bitstream can be created with as
little as 48 kbit/s. For mono sound, even lower bitrates may be acheved. This
makes PlusV a perfect choice for portable MP3 players, or streaming applications
with limited bandwidth.

PlusV doesn’t require much code nor working RAM memory, and it requires only
moderate amounts of processing power to encode and decode. Decoding a 64 kbit/s
MP3+V will typically require less processing power than decoding an ordinary 128
kbit/s MP3.

PlusV has been more or less under development since late 1999, and now the time
seems right to publish the format for the public.

The intent is that according to this document, VLSI Solution will present a hard-
ware encoder and decoder based on an already-existing VLSI Solution MP3 de-
coder. Our hopes are that with the help of example source code and this document,
also other software and hardware developers will take into their use this open and
pretty much free1 format.

1 For details of how you are allowed to use this format, refer to Chapter 9.

Rev. 1.0 2001-10-12 Page 5(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

1.1 References

1. ISO/IEC Standard 11172-3

2. ISO/IEC Standard 13818-3

3. http://www.plusv.org/

4. http://www.lame.org/

5. http://www.vlsi.fi/

1.2 Definitions

% Modulus operator with consistently working negative numbers.
Examples: 56 % 48 = 8, -7 % 48 = 41.

B Byte, 8 bits.

b Bit.

dB decibel, the logarithmic unit for measuring ratios. For convenience, the defini-
tion of dB is slightly misused in this document. Where the ratio 2:1 actually
is 6.0206 dB, this ratio is referred to as 6 dB. Thus, 96 dB does not mean a
ratio of 63096:1, but exactly 65536:1.

FDB Fat Data Block = absolute block.

fs Sampling frequency.

IC Integrated Circuit.

K Computer kilo (1024).

k SI kilo (1000).

LDB Lean Data Block = difference block.

M Computer mega (1024*1024 = 1048576) when combined with bits (b) or bytes
(B). Otherwise SI Mega (1000000).

PlusV VLSI Solution’s format for extending current codecs.

VS DSP VLSI Solution’s DSP core.

VS DSP2 VLSI Solution’s DSP core with some basic peripherals.

Rev. 1.0 2001-10-12 Page 6(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

1.3 Conventions

As a default, all numbers are in decimal format. Hexadecimal numbers are marked
with a leading “0x”, like “0x1234” (4660), and binary numbers are marked with a
leading “0b”, like “0b11001010” (202).

Bitstreams are always presented MSB first, and first byte first.

1.4 Patents

VLSI Solution has a patent pending for PlusV technology.

1.5 Summary

An intruduction to PlusV and its ideology is given in Chapter 2.

Basic concepts for PlusV and the dataflow of the format are gone through in
Chapter 3.

The bitstream format of PlusV is explained in Chapter 4.

The way PlusV should be played back is introduced in Chapter 5.

PlusV compliance requirements are handled in Chapter 6.

Chapter 7 tells how to connect PlusV with MP3 files to create complete MP3+V
files.

Chapter 8 contains our standard disclaimer.

The PlusV license is presented in Chapter 9.

Finally, VLSI Solution’s contact information is shown in Chapter 10.

Rev. 1.0 2001-10-12 Page 7(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

2 Introduction

PlusV is an add-on for existing lossy audio compression schemes. With PlusV,
it is possible to create bitstreams that are up to one half smaller than otherwise.
This is achieved by using some ear weaknesses with high voices, and by thus
compressing the upper half of the audio bandwidth with radically different methods
from existing codecs.

This document will present everything needed to write a PlusV decoder, and en-
coder. Encoder functionality is briefly presented, followed by the definition of a
decoder. A working encoder is defined as any encoder that produces a proper bit-
stream defined in this document. A working decoder will be more strictly defined.

Although this document does not contain detailed information on how to make
a PlusV encoder, the encoding process is presented below to show why certain
things exist in the decoding process. The process for encoding a PlusV bitstream
goes as follows.

ampl/dB

0 4 8 12 16

f/kHz
0

15

30

45

60

75

90

Sinusoid
peak

Figure 1: Original Signal Spectrum

In Figure 1 a typical signal spectrum is presented. In this example picture one
peak frequency has been placed at 11.5 kHz for demonstration.

This original signal is divided by a half-band filter to two different bands, both
holding exactly half of the complete bandwidth.

In Figure 2 you can see the low-pass filtered portion of the signal. Because there
are no signals above fs/4, this signal may and will be decimated by two, to half of
the original sample rate. For instance, for a 44100 Hz signal, the low-pass filtered
and decimated signal would be 22050 Hz.

The downsampled signal is then sent to the conventional compression engine, such
as Lame for MP3 encoding.

Rev. 1.0 2001-10-12 Page 8(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

ampl/dB

0 4 8 12 16

f/kHz
0

15

30

45

60

75

90

Figure 2: Low-Pass Filtered Signal Spectrum

ampl/dB

0 4 8 12 16

f/kHz
0

15

30

45

60

75

90

Sinusoid
peak

Figure 3: High-Pass Filtered Signal Spectrum

In Figure 3 the high-pass filtered half of the signal is presented.

Typically the highest octave of a signal contains only noise. However, every now
and then a harmonic or synthesizer frequency actually goes upto this range. Thus,
upto four different sinusoidal signals may be stored and later reproduced. If such
signals are found, like the example’s 11.5 kHz signal peak, their energies and
frequencies are stored to the PlusV file, and their energies are removed from the
original signal.

In Figure 4, the 11.5 kHz sine peak has been removed, and now it is assumed
that the audio spectrum consists solely of white noise. The frequency spectrum is
divided into eight bands, and the energy of each band is calculated and stored to
the PlusV bitstream.

Now the PlusV bitstream is combined with the bitstream that was compressed

Rev. 1.0 2001-10-12 Page 9(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

ampl/dB

0 4 8 12 16

f/kHz
0

15

30

45

60

75

90

BANDS

0 1 2 3 4 5 6 7

Figure 4: High-Pass Filtered Signal Spectrum After Sin Removal

with the conventional encoder. The way this is achieved depends on the the audio
format. Details for how to combine the bitstreams for Mp3 and PlusV are presented
in Chapter 7.

ampl/dB

0 4 8 12 16

f/kHz
0

15

30

45

60

75

90

Sinusoid
peak

Figure 5: Reconstructed Signal Spectrum

In Figure 5, the signal has been restored. First the low-pass filtered signal that
has been encoded to a bitstream format (like MP3) is decoded and by this way the
lower half of the spectrum is restored. Then, bandwidth limited noise generators
are used to reconstruct the noise parts of the upper half of the frequency spectrum.
Finally, sinusoidal signals are added.

While the idea of noise and sine generators may seem very harsh and simplistic,
it is in many cases very difficult for the average user to tell any difference between
the original signal and the reconstructed, 64 kbit/s signal. As of writing this, there
are still some audio files where significant differences can be heard, but as PlusV
encoders start to develop, these initial problems will probably vanish soon.

Rev. 1.0 2001-10-12 Page 10(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

3 Concepts

With a PlusV encoder, audio data is downsampled to 1:2 of the original sampling
rate. For instance, for a 44100 Hz CD, the playback rate is 22050 Hz. This will
give the user a bandwidth of slightly below 11 kHz. This downsampled data is
fed to a conventional audio encoder, like Lame for the MP3 format. For more
information of how to combine PlusV with MP3, see Chapter 7.

At the same time the PlusV encoder stores high-frequency components in its own,
very low-bitrate format. The both data formats are then combined in a way
dependent of the original codec format and limitations.

When decoding, the data and signal path presented in Figure 6 is used (the example
figure is for MP3+V, but the image is also applicable to other formats).

Mp3+V
bitstream

Mp3
bitstream

PlusV
bitstream

Mp3
decoder

Bitstream
selector

PlusV
bit decoder

noise + sine
generator

1:2
upsampler

32 kHz PCM data

32 kHz
PCM data

32 kHz
PCM data

16 kHz
PCM data

 Freq+
amplitude
 data

Figure 6: Example MP3+V Decoder Data Path

Rev. 1.0 2001-10-12 Page 11(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

4 The Bitstream

PlusV is a block-oriented format. It is generally a good idea to choose a PlusV
blocksize that is similar to the format that is used to put PlusV on top.

4.1 Different Data Blocks

There are two kinds of data blocks in PlusV: Fat Data Blocks (FDB) and Lean
Data Blocks (LDB). The idea in this is that FDBs contain a proper, non-ambiguous
header, basic data for the format options, and absolute values for audio data.
LDBs contain highly compressed difference audio data, and may be used most of
the time. However, LDBs are not safe landing points if one starts playback from
the middle of a file.

It is required that music files contain some FDBs so as to allow a user to jump
in the middle of a song and still expect to get the PlusV enhancements almost
immediately. Also, the very first PlusV block of any file should always be an FDB.
The decoder is only allowed to start decoding PlusV data from an FDB. If even
for once the LDB data seems to be corrupt (lCounter value is wrong or lBlockLen
is less than 3), or the LDB is not located exactly where expected, the decoder is
required to stop decoding PlusV information and not to start before the next FDB
is encountered.

4.1.1 Fat Data Block

The Fat Data Block consists of the bitfields presented in Figure 7. The number
before the name of the bitfield tells how many bits it occupies. An optional number
after the bitfield tells how many times the field will be repeated.

fHeader is a non-ambiguous header that is used for recognizing that there is PlusV
information to follow. The four byte-values are 0xd6, 0x53, 0xd6, 0xfd.

fV ersion is the version number of the format. Currently the number is 0.

fBlockLen is the total length of the Fat Data Block in bytes, including the four
fHeader bytes. If fChannels is greater than 2, fBlockLen is multiplied with fChan-
nels and divided by two with normal integer downwards truncation. Note, that it
is allowed to use fBlockLen that is larger than the area actually used for PlusV
data, as long as the rest of the block is padded with zeros. By this way it is easier
to create constant bit-rate streams.

There are eight noise bands, with frequency ranges from fs/4 + fs/4*n/8 to fs/4
+ fs/4*(n+1)/8 -1, where n = 0..7. However, of these only seven lowest may be
used with PlusV. fBands is the number of lowest bands that actually are used for

Rev. 1.0 2001-10-12 Page 12(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1

32 − fHeader

3 − fBands

1 − fTrans 2 − fTrPos

3 − fChannels2 − fVersion 6 − fBlockLen 2 − fQuant

1

7 − fSineFreq (1 for each 1 bit in fSines)

6+fQuant − fSineEnergy (1 for each 1 bit in fSines)

4 − fSines

2 − fPrivate

Repeated
fChannels
times6+fQuant − fNoiseEnergy (fBands)

Figure 7: Fat Block Structure

audio. With a 32 kHz sampling rate, a 14 kHz bandwidth can be reached by using
all seven available bands, while 6 or 5 bands are sufficient for 44100 and 48000 Hz,
respectively, to gain a 19+ kHz bandwidth.

fQuant tells which quantization table (see Chapter 4.2) will be used for decoding
fields in Lean Data Blocks. fQuant may change during the file to make it easier
to implement constant bit-rate applications. The following table is used to decode
the value of fQuant (note, that value three is reserved for future extensions). The
Modulo field tells which number to use to modulate the value to get a correct
remainder. Examples: If the value is -7 and Modulo is 48, the final value will be
41. If the value is 56 and Modulo is 48, the final value will be 8.

fQuant Table See Chapter Modulo RMult

0 1 4.2.1 48 4.0 dB
1 2 4.2.2 96 2.0 dB
2 3 4.2.3 192 1.0 dB
3 N/A N/A N/A N/A

fTrans tells if the block is a transition block (1) or not (0). For details about how
transition blocks differ from normal blocks, see Chapter 5.1.

fTrPos is provided only if fTrans = 1. This field will tell which quarter of the
compression block to use for the transition.

fChannels tells how many channels there are in the PlusV bitstream. This value

Rev. 1.0 2001-10-12 Page 13(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

should be the same as for the main bitstream, and may not change during the file.

fPrivate may be used for private purposes for that particular encoder. Note, that
these bits are not meant to be wildly used by the user, but to be predetermined
before PlusV data is embedded within another format, like MP3.

fSines is a bitmap of four bits, and it tells which sine generators are active. For
instance, a pattern of ’1011’ tells that sine generators 3, 1 and 0 are active.

A fSineFreq is repeated for each ’1’ bit of fSines, starting with the left-hand
(i.e. highest valued) bit. fSizeFreq is to be decoded to a frequency of (128+fSize-
Freq)/512*fs. These frequencies are common to all audio channels.

All of the following fields are repeated fChannels times:

A fSineEnergy is repeated for each ’1’ bit of fSines, starting with the left-hand
(i.e. highest valued) bit. Each sine which’s frequency was defined with a corre-
sponding fSineFreq is to have the energy of (fSineEnergy*RMult-188) dB, where
0 dB is a level where the energy is 1/32 = 0.0312 (= amplitude is 1/4 of the
maximum). A more practical way of saying this is that the amplitude of the sine
is (fSineEnergy*RMult-188)/2 dB where 0 dB is set the the same sine as above.
The maximum allowed value for fSineEnergy is 192/RMult-1.

fNoiseEnergy is repeated fBands times. Each band is numbered from 0 upwards,
and the decoder must create a noise signal that has a spectrum of fs/4 + fs/4*n/8
to fs/4 + fs/4*(n+1)/8 -1. The total energy for the noise is (fNoiseEnergy*RMult-
188) dB, where 0 dB is a level where the energy is equal to a sine signal with energy
of 1/32 (= amplitude is 1/4 of maximum). The value 0 is interpreted as mute,
i.e. zero power. The maximum allowed value is 192/RMult-1.

4.1.2 Lean Data Block

The Lean Data Block is much more compressed than the relatively lavish FDB.
The biggest difference is that whereas all values were presented to LDB as absolute
values, LDB values for energies and frequencies are delta values, i.e. they only
modify the old value.

The LDB consists of the bitfields presented in Figure 8.

lCounter is a 2-bit counter that is always cleared when an FDB is encountered.
Each time an LDB is found, this counter is added to by 1 (the value for the first
LDB after an FDB is 1). Value 3 is forbidden, thus after 2 comes 0. If the decoder
encounters an illegal ICounter value, it must assume the bitstream is broken and
no longer contains PlusV data. Thus, all energy values must be cleared to zero.
This state must be maintained until the next FDB is encountered.

lBlockLen is the total length of the Lean Data Block in bytes. It is functionally

Rev. 1.0 2001-10-12 Page 14(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

1 − lTrans 2 − lTrPos

4 − lSines

6 − lBlockLen2 − lCounter

2..11 − lSineEnergy (1 for each bit in lSines)

Repeated
fChannels
times2..11 − lNoiseEnergy (fBands)

4..11 − lSineFreq (1 for each bit in lSines)

Figure 8: Lean Block Structure

the same as fBlockLen.

lT rans, lT rPos and lSines are functionally similar to fTrans, fTrPos and
fSines, respectively.

lSineFreq is repeated just like fSineFreq except the base to repeat it is lSines
instead of fSines. Also, the new value is not an absolute value, but a difference
to the previous value, i.e. newFreq = (oldFreq + lSineFreq) % 128. The resulting
value is decoded using Bit-Code Table 3 regardless of fQuant. However, as seen in
the formula the Modulo value to be used is not 192 as for energy data, but 128.
Thus, in some cases there are more than one way to get from one frequency to
another. An example would be a change from 10 to 105, which can be achieved
either by a change of +95, or -33. Note, that if there are two ways to meet the
same value, their bit length is always the same (11 bits).

The following fields are repeated fChannels times:

lSineEnergy is repeated just like fSineEnergy, except the base to repeat them is
lSines instead of fSines. The decoding table for the field is selected with fQuant.
The difference with fSineEnergy is that instead of an absolute value, the decoded
value is used as a difference to the previous value, i.e. newEnergy = (oldEnergy
+ lSineEnergy) % Modulo.

lNoiseEnergy is repeated for fBands times, just like fNoiseEnergy. lNoiseEnergy
has their values modified like lSineEnergy, including wrapping.

Rev. 1.0 2001-10-12 Page 15(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

4.2 Bit-Code Tables

4.2.1 Bit-Code Table 1 (RMult = 4 dB)

Prefix Code Value
1 0 0

1 -1
01 0 1

1 -2
001 00 2

01 3
10 -4
11 -3

0001 000 4
001 5
010 6
011 7
100 -8
101 -7
110 -6
111 -5

Prefix Code Value
0000 00000 8

00001 9
00010 10
00011 11
... ...
01101 21
01110 22
01111 23
10000 -24
10001 -23
10010 -22
10011 -21
... ...
11101 -11
11110 -10
11111 -9

4.2.2 Bit-Code Table 2 (RMult = 2 dB)

Prefix Code Value
1 00 0

01 1
10 -2
11 -1

01 00 2
01 3
10 -4
11 -3

001 000 4
001 5
010 6
011 7
100 -5
101 -6
110 -7
111 -8

Prefix Code Value
0001 0000 8

0001 9
0010 10
0011 11
0100 12
0101 13
0110 14
0111 15
1000 -16
1001 -15
1010 -14
1011 -13
1100 -12
1101 -11
1110 -10
1111 -9

Prefix Code Value
0000 000000 16

000001 17
000010 18
000011 19
... ...
011101 45
011110 46
011111 47
100000 -48
100001 -47
100010 -46
100011 -45
... ...
111101 -19
111110 -18
111111 -17

Rev. 1.0 2001-10-12 Page 16(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

4.2.3 Bit-Code Table 3 (RMult = 1 dB)

Prefix Code Value
1 000 0

001 1
010 2
011 3
100 -4
101 -3
110 -2
111 -1

01 000 4
001 5
010 6
011 7
100 -8
101 -7
110 -6
111 -5

001 0000 8
0001 9
0010 10
0011 11
0100 12
0101 13
0110 14
0111 15
1000 -16
1001 -15
1010 -14
1011 -13
1100 -12
1101 -11
1110 -10
1111 -9

Prefix Code Value
0001 00000 16

00001 17
00010 18
00011 19
00100 20
00101 21
00110 22
00111 23
01000 24
01001 25
01010 26
01011 27
01100 28
01101 29
01110 30
01111 31
10000 -32
10001 -31
10010 -30
10011 -29
10100 -28
10101 -27
10110 -26
10111 -25
11000 -24
11001 -23
11010 -22
11011 -21
11100 -20
11101 -19
11110 -18
11111 -17

Prefix Code Value
0000 0000000 32

0000001 33
0000010 34
0000011 35
... ...
0111101 93
0111110 94
0111111 95
1000000 -96
1000001 -95
1000010 -94
1000011 -93
... ...
1111100 -36
1111101 -35
1111110 -34
1111111 -33

Rev. 1.0 2001-10-12 Page 17(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

5 Block Playback Implementation

5.1 Changes Inside Blocks

When block parameters change, the new values mustn’s simply override the old
ones. This would lead to audible clicks and pops at block length intervals. To
avoid this, all changes must be done gradually during the whole block as shown in
Figures 9 and 10. The gradual changes should be implemented for all the following
fields: fNoiseEnergy, fSineFreq, fSineEnergy, lNoiseEnergy, lSineFreq, lSineEnergy.
The only exception to this is that if Sines(x) has been 0 in the previous block and
1 in the current block, SineFreq is set immediately to the new value.

However, there are changes that are much faster than the approx 12 ms that one
block takes. Thus transient blocks were added to the format. A transient block is
otherwise as a normal block, but the whole change takes place in just on fourth of
the block length. This allows the format to have transient blocks that have only a
2-bit overhead over a normal block.

A
m

pl
itu

de

Time

P
re

vi
ou

s
B

lo
ck

N
ex

t B
lo

ck

a

b

0 1 2 3

Old
Level

New
Level

Figure 9: Signal Change in Normal Block

Figure 9 shows how to change amplitude for a sine signal during a normal block.
Note, that although amplitude change is shown here as linear, it is also in-spec to
change energy or amplitude in a non-linear fashion. The recommended method is,
however, to change amplitude linearly (in linear scale, not dB scale).

If a block is a transient block, the change must be implemented as shown in
Figure 10. Here the whole change is done during one fourth of the block, and
fTrPos or lTrPos defines which fourth (0..3) is the one for change. For the rest of
the block, no changes are made.

Rev. 1.0 2001-10-12 Page 18(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

A
m

pl
itu

de

Time

P
re

vi
ou

s
B

lo
ck

N
ex

t B
lo

ck

a

b

0 1 2 3

Old
Level

New
Level

Figure 10: Signal Change in Transition Block, fTrPos/lTrPos=2

5.2 Parameters that May Change During a Bitstream

Parameters that may be defined only at the beginning of the stream and that may
not be changed during the stream are: fVersion, fChannels.

Parameters that may change whenever an FDB is encountered are: fBands, fQuant,
and fPrivate.

All other parameters may change in any block.

5.3 Remembering Old Values

5.3.1 What to Remember with an FDB

All old values are discarded. SineFreq is set to 0 for all the frequencies not trans-
mitted in the FDB. NoiseEnergy is set to 0 for all the bands that are not in use.
This way an FDB makes it absolutely sure that the decoder is in sync with the
encoder.

5.3.2 What to Remember with an LDB

When an LDB is encountered, the following values are modified: NoiseEnergy,
SineFreq, SineEnergy.

If the Sines(x) bit for sine x is 0, the sine amplitude is zeroed, but the sine frequency
for the audio generator is left as-is. This way the value may be used in a subsequent
sine block even though the sine generator was not in use for a while.

Rev. 1.0 2001-10-12 Page 19(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

6 Decoder Compliance

For a decoder to be compliant with PlusV, it has to meet the following rules.

NOTE! THIS CHAPTER IS STILL NOT FINAL, AND IT WILL BE REWRIT-
TEN IN A LATER EDITION OF THIS DOCUMENT!

6.1 Upsampling

The upsampling filter used to interpolate the low-pass filtered data must have at
least a 5.5 dB attenuation at fs/4, and 80 dB attenuation at 0.3*fs. After that
point, it must always be at least -80 dB. Passband ripple may not exceed 0.1 dB.

6.2 Sine Generation

Sine generation power must be within 1% of that specified, and the frequency must
be with 0.5% of that specified.

6.3 Noise Generation

Noise generation power must be within 2% of that specified for all bands.

6.4 Delay

The system delay of the decoder may not be more than that specified in the specific
decoder standard + 256 samples. See Chapter 7 for details of MP3+V. The delay
difference for the lower and upper half of the bandwidth (i.e. the basic compression
and PlusV parts of the signal) may not be more than 16 samples.

Rev. 1.0 2001-10-12 Page 20(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

7 MP3+V

7.1 General

With MP3 1.0 sample rates (48, 44.1 and 32 kHz), one compression frame lasts
for 1152 stereo samples (two granules, each 576 samples). With MP3 2.0 sample
rates (24, 22.05 and 16 kHz), one compression frame lasts for 576 stereo samples
(one granule). With PlusV, this 576 sample frame corresponds to 1152 samples
in reconstructed, sample-doubled audio. Thus, it was decided that one PlusV
compression block should consist of a number that is something that may be
divided from 1152.

Because sample rates vary so much in the decoded samples (from 32 to 48 kHz),
it was decided that two different PlusV decode block lengths would be allowed,
namely 576 and 384 samples. This way the normal block length can be slightly
above 10 ms, and a transition block can make its transition in approx. 3 ms, which
is enough to fool the ear to think that a change has happened instantaneously.

It is recommended to use 576 sample blocks for 48 and 44.1 kHz, and 384 sample
blocks for 32 kHz. It is, though, allowed not to follow the recommendation if audio
quality reasons dictate otherwise.

PlusV blocks are always meant to be decoded with the corresponding MP3 frame
in the stream (see Chapter 7.3.2).

After each PlusV block, there are 0..7 zero bits to pad the following block (be it
PlusV or MP3) to be byte-aligned.

7.2 Using fPrivate Bits

Bit 1 of fPrivateBits is unused, and should always be set to 0.

If Bit 0 if fPrivateBits is 0, then the length of the PlusV block is 576 samples
and there are always two PlusV blocks for each MP3 block. If the bit is 1, the
length of a block is 384 samples and there are always three PlusV blocks for each
MP3 block. This value may change during the bitstream.

Rev. 1.0 2001-10-12 Page 21(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

7.3 Embedding PlusV to an MP3 Bitstream

7.3.1 Building a PlusV Frame

LDBFDB LDB LDB

Mixed frame Lean frame

Figure 11: PlusV Frame Types, fPrivate = 0

LDBFDB LDB LDB

Mixed frame Lean frame

LDBLDB

Figure 12: PlusV Frame Types, fPrivate = 1

Depending on the value of fPrivate (see Chapter 7.2), either two or three PlusV
blocks are combined to create a PlusV frame (see Figures 11 and 12). The first
PlusV frame in a file must always be a Mixed frame. Other frames can be either
Mixed or Lean frames, as long as there are enough Mixed frames to satisfy the
requirements in Chapter 7.4.

7.3.2 Location of PlusV Frame Inside MP3

Understanding this chapter requires some knowledge of how MP3 streams work.
The definitive reference for this is the ISO/IEC 11172-3 standard, and even there,
particularly Figures A.7.a and A.7.b.

MP3 allows for a maximum of 255 bytes of internal buffering for its 2.0 sampling
rates 16000, 22050 and 24000 Hz. This buffering is demonstrated in Figure 13. As
you can see, parts of the following “main info X” frame data may be buffered to
the previous MP3 frame. This information is coded to the main data begin field
in the side info data.

In the example Figure 13, part of the main info data for frame 2 is buffered to
frame 1. The main data begin pointer in the side info data for frame 2 contains
the information for where to start decode frame 2. After all of the sync and side
info data for frame 2 have been decoded, the main info data parts for frame 2 are
combined (i.e. the sync+side info data are removed from the middle of frame 2
data). Then frame 2 can be decoded properly.

Now, how do we embed PlusV data in a compatible way to this bitstream?

First, a PlusV frame is built from two or three PlusV blocks as described in
Chapter 7.3.1. The, the last octet of the MP3 frame is searched for. (Note: if

Rev. 1.0 2001-10-12 Page 22(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

Frame 1
Frame 2

Frame 3
Frame 4

main info 1 main info 2 main info 3 main info 4

sync side info 1..4

main_data_begin
pointer

Figure 13: MP3 Bitstream Organization

PlusV is a builtin part of an MP3+V encoder, this information is fairly easy to get
by.) The PlusV information is encoded startind from the beginning of the next
octet.

Frame 1
Frame 2

Frame 3
Frame 4

main info 1 main info 2 main info 3 main info 4

sync side info 1..4

FDB + LDBs LDBs

main_data_begin
pointer

Figure 14: MP3+V Bitstream Organization

An example of where to code PlusV frames is given in Figure 14. A conventional
MP3 decoder never expects to find any kind of useful data in this area, because
the next MP3 frame’s main data begin pointer points to the beginning of the next
main info data instead of the PlusV frame. Actually, this kind of skipping data
is used in normal MP3 encoders when the bitrate is so high that frames are not
filled. Thus, this is way of embedding MP3 data is 100% downwards compatible

Rev. 1.0 2001-10-12 Page 23(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

with existing MP3 decoders.

7.3.3 Matching Decoder Delays

MP3 Fra

0 1152 2304 3456

PLUSV DECODED SIGNAL

0 576 1152 1728

MP3 DECODED SIGNAL

0 576 1152 1728

(Upsample + low−pass filter) (Upsample + high−pass filter)

PlusV F1 PlusV F2MP3 Frame 1 MP3 Frame 2

Figure 15: MP3 and PlusV Delay Matching

There is an inherent one frame, i.e. 576 sample delay in MPEG 2 layer 3 decoding
because of filtering. However, PlusV doesn’t have such filter delays (see Figure 15).
To make implementing decoders easier, it was decided that this imparity would
be compensated by in the encoder. Thus, it is the job of the encoder to expect
that the decoder has an additional 1152 sample delay for MP3 data in the not-yet-
downsampled domain, i.e. the 32..48 kHz domain. In other words, the encoder
should delay its input to PlusV by an extra 1152 samples before downsampling or
576 samples after downsampling.

In practise this means that the first two or three PlusV blocks (depending on
fPrivate) should always be empty because of the delay.

If a MP3+V decoder has a delay that is not 576 samples it has to take special
measures to compensate for its non-standard behaviour.

Rev. 1.0 2001-10-12 Page 24(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

7.4 Minimum Number of FDBs

At least every 66th PlusV block must be an FDB. The upper limit for FDBs is
every 2nd and every 3rd for fPrivate bit 0 values 0 and 1, respectively. FDBs don’t
need to be at constant intervals. If the bitstream to be encoded is put to noisy
lines where transmission errors are likely to happen, it is recommended to use a
more FDBs than the minimum.

Of the two or three PlusV blocks preceding an MP3 block, only the first one may
be an FDB.

Rev. 1.0 2001-10-12 Page 25(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

8 Disclaimer

Every effort has been made to make this document as reliable and dependable
as possible. Before publishing the first version of this document, an independent
decoder has been written in addition to the reference decoder.

Nevertheless, normal restrictions apply. VLSI Solution takes no responsibility in
the rightness or usefulness of any data in this document.

This means that VLSI Solution OY absolutely does not take any responsibility
whatsoever if this format doesn’t work or destroys something.

9 License

You may add PlusV support freely to any open, non-proprietary audio format,
such as MP3, Ogg Vorbis, etc. It is not allowed to add PlusV or ideas gotten
from PlusV to any closed format, for which there is no specification available to
the public. It is absolutely not allowed to change the PlusV format in such a way
that it breaks existing PlusV applications. There is no use of a 5% or 10% better
compressed PlusV variant if it breaks the old players!

PlusV may be used free of charge, and products containing PlusV may be sold.
The only exception are hardware codecs, like MP3 decoders. For them, a moderate
license fee must be payed to VLSI Solution OY. Also software products must be
reported to VLSI Solution OY through the web pages in http://www.plusv.org/
for a free license.

Any software product that uses PlusV or tehnology derived from PlusV, must
have the following text in it’s main “help” or “Creators” page: “PlusV audio
enhancement technology provided by VLSI Solution OY”. If the product don’t
have a “help” or “Creators” page, the text must be clearly visible in associated
documentation.

Rev. 1.0 2001-10-12 Page 26(27)

VLSI
Solution y

HH

PlusV Specification

Public Document

VSMPG+V

10 Contact Information

VLSI Solution Oy
Hermiankatu 6-8 C
FIN-33720 Tampere

FINLAND

Fax: +358-3-316 5220
Phone: +358-3-316 5230

Email: plusv@vlsi.fi
URL: http://www.plusv.org/

URL: http://www.vlsi.fi/

Rev. 1.0 2001-10-12 Page 27(27)

