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ABSTRACT

In this digital era, music is “mobile” and the de-facto quality of compressed audio
is expected to be indistinguishable from a Compact Disc (CD). But, high fidelity and a
small bit-stream are two mutually exclusive properties. Designing a compression
algorithm that obtains the best compromise between fidelity and sizeis a challenging
undertaking. This has been a subject of extensive research for the past fifteen years and
many algorithms, all of them incorporating sophisticated models of human perception,
have been proposed. The most popular of these is the MPEG-1 Layer |11 Audio format,
i.e,, MP3 for the layman. The contributions of this study are two-fold. First, agraphical
simulation tool, implementing the entire standard in MATLAB, has been developed. This
is used to introduce perceptual audio coding concepts in senior undergraduate and
graduate Digital Signal Processing (DSP) courses. The tool is accompanied by a series of
computer experiments and exercises that can be used to provide hands-on training to
class participants. The tool may also be used by instructors in a class setting to
demonstrate key signal processing concepts associated with the processing of high-
fidelity audio. The second contribution is a parametric enhancement model to improve
the performance of the algorithm at low bit-rates The algorithm has been engineered for
low complexity. When the model is active, the resulting bitstream provides better spectral
matching. Informal listening results indicate a perceptible improvement in signal quality.

Also, the resulting bitstream is backward compatible.
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CHAPTER 1
INTRODUCTION

In the early days, researchers resorted to compression as a means to transmit
information whose bandwidth was higher than the available channel capacity, for
example, transmission of speech over telegraph cables. It was envisioned that as channel
bandwidths increased, the need for compression would go away. On the contrary, even
with the availability of optical fibers, DSL lines and DVD media, compression today is
more important than ever. The main motivation for low bit rate coding is the need to
minimize transmission and/or storage costs, the growing demand to transmit rich
multimedia content over wireless and wired channels, and to support variable rate coding
algorithms in packet-based networks. The compression task is complicated by the fact
that the expectations of the consumer are high, for both the basic technology and value
added services.

The advent of the Compact Disc (CD) in the early 1980s [12] set the standard for
high-fidelity audio. With a sampling rate of 44.1 kHz and 16-bit precision per sample, it
truly provided wideband stereo audio, but at the price of avery high bit-rate — about 4.32
Mb/s, with error correction. It has been shown [16] that audio signals have a considerable
redundancy and the average entropy is below 2 bits per sample. This has motivated
extensive research in compression strategies based on sophisticated models of human
auditory perception. It is to be noted that perceptual coding strategies for wideband audio
borrow a lot from speech coding in that they try to shape the spectrum of the quantization

noise to follow the signal spectrum, only more explicit and involved.



The primary requirement in the design of audio coders is to retain a high
perceptua quality of the reconstructed signal with robustness to variations in spectra and
levels. Spatia integrity is an additional dimension of quality for stereophonic and
multichannel signals. Bandwidth scalability, algorithm-complexity, coding delay and
power consumption are vital. Robustness to channel errors (random and burst errors),
packet losses, tandeming and transcoding are important in broadcast applications.
Graceful degradation of quality in the presence of increased channel errors is also a very
important design consideration. For professional applications, the bit-stream syntax
should provide for editing, fading, mixing and dynamic range compression.

The state-of-the-art encoders available today [30] [37] [82] go to great lengths to
extract perceptual redundancies and can deliver perceptualy transparent quality for a
wide range of stereo material at modest bit-rates —128 kb/s. There are narrowband coders
for network applications that operate at bit-rates as low as 1 bit per sample and provide
moderate quality [55] [70]. Expectations over the next decade are that the rates can be
reduced by afactor of four.

11  Statement of the Problem and Thesis contribution

The MPEG-1 Layer 111 algorithm, commonly referred to as MP3, was among the
first algorithms to be standardized. It has grown to become the most popular and widely
used vehicle for delivery of audio over the Internet and in (digital) personal music

systems.



A software smulation tool, implementing the MPEG-1 Layer 1ll algorithm as
defined in the standard [30] has been developed, primarily as an interactive interface for
introducing perceptua audio coding to both novices and advanced students. MATLAB is
the tool of choice for implementing the algorithm since it provides a flexible
programming sSyntax along with advanced tools for mathematical anaysis, video
rendering, memory management, debugging and profiling. The platform independence of
the syntax resolves issues related to specific operating systems, if any. This helps to focus
on mathematical and algorithmic intricacies rather than mundane programming iSsues.
An intuitive user-interface helps to walk the reader through the important aspects of the
algorithm and also provides ample visua results to enforce the theory. The advanced
reader can study the code more closely and can track the finer details by observing and
displaying intermediate results.

To improve the performance of the agorithm at low bit-rates, an enhancement
layer incorporating a parametric model based on sinusoids and noise is proposed and
shown to produce results that are perceptually more pleasing results then the standard
algorithm.

1.2  Organization of the Thesis

This chapter presents brief overview of audio coding techniques. The rest of the
thesis is organized as follows. To the average student in electrical engineering, who has
no background in auditory psychophysics, Chapter 2 serves as a concise introduction to
psychoacoustics. Chapter 3 gives an overview of transforms and time-frequency analysis

in the context of audio compression. Chapter 4 serves to complement Chapters 2 and 3 by



applying signal processing tools and models to real audio data. Chapter 5 has a detailed
analysis of the MPEG-1/Audio Layer 111 agorithm. Chapter 6 gives a brief description of
the tool developed. The enhancement algorithm is proposed in Chapter 7 and conclusions
aredrawn in Chapter 8.

1.3 An Overview of Audio Coding Techniques

As in speech, audio compression techniques can be broadly classified into three
main categories. parametric, waveform and hybrid coders. This section reviews each one
of them briefly.

131 Parametric Coding

The availability of an acceptable model for speech production has resulted in
making parametric coders or vocoders (voice coders) very popular in speech coding.
Since wideband audio covers diverse categories, everything from chamber music to punk
rock, there are no high precision models for audio compression. Parametric audio coders
perform satisfactorily for low bit-rate applications. Of course, there are parametric tools
that address particular aspects of creation and rendering of musical content.

For delivery of audio content over low bandwidth channels, the MPEG-4 standard
(ISONEC 14496) provides parametric audio coding tools [74]. The HILN (Harmonic and
Individual Lines plus Noise) coder [79] can code audio at bit-rates of 4 kb/s and above
using a parametric scheme. The audio signal is essentially decomposed into underlying
individual sinusoids, harmonics and noise the parameters of which are coded based on
perceptual importance. As the parameters are coded as frequencies and amplitudes, this

permits pitch and time-scale modification without additional tools. The HILN and HVXC



(Harmonic Vector Excited Coder) speech coder [57] can be combined to support a wider

range of audio material at a variety of bit-rates.

Freceptual

Model Fararmeter
Harmaonic Coding
Components L
Grouping to ¥ Cuantization —
> Harrmaonic
Audio - wr e e
Signal Individual R - - .
— Sinusaid Sinusoidal L y Bitstream
Extraction Components Cuantization M bux ,
Fesidual MNoi
Signal oise
Pararmeter - |_, o
Estimation Noise Cluantization [
Components

Fig. 1.1  HILN Encoder.

In 1983, the maor electronic-instrument manufacturers adopted the Musical
Instrument Digital Interface (MIDI) for interconnectivity of electronic instruments. Much
in the same way that two computers communicate via modems, two synthesizers
communicate via MIDI. The information exchanged between two MIDI devices is
musical in nature. MIDI information tells a synthesizer, in its most basic mode, when to
start and stop playing a specific note. Other information shared includes the volume and
modulation of the note, if any. MIDI information can aso be more hardware specific. It
can tell a synthesizer to change sounds, master volume, modulation devices, and even
how to receive information. In more advanced applications, MIDI information can to
indicate the starting and stopping points of a song or the metric position within a song.
More recent applications include using the interface between computers and synthesizers
to edit and store sound information for the synthesizer on the computer [42].

Csound [76] is a synthesis specification language for music synthesis developed

by Dr. Barry Vercoe a the MIT Media Lab, in which sound streams are described by



decomposition into a sound-specification description representing arbitrarily complex
signal processing algorithms, and event lists comprising scores or MIDI files. Given two
inputs, a score (contains the description of 'notes and timely events in the composition)
and an orchestra (contains a description of how the various instruments will sound like),
the Csound engine generates sound (through a file or real-time output) that is a rendering
of the score by the orchestra.

NetSound [48] is a sound and music specification protocol oriented towards
networked low-bandwidth, native-signal-processing sound synthesis applications like
music distribution on the Internet. As a network sound transmission protocol, NetSound
has the advantage of being able to transmit a wide selection of sounds using a descriptive
format that does not require a high-bandwidth channel. Since description-based audio
represents acoustic events as parameterized units, a great deal of control over the
resulting sound is offered. In order to time-compress a sound stream, for example, a
scalar multiplier can be applied to al event duration values, or a synthesis algorithm such
as phase-vocoder resynthesis can be specified and appropriate time-frequency
modifications made from a simple control function. The use of complex instrument
descriptions and appropriately parameterized score makes it possible to specify
descriptions of complete sound tracks or musical pieces using a very small amount of
data. Other synthesis languages instruments, such as the MUSIC-N languages, and
commercial synthesizer implementations can be translated into Csound syntax. On the
note level, NetSound has its own event-specification format but is also capable of reading

and playing MIDI files.



The process of designing a sound stream using NetSound comprises the
specification of the required sound synthesis algorithms or selection from pre-existing
synthesis units, such as wavetable synthesis, FM synthesis, phase-vocoder or additive
synthesis. A standard sequencing program is used to construct the tempora structure of
the required sound stream as a MIDI file or the readable Csound score format. Sound
streams are computed in real time and synthesized buffer-by-buffer by a network client-
i.e. an executable on the network user’s computer. The resulting audio sample datais not
stored or transmitted; only the descriptions and the necessary sampled sounds or
synthesis data are stored and transmitted by the network server. It is important to note
that NetSound is not a compression protocol; the process does not include a transcription
from mixed audio to NetSound format. NetSound can be considered as a distribution tool
that reflects the manner in which music and sound tracks are constructed for multimedia
applications. That is, a small number of sounds or algorithms are utilized for generating a
large amount of audio data. NetSound renders the data into sound without requiring large
storage or throughput capacity.

The MPEG-4 standard [82] introduces Structured Audio tools [64] [73] for
describing semantic and/or model-based representations of multimedia content. This has
applications in Internet karaoke, virtual gaming, multimedia presentations, and effects
processing primitives like filters, reverbs and chorus effects — to help render an “audio
scene’ that is made up of both natural and synthetic audio objects. This is discussed in

more detail in Ch. 4.



1.3.2 Waveform Coding

As the name suggests, waveform coders try to produce a signal that matches the
input waveform as closely as possible. They do not rely on explicit source models and
generally perform well for both speech and audio content. From a signal processing
perspective, they can be further divided into Time Domain and Frequency Domain
coders.

1321  Waveform Coders

Waveform coders operate on time domain data. Typical examples are Pulse Code
Modulation (PCM), Adaptive Pulse Code Modulation (ADPCM), Delta Modulation
(DM), Adaptive Delta Modulation (ADM) and Adaptive Predictive Coding (APC).

PCM is widely used for quantizing speech and audio. The CD uses linear PCM
with 16-bit resolution to store music. Nor+uniform PCM algorithms (ITU G.711) like the
A-law and mlaw that quantize the linear PCM sample into 8 bits using a logarithmic
guantizer. The DPCM coder extracts correlation between adjacent samples and quantizes
the difference between. The DPCM decoder reconstructs the signal by adding the
difference signal to the predicted signal. The ADPCM coder adapts the predictor and
guantizer to the local statistical characteristics of the signal.

1322  Frequency-Domain Coders

There is a class of coders that operate on a frequency-domain representation of
the signal. Frequency domain coders can be further classified as subband and transform
coders. Subband coders divide the input signa into subbands and alocate bits to each

subband independently. At the decoder, the subbands are recombined to reconstruct the



signal. Transform coders operate on blocks of data and identify statistical redundancies
by the application of a high-resolution transform. They can be considered to be subband
coders with a large rumber of bands. The most successful audio coders operate in the
transform domain as it permits easier tracking of the signal characteristics and provides
for complete control of noise shaping over the entire spectrum.
133 Hybrid Coding

Hybrid coders blend the best of both the parametric and waveform matching
coders. A hybrid coder consists of a parametric core that models the signal to an extent.
The un-modeled part or residual is transmitted as side information to the receiver. The
receiver uses this information to enhance the quality of the reconstructed signal.

Original Speech

LFC
Analysis
- i+
Excitation | ec =N
Generator . oynthesis Feconstructed I'\_
+ F Speech
Error
Minrmzation

Fig. 1.2 Generalized LPAS.

Systems based on the Analysis-by-Synthesis paradigm fall into this category,
where, the decoder is embedded within the encoder. These systems have parametric cores
that model (analyzes) the signal. Based on a predefined distance metric (mean square

error, perceptua error), a matching pursuit algorithm is used to obtain a model that is
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close to the original. Generalized Linear Predictive Coding by Analysis-by-Synthesis
(Generalized LPAS) employing linear predictive analysis is the most prevalent analysis-
by-synthesis method in speech coding. The Generalized LPAS system for speech can be
depicted as shown in Fig. 1.1. Code Excited Linear Prediction (CELP) and Multi-Pulse
Linear Predictive Coding (MP-LPC) are state-of-the-art speech coders employing LPAS.
The MPEG-4 standard provides for CELP based speech coders that can also be used for
low bit-rate audio coding applications [74].

1.34 Per ceptual Coding

Audio
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Fig. 1.3  Generalized Perceptual Audio Coder.

Perceptual audio coders take into account explicit models of human perception for
purposes of quantization and noise shaping. As a result, they extract both statistical and
perceptual redundancies in the signal. Wideband audio coders that fall into this category
are basically transform coders that employ high resolution transforms (> 500 lines) to
extract statistical redundancies in the signal. The basic structure of a perceptual audio
coder is depicted in Fig. 1.3. Parametric audio coders like the HVXC and HILN coder

also that have quantization strategies based on perceptua criteria



CHAPTER 2
HEARING, PERCEPTION AND PSYCHOACOUSTICS

An understanding of the human auditory mechanism is the key to developing a
working model for it. It is known that the ear has finite resolution in both time and
frequency domains. This is to be expected as the neuro-mechanical processes and the
higher level cognitive processes do take finite amounts of time to respond to stimuli. It
can be observed that some characteristics of the sound reaching the ears are rendered
inaudible, and are masked. For example, a weak signal (maskee) in the temporal or
gpectral proximity of a stronger signal (masker) can be masked (rendered
inaudible/drowned out) [1] [2]. The goal of an engineering model for hearing is to
guantify the limitations of the human ear, so that perceptual irrelevancies can be
extracted.

Hearing is the process by which sound is received and converted into nerve
impulses. Perception implies the post-processing within the brain by which sounds are
heard and interpreted and given meaning.

21 Hearing

The sensation of hearing results from the interaction between the neuro-
mechanical processes in the ear, the higher processes along the auditory pathway and the
brain. The anatomy of the ear can be divided into three main parts: the outer ear, the
middle ear and the inner ear, as depicted in Fig. 2.1.

The outer ear consists of a convoluted cartilage (pinna), the external cana

(external auditory meatus) and the eardrum (tympanic membrane). The pinna protects the
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opening of the ear; its convoluted shape is thought to provide directional cues. The
external auditory meatus is an approximately cylindrical tube, about 2.7 cm long and 0.7
cm in diameter. As a result of being tube-like, it has many resonant modes, one of which
is approximately 3 kHz, falls in the frequency range of speech. The tympanic membrane
is a dtiff, conical membrane at the end of the external auditory mesatus. It vibrates in

response to the sound impinging on it and is the first link in the chain of structures that

[»Innr;r 2l
Cochles

wti Eustachian Wbe

form the biomechanica sound transducer.

Dutes gan j

Middle ea

Malleus
Ireciis
Stapes

Pinna

E ardrim

Fig.21  Cross-section of the human ear.

The middie ear is an air-filled cavity. It connects to the inner ear by two apertures
called the oval and round windows. It is also connected to the outside world through the
eustachian tube, which permits the equalization of sound pressure between the middle ear
and the surrounding atmosphere. The mddle ear consists of three tiny bones or ossicles
viz., hammer (malleus), anvil (incus) and stirrup (stapes). The ossicles provide acoustical
coupling between the oval window and the tympanic membrane. The function of the

ossicles is two-fold: impedance matching and amplitude limiting.
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Fig. 2.2  The impedance transformation effected by the middie ear.

The vibrations of the tympanic membrane must be transduced by the inner ear for
the snsation of hearing to occur. If the airborne sound were to be incident on the oval
window directly, much of the sound would be reflected due to impedance mismatch. The
middle ear provides the necessary impedance transformation for maximum power
transfer. The ossicles act as a lever system such that the large displacement of the
tympanic membrane results in a smaller displacement of the oval window but with
greater force, as shown in Fig. 2.2.

The inner ear consists of the vestibular apparatus, the round ard oval windows
and the cochlea. The vestibular apparatus comprises the semicircular canas and
associated organs, used for balance and sensing orientation and of no interest here. The
cochlea is a snail-shaped organ connected to the middle ear via the round and oval
windows. It contains the neural transducers that convert acoustical vibrations into nerve
firings. If the cochlea were uncoiled, it looks like Fig. 2.3. The widest part is caled the
base and the narrowest part at the opposite end is called the apex. In cross-section, a
single turn would like Fig. 2.4. The cochlea is divided down its middle by a partition

bounded by a flexible sheet called the basilar membrane (BM) and by a thinner
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membrane caled Reissner’s membrane. The partition divides the cochlea into two
passages, the scala vestibuli and the scala tympani. The two passages are connected to
each other at the apex of the cochlea by an opening called helicotrema. The acoustica
energy enters the cochlea by way of the round window, which is driven by the stapes.
The acoustical energy is converted into fluid pressure variations, which travel down the
scala vestibuli, through the helicotrema into the scala tympani and finally exits by way of
the round window. As the BM isin series with this fluid motion, it is driven by it. The
resonance at any particular point of the BM is a function of the frequency of the stimulus
and hence an indicator of the spectral content of the stimulus. High frequencies cause
resonance near the oval window while low frequencies cause resonance near the apex.
The distance from the apex where maximum resonance occurs is a logarithmic function
of frequency. Thus the BM acts as a neuro- mechanical spectrum analyzer. This is known

as the Place Theory of frequency resolution.

)

35 mm |

Owal window }

Round window ——f ___,_,,___._:‘3‘_ Helizolrama

Haze Paitition [with B azilar membrang) Apex

Fig. 2.3  The uncoiled cochlea.
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2.2  Perception

Determining the performance of the human auditory system is one of the classical
experiments in psychology. The ear can detect sound pressure variations as low as 2x107°
Pascal r.m.s. Thisis called as the threshold in quiet or absolute threshold of hearing and
used as a reference against which sound pressure level (SPL) is measured. The dynamic
range of the ear is about 130dB SPL. At the high end, sound turns to pain, while at the
low end it becomes silence. This function exhibits a strong dependency on frequency and

iswell approximated by the function

f g% 062’ 338 af &
Ta(f)=364&8 9 _g5e 00 s 11038 L9 (9B SPL (2.1)
a(t) =384 3005 000, ¢ )

Perceived loudness is a function of both frequency and level. By comparing tones
at different frequencies and amplitudes, contours of equa subjective loudness can be
found. These contours take the general shape shown in Fig. 2.6. These are sometimes
caled as Fletcher-Munson (1933) curves. The frequency range of human hearing is
approximately 16 Hz to 16 kHz. The upper limits falls off with increasing age, anong the

young it occasionally reaches 20 kHz.
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2.3 Frequency Selectivity and the Critical Band

16

According to the Place Theory, every point on the BM responds only to a

particular frequency. The frequency that gives maximum response at a particular point on

the BM is known as the Characteristic Frequency (CF) for that place. But, the vibration

of the membrane to a single frequency cannot be localized to an infinitely small area, and
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nearby areas also show response to the same frequency, but with an amplitude that
decreases with distance. So, each point on the BM can be considered as a band-pass filter
with a certain center frequency (corresponding to the CF) and a bandwidth. The
bandwidth of these ‘auditory filters is not constant but increases with CF, but the Q
factor of these filters remains approximately the same

Fig. 2.7 shows the uncoiled BM with the apex on the left so that the logarithmic
frequency scale can be applied. The envelope of displacement and hence the position of
maximum displacement (i.e., CF) of the BM for two different frequencies is different.
Also, since the BM is continuous, the CF is infinitely variable it allows for extremely
good pitch discrimination of about one-twelfth of a semitone, this limit being set by the
distance between individual hair cells. It is to be noted that the envelope of vibration is
asymmetrical about the CF due the fact that the BM is tapering and also due to the
frequency-dependent losses in the cochlear fluid as flows through the scalae. The
envelope of vibration is also affected by the intensity of the sound stimulus.

The frequency selectivity of the auditory nerve fibers (that synapse with the hair
cells) can be quantified in the same manner as the BM. Every nerve fiber is assumed to
derive its output from a particular point on the BM. Frequency selectivity of ndividual
nerve fibersis indicated by Frequency Threshold Curves (FTC) or ‘tuning curves. FTCs
show the threshold of each fiber as a function of frequency. On a logarithmic frequency
scale, these curves are steeper on the high-frequency side than the low-frequency side-
analogous to the envelope of vibration of the BM. At the CF, the threshold of the fiber is

lowest and the corresponding point on the BM exhibits resonance. In response to a
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complex stimulus, different points on the BM would vibrate simultaneously, in response
to the individual component frequencies of the signal. The envelopes of vibration would
also depend on the intensity of these component frequencies, as shown in Fig. 2.8. Thus
the envelope of basilar vibration is a complex function. If the complex has two very
closely spaced frequency components, it would excite two very closely spaced points on
the BM. In such a case, the vibration of the BM is influenced by the stronger of the two
components - the weaker of the two components is masked. The response of the auditory
neurons to a complex stimulus is analogous to that of the BM.

The finite width of the envelope of vibration of the basilar membrane is called as
Critical Bandwidth (CB). Thus each point on the basilar membrane has a CF and a

corresponding critical band.
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Fig. 2.7 The basilar membrane uncoiled. () Vibration envelope for a single frequency.
(b) Vibration envelope for a higher frequency.

One approach to identify the CB is the following setup: a narrowband noise
source is presented at a constant intensity and the width of the noise spectrum is
gradually increased (effectively increasing the power of the noise). The idea here is that

the perceived loudness of the stimulus will increase when the width of the noise spectrum
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exceeds that of a critical band. So, loudness remains constant as long as the noise energy

is restricted to one critical band and increases as the energy spreads into adjacent critical

bands.
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Fig. 2.8 Theeffect of SPL on critical bandwidth

CBs can also estimated by masking experiments. The detection threshold for a
narrowband noise presented between two tonal maskers is constant as long as the
frequency separation of the maskers is within one critical band and drops rapidly
otherwise. The efficacy of detecting the probe (the narrowband noise in this case) can be
explained in terms of the SNR criterion. As long as the tnal maskers are within the
critical band, the SNR presented to the auditory filter is constant and so is the threshold
for the probe. As the maskers move out of the pass-band of the auditory filter, the SNR
for the probe improves (note that the noise-probe is the target while the tonal maskers are
the ‘noise’ in the conventional sense) and the detection threshold falls.

A notched-noise experiment, with the roles of the masker and maskee reversed,

can aso be devised. And similar conclusions can be drawn.
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As discussed earlier, the CB of the auditory filters increases with CF, but the Q

factor remains approximately the constant. The CBs are less than 100 Hz at the lowest

audible frequencies and more than 4 kHz at the highest. They can be approximated by
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In practical applications, the ear is modeled to have a fixed number of CBs, by a
discrete version of BWc(f). The distance of one CB is referred to as one Bark.

Conversion from the linear frequency scale to the Bark scale is effected by the function

_ ée f oU
z(f) =13arctan(.00076 f ) + 3.5arctan =4 (Bark) (2.3)
SSA 1000
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24 The Masking Phenomenon
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Fig. 2.11 Schematic representing Simultaneous Masking (not to scale).
Masking is a phenomenon by which weaker signals in the spectral or temporal

proximity of stronger ones are rendered inaudible. Smultaneous masking is used to
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describe circumstances where the masker is present throughout the presentation time of
thesignal.

Audio records contain complicated spectra and a combination of innumerable
masking scenarios. In the framework of audio compression, where compression can be
achieved by preferentialy discarding perceptually irrelevant spectral components, the
maskers are strong spectral components of the music, while the maskee is either weak
spectral components or quantization noise. For such applications, the following scenarios
are most useful.

24.1 Noise-Masking- Tone (NMT)

A narrow-band noise signa of bandwidth 1 Bark masks a tone in the same CB.
Signal-to-Mask Ratio (SMR) is minimum when the frequency of the tone is equal to the
center frequency of the noise. The minimum SMR is in the range of -5 to +5 dB.

24.2 Tone-Masking-Noise (TMN)

A pure tone occurring in the center of a CB masks noise of any sub-critical
bandwidth or shape. It has been found that the SMR is minimum when the frequency of
the tone is close to the center frequency of the probe noise. The minimum SMR tends to
be in the range of 21 — 28 dB.

243 Noise-Masking-Noise (NMN)

Noise- masking- noise scenarios, where one narrow-band noise masks out another,

are more difficult to characterize due to the complicated phase relationships between the

masker and maskee. Some results have shown about 26 dB SMRs.
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The effect of masking is not only felt in the current CB, but aso in the adjacent

bands. Based on psychoacoustic results, this inter-band masking is a function of the

frequency and level of the masker, as indicated in Fig. 2.7 and Fig. 2.8. In the Bark

frequency domain, this can be approximated by a triangular function, with a steep slope

on the low frequency side and a shallow sope on the high frequency side. The spread of

masking, represented by a triangular function that is independent of level and frequency

is given by

SPF(2) =15.81+7.5(z+0.474) - 7.5+ (z+0.474)2]"° (2.4)

There are other models that account for the level dependence of the masker.
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Fig. 2.12 Tempora masking in the human ear [78].

Being a physical mechanism, the BM vibration takes finite time to reach a steady-

state response and also to stop responding. As a result, it is difficult to detect short
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interruptions to a continuous tone — masking can take place even when the masking tone
begins after and cease before the masked sound. This is referred to as forward and

backward masking respectively; they fall under the category of Temporal Masking.



CHAPTER 3
SIGNAL PROCESSING WITH LAPPED TRANSFORMS

Transformations are a very powerful tool for signa compression. Unitarity,
energy compaction, signal de-correlation, critical sampling and perfect reconstruction are
some of the desirable properties that motivate coding in the transform domain.

A unitary transform preserves energy. Signal de-correlation and energy
compaction are the basis of all compression schemes. For subband based compression
methodologies, critical sampling is very essential requirement to stem the data rate at the
output of the analysis filterbank. Perfect reconstruction (PR) ensures that the signal can
be recovered exactly, in the absence of quantization noise. In lossy compression schemes
especialy, where transform coefficients are preferentialy discarded, it is essential that
the retained coefficients be reconstructed exactly. Choosing the right transform provides
one or more of these properties.

3.1 Lapped Transforms

In traditional transform domain coders, a block of samples of a signal x(n) are
transformed by application of a transformation matrix H, whose rows contain the basis-
vectors. In matrix notation

X = Hx (.1

where X is the transform coefficients, H is the transformation matrix applied to the signal
in the vector x. In practical applications, x needs to be windowed to mitigate the boundary
effects of the transform. Also, overlapping between adjacent blocks is common to avoid

discontinuities in the reconstructed signa at the transform boundaries.
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Fig. 3.1  Lapped Transform with 50% overlap.

The primary aim of designing and employing lapped transforms [25] [11] is the
reduction of blocking artifacts. The basis functions of lapped transforms are longer than
the length of the transform itself. As a result, the basis functions (ard the samples) of
adjacent blocks overlap to reduce blocking artifacts. More importantly, they achieve a
higher coding gain.

To compute a lapped transform of length M using a basis with time support N, it
IS necessary to create a dataset consisting of M new samples and N-M previous samples.

Fig. 3.1 represents the computation of a lapped transform with 50% overlap.
Block x; can be transformed into the transform domain as defined in Eq. 3.1, except that,
now, the transformation matrix H is M~ 2M and each % is 2M ~ 1 Dividing H into two

M~ M matrices and X intotwo M ~ 1 matrices, we can denote the result as

X, = H Xt + H, %} (3.2
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Similarly, block X can be represented as

X, =H X} +H,X (3.3)

On the synthesis side, the 2M “ 1 reconstructed signal y can be represented in
matrix notation as
y =GX (3.4)
As before, splitting each output vector into two sub-vectors results in
Y, = 3/11 + yf =G X, +G, X, (3.5

Y, = y; + y22 =G, X, +G,X, (3.6)

The reconstructed signal in the overlapping parts of y, and Yy, can be expressed

yoverlap = y12 + y;
=G, X, +G, X,

37
=6, [Hoxt + H o]+ G [H i + H ] &7
:GZHlxi:LL -'-GJZHZXl2 +GlHlX; +GlH2X22
It isto be noted that
X12 = X; = Xoverlap (38)

For perfect reconstruction, the sum of overlapping parts y,,.,,,should return the

corresponding part of the input signal. This results in the following constraints:
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GZHl = G1H2 = OM
and (3.9)
G1H1+GZH2 = IM

where O,,isan M~ M zero matrix and |, isan M~ M identity matrix.

In the special case when G = H '‘we have
H2tH1 = HltHz =0y
and (3.10)
HH, +HH, =1,
Thisisreferred to as a Lapped Orthogonal Transform (LOT). In thiscase, H, and
H,are orthogonal. Therefore, the overlapping parts of the basis functions are aso

orthogonal.

311 Filterbank Interpretation of the Lapped Transforms
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Fig. 3.2  Filterbank interpretation of the Lapped Transform

The lapped transform can aso be interpreted as a filterbank by considering each

row of the anaysis matrix to be the time-reversed impulse responses of a bank of
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bandpass filters. The synthesis filterbank is made up of the columns of G. Such a
filterbank interpretation of the lapped transform is given in Fig. 3.2.
3.2 Modulated Lapped Transforms (MLT)

By modulating a low-pass prototype filter, the design of the analysis and synthesis
filterbanks can be simplified. Modulated Discrete Cosine Transforms (MDCT) or
Modulated Lapped Transforms (MLT) is a family of lapped transforms generated by
modulating a lowpass prototype filter. The basis functions of the MDCT have a length N
= 2M, where M is the number of subbands. Perfect reconstruction can be achieved by an
appropriate choice of the phase of the modulating cosine function and the lowpass
prototype window.

Given a lowpass windowh(n), the MDCT basis functions are defined by the

eguation

e M +15 16p u
® gV 0

H, (n) =h(n) %A coség,n +

3.11
k=0,12,....M-1 ( )
n=012,....2M -1

. éxe 1lop u
h(n) =9n £ch+ =+— 3.12
" é 2g2M 3.12)

The frequency response of the MDCT for the sine window defined by Eq. 3.12 is

shownin Fig. 3.3.
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321 Perfect Reconstruction Conditionsfor an MDCT

Given an anadysiswindow h(n) , the output of the analysis filterbank can be represented

as

- | 2% Cp M+l  16p U
X(k)_\/;%x(n)h(n)cosggh _ §%ZWH (3.13)

Similarly, the output of the synthesis filterbank can be expressed as

M+1(ja§ 1lop U
oK + =F— 3.14
e (3.14)

y(n) = &é g(N) X (K) cos?g?w



31

Substituting Eq. 3.12 in 3.13 and smplifying, we get

N 1 , . N
: 1 a(na X(m)h(m)é_ cose(m n+M +1%K + 19&3&’
_1 M m=0 k=0 e 2gMuqg
ym =i 1 Ny 1 é D i y (3.15)
L +="g(n) X(m)h(m) cosg(m- n)Bk + LOP U i
AT & - oo b
On further observation,
y(n) = g(nh(n)x(n)- g(nh(M - 1- n)x(M - 1- n), n=01..,M-1
y(n) = g(Mhn)x(n) - g(mMh(3M - 1- )x3M - 1- n), n=M,M +1...2M - 1 (3.16)
Now, the reconstructed signal in the overlapping partsis given by
yoverlap = yf + y; (317)

Taking vy, as the time reference,
Yoerip = Y2(N) +y1(n+M), n=01...M -1

_ig(n+M)h(n+M)x(n+M)+g(n+M)h@2M - 1- n)x,(2M - 1- n)ii  (3.18)
~ L gmh(n)x, (n) +- g(Mh(M - 1- M)x,(M - 1- n)

Using a common time reference for the input blocks resultsin

X12 :X; :X0verlap (3 19)
=x,(n+M)=x,(n), n=01...M-1

and

X,(2M - 1- ) =x,(M - 1- n), n=0L..,M-1 (3.20)
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Therefore, for perfect reconstruction, we need

h(n)g(n) + h(n+M)g(n+M) =1

g(nNh(M - 1- n)- g(n+M)h(2M - 1- n)=0 (3.21)

Using the same window for both analysis and synthesis results in the Modulated
Lapped Orthogonal Transform (MLOT). The use of a symmetric window h(n) results in
the following constraints for perfect reconstruction

h(n) = h(N - 1- n)

h2(n) +h?(n+M) =1 (822

3.3 Adaptive Filterbanks

For arelatively stationary signal, a higher coding gain can be achieved with better
frequency resolution (long windows). On the other hand, it is preferable to have better
tempora resolution (short windows) for transients and signal attacks to localize the
spread of quantization noise. Almost all audio coders switch between a set of available
filterbank resolutions to match the signal. The switching criterion is based on a measure
of information content in the signal, like energy or perceptua entropy. Some of the more
advanced coders use Temporal Noise Shaping (TNS) to continuously adapt to the
temporal and spectral resolution of the filterbank [50].

In order to maintain perfect reconstruction, switching between windows has to be
smooth. Therefore, a set of transition windows is used to shift from one resolution to

another gracefully. A start window is used to switch from a long window to a short one
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and a stop window is used to switch back. The start window is defined as

i Piong (N), OEnEM-1

i

i 1, MEnEM +%-1

[

= 2

N =1 - N), M+Menem+2M g (3.29

: 3 3

1 0 M+%£n£2M 1

|

Fig. 3.4 MDCT Window Switching (M=18).

Fig. 3.4 graphically depicts the switching from a long to short window and back.
In this particular case, there are 4 short windows between two long windows, with
transition windows in between.
331 Perfect Reconstruction Conditions for Window Switching

Assuming that the analysis and synthesisfilers are the same, from Eq. 3.14 becomes

. . 1op ud
—h,,.(ng x(mh,,(m CO‘Smen“LNIJrlﬁjL
M start( )EO ( ) start( ) ka-o g )e 2 QM H:

y(n) =i (3.24)
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ForOEn£ M - 1, wehave

y(n) = hling(n)x(n) - hlong(n)hlong(M -1- n)X(M -1- n) (325)

In alapped transform, the first half of the output of the synthesis filterbank will have the
same terms as the latter half of the previous block, except that the time-reversed terns have

opposite signs. Thus the overlap and add operation results in perfect reconstruction of the

sgnd.
ForM £En£ M +%- 1, h(n) =1 and y(n) exigsonly when n=m Therefore

y(n) = x(n) (3.26)

ForM +%£n£M +%- 1, we have

y(n) :hsztan(n)x(n) - hy,.(Nh,,.(8M - 1- n)x(3M - 1- n)

C s (3.27)
- hshort(n- M)X(n)- hshort(n - M)hshort(ZM -1- n)X(SM -1- n)

The second term is cancelled by a smilar term in the next short block and perfect
recongtruction is maintained.
2M : .
ForM +T£ n£2M - 1, h(n) =0and so is the output of the synthesis filtertbank.

The sgnd is perfectly reconstructed from the outputs of two successive short frames.

Perfect reconstruction can aso be proved for trangtion from the short window back to

long ones.



CHAPTER 4
PERCEPTUAL AUDIO CODING: APPLICATION OF PSYCHOACOUSTICSTO
AUDIO COMPRESSION

As a consequence of the finite time-frequency resolution of the human auditory
mechanism, the ear perceives only a part of the information present in the stimulus. This
is called as Perceptual Entropy (PE) [16] [17] [19]. From a compression standpoint, this
is the critical -mass of the signal, the minimum number of bits required to represent the
perceptualy relevant information in the signal. Any extra information can be safely
discarded without affecting the perceptual quality of the signal reconstructed from a
compact representation of this critical mass. Decidedly, the scheme is lossy, but
perceptually transparent.

A model for computing the perceptual entropy mimics the working of the auditory
system and computes a Just Noticeable Distortion (JND) profile for a given frame of
audio data - a measure of the maximum quantization noise that can be injected for
perceptually lossless signal recovery. The JND profile can then be used to shape the
spectrum of the quantization noise to make it haudible. The first part of this chapter
concentrates on the application of psychoacoustic principles to audio compression in
genera. For the sake of illustration and completeness, references are made to MPEG
Audio Psychoacoustics Model 2. The latter part of this chapter is devoted to the review of

some of the most prominent perceptua audio codecs.
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4.1 Per ceptual Entropy

A highresolution spectral estimate of the data is essential for an accurate
estimation of the masking thresholds in the critical bands. The MPEG-1 standard uses a
1024-point time-to-frequency mapping via a fast Fourier Transform (FFT) for spectral
estimation (Johnston originally used a 2048-point transform). A window is usually
applied to the time domain data to reduce the edge effects of the transform window. The

power spectrum (PSD) is estimated as

P(f)=Re?(f) +Im?(f) 4.1)

To emulate the critica band analysis of the basilar membrane, the spectra
components are transformed to the Bark-frequency domain by summing up power
spectral components as follows

B, = & P(1) (4.2)

f=bl,

where bl,and bh,represent the lower and higher frequency limits for the 2"
critical band.

The BM vibrates in response to the stimulus. The distribution of energy along the
vibrating BM is called as an excitation pattern. The excitation pattern due to a single
spectral component is called as a Spreading Function. The spreading function has a
triangular shape, with a steep slope on the low- frequercy side and a shallow slope on the

high frequency side. If the model used for the inner ear is linear, the global excitation

pattern can be computed by convolving the bark energy spectrum with the spreading
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function that is independent of frequency and the level of the masker.

C, =B, * JF, 4.3

The spreading function used in the MPEG Psychoacoustics Model 2 has a
constant shape (independent of frequency and the level of the masker), with slopes of 25
dB/Bark on the low frequency side and —10 dB/Bark on the high frequency side. At

critical band z it is defined by the following equation

0.5

SPF(2) =15.81+ 7.5(z + 0.474) - 7.5[1 +(z+ 0.474)2] (4.4)

The masking threshold is determined by subtracting an offset from the excitation
pattern. From Ch. 2, it is known that the masking threshold due to a tonal masker is less
than that of a narrow-band noise masker. Said otherwise, narrowband noise maskers
produce more masking than tonal maskers. Therefore, the value of the offset is strongly
dependent on the tona or noise-like nature of the masker. The threshold can be

caculated as

O, =[145+ 7
O, =K

TH, =E; - O;
TH, =E, - O,

(4.5)

where O is the offset for a tonal masker, O, is the offset for a noise masker,
TH, iISTMN, TH; isNMT, E; is critical band tone masker energy, E, is the critica

band noise masker energy, K is between 3 and 5 dB and is the critical band number.

The Spectral Flatness Measure (SFM) is defined as
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SFM = —% (4.6)

where m, is the geometric mean and m, is the arithmetic mean of the signal PSD

respectively. SFM is an indicator of the nature of the masker. SFM values close zero
indicates a narrowband spectrum while values close to one indicate a flat spectrum. The
SFM lies between zero and one. Tranglating this to the dB scale results in a more intuitive

‘coefficient of tonality’, defined by

. EFM .
a =mnt——=, 12 4.7)
- 60
e )

As is obvious from the choice of name, tonal components have a values closeto
unity while noise-like components reveal a values nearer to zero. This coefficient of

tonality can be used to compute the offset as

0, =a0; +(1-a)o, dB

=a(145+2)+(1-a)K dB (48)

It can be seen that the masking offset is a function of the critical band number and
of both the tonal and noise maskers, geometrically weighted by the tonality index. A
frame of audio contains both tonal and noise-like maskers.

If the auditory system is modeled as a bank of linear, overlapping bandpass filters,
the global masking pattern (IND) is determined by summing up individual masking
thresholds. The ISO/MPEG models are based on this assumption. On adB scale, the IND

estimate is obtained as



39

logio(C. )- 22
T =10 10 4.9

There is evidence thresholds generated by a nonlinear additive model for
masking better fits the human psychophysical system [46]. Also, a nonlinear model
results in higher global masking threshold.

The global threshold so generated is compared against the absolute threshold of
hearing and the final IND estimate is arrived at as follows

T, = max([T,, T,(2)] (4.10)

This IND estimate drives the quantization stage of the audio coder. Assume that a
uniform quantizer is used for quantization of the spectral components. Let the quantizer
step size be denoted by D .. If the number of quantization levelsis large enough to assume
that the quantization moise has a uniform distribution, the power in the quantization noise

isgiven by

-2 (4.12)

Since the masking threshold is calculated in the Bark domain, the masking power
per spectral line is obtained by dividing the energy in each critical band among its
constituents.

TZ

) = 2on, - o)

(4.12)

The FFT being a complex transform, the additional factor 2 in the denominator



40

further divides the power among the real and imaginary components. For perceptualy

lossless reproduction, the quantization noise must be belowP, (), i.e,

D, (f)
1 ER(T)

& (4.13)

D.(f)£
(1) bh, - bl,

Thisrule can be used to weight the quantization error and iteratively vary the step
size of the quantizers till the shape of the quantization noise lies below the perceptual
threshold.

The requisite quantization levels are

nirtaERe(f)% (4.14)

Lee(f) = D.(f)

Using mid-tread (uniform) quantizers, this trandates into

bRe(f):|0g2(2LRe(f) +1)

b (f)=l0g, (2L, (f)+1) (4.15)

bits for the real and imaginary components. For an N-point transform, the total
number of bits required to quantize all components with the noise below audible
threshold is given by

(be () + by, (1)) (4.16)

1

Qo=

f

Since PE is defined as the number of bits per component, we have
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== og 2Inint
N élg ? gD (
& = (4.17)
e ¢| &
18 %6 6| ¢ :
=—a a élogz(;Znintgi;
N 241 f=bl, & c c 518 /
& &| &

This procedure is applied to a wide variety of audio material, on a frame-by-frame
basis and a long-term histogram can be obtained. The worst-case value is selected as the
PE. In his seminal paper, Johnston determined the PE of audio signals to be in the
neighborhood of 2.1 bitssample. Fig. 4.1 is a collection of PE estimates for different
kinds of audio material.

4.1.1 Alternative options for Quantization
4111 Uniform Scalar Quantization
In the computation of perceptual entropy detailed above, uniform scalar

guantizers were considered. The quantizer step size D is given by

D= Zmex _ Zmin (4.18)

where X, and X.;, are the maximum and minimum values of the input and L is

the number of quantization levels. There are other alternatives, as listed below.
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Individual PE histograms for some audio sources (after Johnston)..

For a signa with a nontuniform distribution, the quantizer step sizes can be

optimized for minimum Mean Square-Error (MSE) performance by minimizing the total

distortion as follows [9] [77]
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D=4 od(x,Q (x)p, (x)dx (4.19)

i=1 R

where p, (X) is the probability density function of the input values, Q (X) isthe
th quantization level, R denotes the i" Voronoi cell and d(. , .) is the distortion measure.
Since Eg. 4.20 does not yield a closed form solution in most cases, iterative algorithms
like the LIoyd's Algorithm [77] are used to determine the actual quantizer levels.

For quantization of speech signals, the A-law and nm—law are very popular. The
MPEG-1 Layer |1l (MP3) [40] [41] [44] and MPEG-2 Advanced Audio Coding (AAC)
[54] architectures use a similar nonuniform power law quantization scheme for

guantizing the transform (MDCT) coefficients. This law is given by

X, (i) = nlrt% ()| - 0.0946 (4.20)

o] e e e

where X(i) and X, (i) arethe i transform coefficient and its quantized value.

To emphasize low amplitude components, the quantizer raises its input to the % power
before quantization. As a result, larger amplitudes are quantized roughly and smaller
amplitudes are quantized more finely. This provides a more consistent SNR over the
range of quantizer values.
41.1.3  Perceptually Weighted Vector-Quantization

It is straightforward to include the masking threshold into the distortion measure
to train the codebooks of a vector quantizer [77]. The same error criterion can be used to

pick codebook indices in the actual signal compression process. Given a K-dimension
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vector of input spectral components X, a vector of corresponding masking thresholds M

and a codebook ¢ , ameasure of distortion of the k'™ component can be defined as

d(k):|X(k)- ci(k)|2 - M(k) (4.21)

The energy of the audible noise can be calculated as

D(X,c ) =§ max (d (k), 0) (4.22)

k=1

The centroid of each Voronoi cell is determined by minimizing the energy of the
audible noise as
¢l = arirrin ao(x',c’) 4.23)

i=1

where | is the number of vectorsin region j.
412 Example

The application of the psychoacoustic rules defined in MPEG-1 Psychoacoustic
Model 2 (Ch. 5) to ablock of audio data is graphically depicted in the figures that follow.

Fig. 4.2 depicts the spectrum of the data as computed by a 1024-point windowed
FFT. The spectral energy is mapped into the perceptual domain (for a sampling frequency
of 44100 Hz, 63 one-third critical band partitions). This mapping is nonlinear, expanding
the low frequency region, while compressing the high frequency region, as shown in Fig.
4.3.

The spreading function shown in Fig 4.4 is then applied to spread the energy of

each partition into the adjacent partitions. This simulates the masking effect on the BM.
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The shape of this function is constant as a function of the partition number.

The spreading of energy into the adjacent critical bands is shown in Fig. 4.5. The
masking threshold computed from the spread energy is shown in Fig. 4.6.

In Fig. 4.7, the computed thresholds for the partitions are spread over the spectral
lines. The effect of stronger components on adjacent frequencies is clearly visible as an
increase in the threshold. In atypical perceptua coder, this JIND estimate is used to shape

the floor of the quantization noise to meet the target bit-rate.

120
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] 0.5 1 1.5 2

Fig. 4.2 Theenergy of aframe of audio data.
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Fig.45 Theaudio energy and the spread energy in the Perceptual domain.
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Fig. 4.6  The masking thresholds in the partition domain, as computed by the model.
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Fig. 4.7  The masking thresholds spread over the FFT lines.

4.2 A Review of Perceptual Audio Coders

This section is an overview of some of the most successful perceptual audio
coders. It is to be reiterated that these audio coders operate in the transform domain
because tracking of the signal characteristicsis straightforward and provides for complete
control of noise shaping over the entire spectrum. The early efforts in audio coding were
based on principles borrowed from speech coding [4] [5] [6].
421 Optimum Coding in the Frequency Domain (OCF-1, OCF-2, OCF-3)

In 1987 Brandenburg proposed the Optimum Coding in the Frequency Domain
(OCF) audio coder [13] that was based on the Adaptive Transform Coder (ATC) [4] for
speech. The coder operates on 512-point audio samples and transforms them into the
DCT domain. The DCT spectrum is perceptually weighted and iteratively quantized till
the target bit-rate is achieved (inner loop). In the outer loop, the quantization noise

resulting from the inner loop is compared with the JND thresholds derived from the
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psychoacoustic model; if the noise exceeds the threshold, the process repeats till
convergence is achieved or a time-out is reached. This coder could achieve high quality
at 132 kbls.

Brandenburg reported enhanced versions of OCF-1, viz., OCF-2 and OCF-3in
1988, where severa enhancements were made; the DCT was replaced by the MDCT, the
psychoacoustic model was improved to include a model of temporal masking, pre-echo
control, improved rate control loops, differential coding of spectra components and

reduction in computational complexity. The OCF-3 could achieve higher quality at

around 64 kb/s.
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Fig. 48 The OCF Coder.

4.2.2 Perceptual Transform Coder (PXFM)
Around 1988 Johnston developed a series of DFT-based transform coders at the
AT&T Bell Labs, Perceptual Transform Coder (PXFM) and Stereo Extended Perceptual

Transform Coder (SEPXFM) that became an integral part of the ASPEC proposal [27].
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The PXFM works to quantize the complex valued DFT samples based on the perceptual
entropy criterion developed by Johnston [16]. The algorithm operates on 2048-poiint
windowed segments of the signal, with (1/16) overlap between successive segments.
Based on the JND estimate from the perceptual model, the rate control loop divides the
transform components into 128 bands and quantizes them to meet the desired bit-rate,
guantization being performed by variable radix bit packing.

The SEPXM exploits stereo redundancy and can achieve transparent coding at

192 kb/s. It has other refinements such as rate-optimized entropy codebooks for lossless

Audio
In

coding of the quantized coefficients.
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Cluantizers 4 Adjustment
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Fig. 49 Block diagram of the PXFM Coder.
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4.2.3 Transform-domain Weighted Interleaved Vector Quantization (TWIN-
vQ)

The architecture of the TWIN-VQ coder [43] [55] is depicted in Fig. 4.10. The
coder seeks to extract dtatistical redundancy by parametric modeling and code the
residual efficiently by interleaved vector quantization. It provides high quality for
wideband audio below 64 kb/s. The audio data first transformed into the MDCT domain.
The spectral components are divided their respective LPC coefficients to flatten the
envelope. The signature of the fine structure is still present in the residual. Backward
prediction is used to predict the fine structure from the previous three frames and a
second stage residual is extracted. Interleaved VQ is applied to the residual to achieve a
high coding gain. The performance of the coder exceeds that of the MPEG-2 AAC coder
at low hit-rates — around 8 kb/s. This inspired the inclusion of a combined AAC/TWIN-

VQ coder in the MPEG-4 standard. More details can be found in [75] [83].
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Fig. 4.10 Block diagram of the TWIN-VQ Coder.

4.2.4 Dolby AC-3
The AC-3 algorithm developed by Dolby Laboratories is a high quality transform

coder for multichannel applications. The audio data first transformed into the MDCT
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domain. There is a choice of two window sizes — 512 or 256 points, for signal dependent
time-frequency analysis. The window is based on a proprietary Kaiser-Bessel Design
(KBD) optimized for good stopband attenuation. Suitable phase shiftsof the MDCT basis
vectors during short windows results in perfect reconstruction without the need for
transition windows. The transform coefficients are converted into a binary exponential
notation as a binary exponent and mantissa. The set of exponents is encoded into a coarse
representation of the signa spectrum that is referred to as the spectral envelope. The
gpectral envelope is processed by a bit alocation routine to calculate the amplitude
resolution required for encoding each individual mantissa. The use of a forward-
backward adaptive perceptual model reduces the side-information significantly and also
provides for transmitting differences in modeled and actual masking thresholds explicitly
- deltas [53]. Unlike other coders, the AC-3 agorithm does not have an entropy coder at
the backend. The spectra envelope and the quantized mantissa for 6 blocks (1536 audio
samples) are formatted into one AC-3 synchronization frame. The AC-3 bitstream is a

sequence of consecutive AC-3 frames.
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Fig. 4.11 Architecture of the AC-3 Coder.
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4.2.5 MPEG Audio Coders

A discussion of audio compression would be incomplete and indeed impossible
without a reference to the MPEG-Audio group. MPEG is an acronym for Moving
Pictures Expert Group. The MPEG committee, established in 1988, works under the
direction of the International Standards Organization (ISO) and the International
Electrotechnicad  Commission (IEC) to standardize audio and video compression
agorithms.

4251 MPEG-1

Eureka 147 DAB is a reliable, multi- service, digital radio broadcasting system,
designed specifically for robust reception by mobile, portable, and fixed receivers, using
simple non-directional antennas. CCETT, IRT and Philips jointly developed the
MUSICAM (Masking pattern adapted Universal Sub-band Integrated Coding and
Multiplexing) [29] algorithm for the Eureka 147.

Around the same time, AT & T Bell Labs, Thomson, Fraunhofer Society and
CNET jointly proposed the ASPEC (Adaptive Spectral Perceptua Entropy Coding) [27],
an algorithm for transmitting audio over the Internet.

Both systems were subjected to comprehensive listening tests. It was found that
the MUSICAM algorithm has higher complexity and coding delay than the ASPEC
coder. But the ASPEC coder performed better at lower bit-rates. The MPEG/Audio group
combined the attributes of both into a draft standard (ISO/IEC JTC1/SC2/WG11,
Committee draft 11172) [30] having three levels of complexity and performance. This

was standardized at the end of 1992.
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The three different levels offer increasing levels of compression at the cost of
higher computational requirements. The standard supports three sampling rates of 32,
44.1 and 48 kHz and output bit-rates from 32 to 448 kb/s for Layer |, from 32 to 384 kb/s
for Layer 11, and from 32 to 320 kb/s for Layer Ill. The transmission can be mono, dual
channel (e.g. bilingual), stereo or joint stereo (where the redundancy between left and
right channels can be exploited).

MPEG-1 Layer | audio algorithm is a simplified version of the MUSICAM
algorithm, tailored for mild compression and low cost applications. The Philips Digital
Compact Cassette (DCC) uses this scheme at arate of 192 kb/s per channel.

Layer Il is identical to MUSICAM and has been engineered for target bit-rates
around 218 kb/s per channel. Applications include DAB, storage of synchronized video-
and-audio sequences on CD-ROM and Video-CD.

Layer 111 combines the best attributes of both the MUSICAM and ASPEC coders
and hence the most complex of the three. It provides high compression factors, with
target bit-rates as low as 64 kb/s per channel, required for low bandwidth applications
like audio transmission over ISDN channels.

The coded bitstream also provides for an embedded error-detection code by way
of cyclic redundancy checks (CRC). The algorithms are asymmetrical in the sense that
the encoder is more complicated and computationally expensive than the decoder. All
three layers are ssmple enough to allow single-chip, real-time decoder implementations.

MPEG-1 was the first phase of an international effort at standardizing audio and

video compression technologies. There have been others since then.
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4252 MPEG-2

The MPEG-2 [37] standard provides enhancements and additional tools to target a
wider range of applications. The MPEG-2 BC (ISO/IEC 13818-3) [38] provides for an
extension of MPEG-1 towards lower sampling rates for low bit-rate applications. Support
for 16, 22.05, and 24 kHz sampling rates is provided. Bit-rates from 32 to 256 kbit/s for
Layer I, and from 8 to 160 kbit/s for Layer Il & Layer |1l are supported. It also provides a
backward compatible multichannel extenson to MPEG-1 for surround sound
applications. up to five main channels, Left, Right, Center, Left Surround, Right
Surround, and an additional Low Fregquency Enhancement (LFE) or Sub-Woofer channel.
The upper limit on the bit-rate is 1 Mbit/s. For the bitstream to be backward compatible
with MPEG-1, a two channel signal is derived for the five channel signal by matrixing.
These two channels are encoded into a standard MPEG-1 audio frame, while the
remaining three channels are encoded in the ancillary frame. As a result, an MPEG-1
decoder will decode the main frame and discard the ancillary frame, while an MPEG-2
decoder is smart enough to decode the additional channels.

MPEG-2 AAC (ISO/IEC 13818-7) [49] provides a very high-quality audio coding
standard for 1 to 48 channels at sampling rates of 8 to 96 kHz, with multichannel,
multilingual, and multiprogram capabilities. AAC works at bit-rates from 8 kbit/s for a
monophonic speech signal up to in excess of 160 kbit/s/channel for very-high-quality
coding that permits multiple encode/decode cycles.

AAC is organized as a collection of tools. Three complexity profiles, namely

main, low and scalable sampling rate (SSR) profile, providing varying levels of
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complexity and scalability are defined. MPEG-2 AAC is not backward compatible. A
specific combination of tools is recommended for each profile.

The AAC uses an MDCT filterbank that has signal adaptive resolution — 2048-
point transforms for stationary signals and 256-point transforms for transients. There is
also a choice of MDCT windows, sine window for passband selectivity or Kaiser-Bessel
Design (KBD) window for stopband attenuation, depending on the statistics of the signal.

The filterbank is continuously signal-adaptive as it uses Tempora Noise Shaping (TNS).

Audio
" " herative Rate Contral
| Leop
Ferceplual T
Medeal
Scele )
Factor Entropy
Entract Cading
Y Cuanbzation
Gain MDCT Multi-Channel |} . A 4
" conrol || 2s6/2048pt [ ™ ‘ MIS, ntensity [ 00 Z
l I I I I

Side Information Coding. Bitstream Formatting

l Bitstream

Fig.4.12 Block diagram of the MPEG-2 NBC/AAC Coder.

In TNS [50], transform coefficients are predicted over time and replaced by the
predicted residuals. TNS provides for a better encoding of “pitch based” signals. It aso
reduces the high bit-rate demand for signal attacks by reducing pre-echo conditions. TNS
can be applied over the entire spectrum or selective parts, which ever is deemed

necessary. Time-domain noise control can be applied in a frequency-dependent fashion.
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4253 MPEG-4

MPEG-4 (ISO/IEC 14496-3) [82] [83] provides an integrated family of tools for
coding and composition of natura and synthetic audio-visua objects. The transmitter
codes and transmits audio-visual objects and an associated scene-description. The scene-
description describes how the objects interact to form a scene. The decoder would
reconstruct the audio-visua scene from the primitives decoded from the bitstream. The
standard aso provides for bit-rate, bandwidth and complexity scalability. Besides speech
and perceptual audio coding, the audio coding tools support Structured Audio, a universa

language for score-driven sound synthesis, and TTSI, a text-to-speech conversion

interface.
Bitrate Per Channel (kbps)
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Fig. 413 The MPEG-4 Audio tools.
Speech and audio coding have matured into a fine art over the past decade and

play a key role in enabling communication services. Today, in addition to high coding
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gain, operation over low bandwidth channels, new functionalities like flexible access to
coded data and manipulation by the recipiert and interoperability are of prime concernin
coding audio-visua objects. The MPEG-4 standard recognizes this trend and provides
tools for coding natural and synthetic objects efficiently. Natural audio objects like
speech and music can be coded at bit-rates ranging from 2 kb/s to 64 kb/s using
Parametric Speech Coding, CELP-based Speech Coding or transform based General
Audio Coding. Synthetic audio objects can be efficiently coded with Text-To-Speech
Interface or the Structured Audio tools. These tools are used to add effects like echo,
reverb, chorus and environmental spatialization to the final ‘audio scene’ that is rendered
on an MPEG-4 compliant terminal. There are advanced tools for bit-rate and bandwidth
scalability, pitch and time scale modification of speech, low-delay coding and error
resilience.

The standard provides tools to code speech from 2 to 24 kb/s. Harmonic Vector
eXcitation Coding (HVXC) [71] is a parametric technique used for bit-rates up to 4 kb/s.
HVXC inherently supports pitch and gpeed modifications. CELP coders provide support
for the remaining range of bit-rates.

For coding of audio objects up to 16 kb/s, TWIN-VQ [43] [55] tool is used. For
higher bit-rates, an extended version of the MPEG-2 AAC [54] is used. Both TWIN-VQ
and AAC provide bit-rate scalability. The scalable AAC scheme also has provision for
using a CELP core for the base layer.

Low-delay audio coding, with an algorithmic delay not exceeding 20 ms is

achieved by modifying the General Audio Coder as follows: the transform size is haved
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to 512 samples, there is no block switching and the use of the bit reservoir is minimized
or totally abandoned.

For signals coded with AAC or TWIN-VQ, the MPEG-4 standard introduces a
Long Term Predictor (LTP) to improve the quality for stationary harmonic signals.

Perceptual Noise Substitution (PNS) is based on the observation that one noise
sounds like the other. This implies that the actual fine structure of a noise signa is of
minor importance for the subjective perception of such asignal. Consequently, instead of
transmitting the actual spectral components of a noisy signal, the bitstream would just
signal that this frequency region is a noise- like one and give some additional information
on the total power in that band. PNS can be switched on a scale-factor band basis so that
even if there are a few spectral regions with a noisy structure, PNS can be used to save
bits. In the decoder, a randomly generated noise will be inserted into the appropriate
spectral region according to the power level signaled within the bitstream.

Support for rendering synthetic audio objects is provided by the Structured Audio
Orchestra Language (SAOL). This language provides the syntax for defining an
‘orchestra of ‘instruments which create and process control data. Control of the
synthesis is accomplished by using a score described in the Structured Audio Score
Language (SASL) or MIDI.

The Error Resilience tools provide for both error robustness and protection.
Virtual Codebooks (VCB11), Reversible Variable Length Coding (RVLC) and Huffman
Codeword Reordering (HCR) tools are used to improve error robustness. Unequal Error

Protection (UEP) is an efficient technique to protect data. Cyclic Redundancy Checks
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(CRC), Systematic Rate-Compatible Punctured Convolutional Codes (SRCPC) and
Shortened Reed-Solomon Codes are the used for error detection, correction and
concealment. More details on the MPEG-4 standard can be found in [82] [84].

4254 MPEG-7

MPEG-7 (ISO/IEC 15938), the current standardization effort, will provide
standardized descriptions and description schemes of audio structures and sound content
and a language to specify such descriptions and description schemes.

The MPEG standard mandates the syntax of the coded bitstream, defines the
decoding process and provides compliance tests for assessing the accuracy of the
decoder. There are no compliance requirements for the encoder except that it should
generate a lega bitstream. This guarantees that, regardiess of the origin, any fully
compliant MPEG/audio decoder will be able to decode the MPEG/audio bitstream with
predictable results. But system designers are free to try improved or novel
implementations, within the bounds of the standard. So, the standard strives to maintain

interoperability while promoting improvement and ingenuity at the same time.



CHAPTERS
ANALYSISOF THE MPEG-1 LAYER |1l ALGORITHM

This chapter concentrates on the MPEG-1 Layer 111 algorithm [24] [30] [41] [44],
popularly known as MP3, which has become the de-facto standard for multimedia
applications, storage applications and transporting audio over the Internet. Also, the
launch of portable MP3 players like the Diamond RIO and it clones, have made its appeal
truly universal.

A very basic functional block diagram of the MPEG-1 audio codec is as shown in
Fig. 5.1. The algorithm operates on blocks of data. The input audio block to be encoded
passes through a filterbank that divides it into multiple frequency subbands. The same
chunk of data is also fed to a psychoacoustics model that determines the ratio of signal
energy to the masking threshold for each subband. Based on the result of the
psychoacoustics analysis and the available bits (target bit-rate), the quantization block
iteratively allocates bits to the various subbands to minimize the audibility of the
guantization noise. These quantized subband samples and the side information is packed
into a coded bitstream by entropy coding. Every block of data, thus operated on, is
represented as a frame in the coded bitstream. There is aso provision for inserting
ancillary data, not necessarily related to the audio stream, into the frame; but this reduces
the number of code bits that can be devoted to the audio.

The decoder parses through the bitstream and extracts the quantized subband

values. It then dequantizes these values and reconstructs the audio signal frame by frame.
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Fig. 5.1 MPEG/Audio codec. (a) Encoder. (b) Decoder.

51 The Analysis Filter bank
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Fig. 5.2  Coefficients of the prototype filter.

The analysis filterbank is common to all the three layers of the algorithm. This
critically sampled filterbank divides the block of audio into 32 bands, each of a nominal

bandwidth p /(32T), where T is the sampling interval. The 512 coefficients of the

lowpass prototype filter are plotted in Fig. 5.2. The corresponding impulse response
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plotted in Fig. 5.3, attenuates the side-lobes by more than 96 dB. This lowpass filter is
cosine modulated to obtain a bank of filters with center frequencies at odd multiples of
p /(64T), depicted in Fig. 5.4. For any time instant t, that is an integral multiple of 32

audio sample intervals, the subband outputs are given by

slil=a Xt - n]H,[n] (5.1)

n=0

where x is the buffer of input samples and H; is a bank of bandpass filters

obtained by modulating the lowpass prototype as follows

H, [n] = h[n] cosg(Zi i 1)2' 16p ; (5.2)
By defining
cn) :i h (I:l()l"l), ;1 :(n/64)is odd 53)
we have
S =aa MK [C(k+647) X(k +64])] 54

where nint () is the nearest integer operator and M isa 32 64 matrix for cosine
modulation.

The delay through the filterbank, 256 samples, is tolerable and the computational
requirement moderate - implementation of the cosine-modulated filterbank as a

polyphase filterbank, as in EQ. 5.4, requires about 80 multiplies and 80 additions per



output sample. It is also amenable to FFT-like methods that are considerably faster.
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Fig.5.3 Magnitude response of the lowpass prototype filter.
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Fig.5.4  Magnitude response of the analysis filterbank.

Even though the response of the prototype filter is admirable, the filterbank has
three significant shortcomings.

Firstly, the lack of a sharp cut-off at the nominal bandwidth can cause a single
tone to simultaneously affect the output of two adjacent subbands. Consider a synthetic
audio signa made up of a combination of two sinusoids at 675 Hz 11,100 Hz. At a
sampling rate of 44.1 kHz, the nominal bandwidth of the prototype filter is about 689 Hz.

If the filterbank responses were ideal, only the 0" and 15" subbands will produce outputs.
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Since there is significant overlap between adjacent channels, as is obvious from Fig. 5.4,
some of the energy leaks into the neighboring bands. The resulting response is as
illustrated in Fig. 5.5. To complicate matters further, sub-sampling results in significant
aliasing. To partly mitigate the problem, algorithm resorts to explicit alias-reduction once
the subband components are transformed into the frequency domain, as discussed in Sec.

5.3.

0.5

0 5 10 15 20 24 30 34
tubband index

Fig. 5.5 Response of the analysis filterbank for the combination of tones at 675 Hz and
11,100 Hz.

Secondly, the division of the frequency content into subbands of equal width is so
unlike the response of the BM. As a result, at low frequencies, a single subband spans
many critical bands. This makes the computation of masking thresholds inaccurate.

Masking thresholds computed in such a way can be used to steer the psychoacoustic
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model in low-complexity applications (Layer 1), the penalty being a high bit-rate. For low
bit-rate applications, a high-resolution spectral estimate is necessary to compute accurate
masking thresholds.

Thirdly, the filterbank and its inverse (the synthesis filterbank) are not lossless
transformations. The filterbank and its inverse in tandem, without a quantization process
in-between, will not reconstruct the signal exactly. However, the filterbank has been
designed to introduce imperceptible error (less than 0.07 dB ripple).

5.2 The Psychoacoustic Model

The psychoacoustic model calculates just-noticeable distortion (JND) profiles for
each band in the filterbank. This noise level is used to determine the actual quantizers and
guantization levels. There are two psychoacoustic models defined by the standard. They
can be applied to any layer of the MPEG/Audio algorithm. In practice however, Moddl 1
has been used for Layers | and Il and Model 2 for Layer I11. Both models compute a
signal-to- mask ratio (SMR) for each band (Layers| and I1) or group of bands (Layer 111).

The more sophisticated of the two, Model 2, will be discussed. The steps leading
to the computation of the JIND profilesis outlined below.

521 Time-align audio data

The psychoacoustic model must estimate the masking thresholds for the audio
data that are to be quantized. So, it must account for both the delay through the filter bank
and an additional offset to center the relevant data within the psychoacoustics analysis
window. For the Layer Ill agorithm, the mode is computed twice in paralel. One

computation is for data buffered by 576 samples. The data is further time-aligned for an
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additional 192 samples for use with short blocks (Sec. 5.2.9, Sec 5.3). Therefore, time-
aligning the psychoacoustic model with the filterbank demands that the data fed to the
model be delayed by atotal of 768 samples.
522 Spectral Analysisand Normalization

A high-resolution spectral estimate of the time-aligned data is essential for an
accurate estimation of the masking thresholds in the critica bands. The low frequency
resolution of the filterbank leaves no option but to compute an independent time-to-
frequency mapping via a fast Fourier Transform (FFT). A Hann window is applied to the
data to reduce the edge effects of the transform window. The power spectrum (PSD) is

estimated as

P(f)=R(f)d " (5.5)

whereis R(f) the magnitude and f (f) isthe phase of each spectral component.

Layer Ill operates on 1152-sample data frames. Model 2 uses a 1024- point
window for spectral estimation. Idedlly, the analysis window should completely cover the
samples to be coded. The model computes two 1024-point psychoacoustic calculations.
On the first pass, the first 576 samples are centered in the analysis window. The second
pass centers the remaining samples. The model combines the results of the two
calculations by using the more stringent of the two JND estimates for bit or noise
allocation in each subband.

When window switching (Sec. 5.2.9, Sec 5.3) is active, a 256-point FFT is

computed, with the data centered appropriately.
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The relative loudness of different frequency components of a complex sound
changes as a function of the overal level. So, unless sounds are reproduced at the same
level as the origina, the ‘tonal balance' is altered. For example, when human voices are
reproduced via loudspeakers at high levels, they sound boomy because the ears are very
sensitive to low frequencies at high intensities. Since playback levels are unknown to the
encoder, the sound-pressure level (SPL) needs to be normalized. This implies clamping
the lowest point in the absolute threshold of hearing curves to +/- 1-bit amplitude.

5.2.3 Spectral Prediction and Unpredictability Measure
The magnitude Iit and phase fAt of the spectral components of the current frame t

are predicted from those of the previoustwo frames t - 1,t - 2 as

R(f)=2- R, (f)- R,(f)
(5.6)

f(f)=2-F, . (f)-f,(f)

Tona components are more predictable than broadband signals. They aso have
different masking characteristics. A measure of unpredictability of each spectra

component can be computed as

SR (1) oostt (1)) R(F)cos(r () +2
_ g(Rr(f)Sin(f;(f))'ﬁ[(f)sip(fAt(f)))z u (5.7)

f =
0 R(H)+[R(1)])

For best performance, c(f) should be computed for all spectral lines up to 20

kHz. Computing the unpredictability measure only for the lowend spectrum reduces
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computational burden at the cost of sacrificing performance. It should be computed from
DC to at least 3 kHz and preferably up to 7 kHz. An upper limit of less than 5.5 kHz may
considerably reduce performance from that obtained during subjective testing of the
audio agorithm. In any case, when c(f)is computed for only a part of the entire
spectrum, the remaining values should be set to 0.3.

When Model 2 is used for Layer 111 compression, the unpredictability is computed
for the first 206 spectral lines. For the remaining lines, the value is set to 0.4. The
unpredictability of the first 6 linesis calculated from along FFT (window length = 1024,
delay = 576 samples). For the remaining spectral lines up to 205, the unpredictability is

computed from the short FFT (window length = 256, delay = 192 samples).

¢ (f) for OE£f <6
1 af +
c(f)-. Sr for 6£ f <206 (5.8)
T0.4 for f3 206

where ¢, (f)isthe unpredictability calculated from the long FFT and c (f) isthe

unpredictability calculated from second short block out of three short blocks in a granule
(= agroup of 576 samples).
524 Grouping of spectral valuesinto threshold calculation partitions

The uniform frequency decomposition and poor selectivity of the filterbank do
not reflect the response of the BM. To accurately model the masking phenomenon of the
BM, the spectral values are grouped into a large number of partitions. The exact number

of threshold partitions depends on the choice of sampling rate. This transformation
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provides a resolution of approximately either 1 FFT line or 1/3 critical band, whichever
issmaller. At low frequencies, asingle line of the FFT will constitute a partition, while at
high frequencies many lines are grouped into one. The spectral components are
transformed to the Bark-frequency domain by summing up power spectral components as

follows

e(2)= a R*(f) (5.9)

f=bl,
where bl,and bh,represent the lower and higher frequency limits for the Z"

critical band and e(z) isthe energy in each threshold calculation partition.

The weighted unpredictability of each partition is given by

c(z)= f%; R*(f)c(f) (5.10)

5.25 Simulation of the spread of masking on the BM

A strong signal component affects the audibility of weaker components in the
same critical band and the adjacent bands. Model 2 simulates this phenomenon by
applying a Spreading function to spread the energy of any critical band into its
surrounding bands. On the Bark scale, the spreading function SpF has a constant shape
as a function of partition number, with slopes of +25 and —10 dB per Bark, as defined in
Eqg. 4.4. In Layer |11 applications, only values of the spreading function greater than 60

dB are used. The basilar excitation pattern per partition is given by
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ec(2) =€(2)* SF(2)
=& e(z,) 50t (am,. 2m)

b=1

(5.11)

where zZm is the median bark value of the partition z and is z, the largest

partition index for the particular sampling rate. The unpredictability of each partition is
also convolved to get
ct(2) = c(2)* SpF(2)

:zgx c(z,)pF (zm,, zm)

b=1

(5.12)

Since ct(z) isweighted by the signal energy, it must be renormalized to cb(z) as

cb(2) = % (5.13)

Idedlly, the effect of the spreading function on the energy should also be reversed.
Implementing this as a standard deconvolution problem would result in numerical
problems such as negative and/or zero energy in some regions. These problems manifest
themselves because the deconvolution process seeks a strictly numerical solution that
disregards the physical and acoustic realities of the situation. So, a renormalization
process is used instead.

The spreading function, because of its shape, increases the energy estimates in
each band due to the effects of spreading. The renormalization takes this into account,

and multiplies each partition by the inverse of the energy gain, assuming a uniform

energy of 1 in each partition. While this is not the most accurate procedure, it accounts
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for very little error in the bit-rate estimation process.

en(z) =ec(z) - rnorm(z) (5.19)

and the normalization coefficient is defined as

rnorm(z) = !

3 SoF(am,, 2m)
b=0

(5.15)

5.2.6 Estimation of tonality indices

It is necessary to identify tonal and non-tonal (noise-like) components because the
masking abilities of the two types of signals differ. Model 2 does not explicitly separate
tonal and nontonal components. Instead, it computes a tonality index as a function of
frequency. This is an indicator of the tone-like or noise-like nature of the spectral
component. The tonality index tb(z) is based on a measure of predictability. Linear
extrapolation is used to predict the component values of the current window from the
previous two analysis windows. Model 2 uses this index to interpolate between pure tone-
masking-noise and noise-masking-tone values. Tonal components are more predictable
and thus have a higher tonality index. As this process has memory, it is more likely to
discriminate better between tonal and norrtonal components.

th(z) =-0.299 - 0.43log,[ch(2)], O<th(z)<1 (5.16)
At this juncture, it is necessary to point out that Model 1 explicitly labels the

components as tonal or non-tonal based on the local peaks of the audio power spectrum.
After labeling the tonal components, it sums the remaining spectral values into a single

non-tonal component per critical band whose frequency index is closest to the geometric
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mean of the critical band. This approach works well for low frequency subbands where
the subband is narrow relative to the corresponding critical band. But it is inaccurate for
higher frequency subbands because critical bands span several subbands — all non-tonal
components within a critical band are concentrated into a single component at a single
frequency, in essence taking the form of a tonal component. Consequently, a subband
within a wide critical band but far from this concentrated non-tonal component will not
get an accurate norrtonal masking assessment.
5.2.7 Calculatetherequired SNR in each partition

The masking threshold is determined by subtracting an offset from the excitation
pattern. The value of the offset is strongly dependent on the tonal or noise-like nature of
the masker. For Layer Il applications, the NMT (noise-masking-tone) is set to 6 dB for
all threshold calculation partitions. Similarly, TMN (tone-masking-noise) is set to 29 dB
for al partitions. The offset is determined by weighting the maskers with the tonality
index as

O(2) =th(z) - TMN(2) + (1- th(2))- NMT(2)

(5.17)
=29-th(2) +6- (1- t(z)) dB
The required SNR in each partition is estimated as
SNR(2) = max|[min val (2),0(z)] dB (5.18)

where min val(z) is the lower limit for the SNR in the partition that controls the
stereo unmasking effects. It is predetermined and stored in tables for every sampling rate

supported. Transforming the SNR into the power domain gives

- NR(2)

bc(z) =10 © (5.19)
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5.2.8 Calculate the threshold for each partition
The actual energy threshold in each partition is given by

nb(z) =en(z) - bc(z) (5.20)
5.2.9 Pre-echo detection and window switching

Audio coding algorithms transform blocks of data and code them efficiently using
the energy compaction properties of the transformation, supplemented by psychoacoustic
analysis to extract perceptua redundancies. The Layer Il agorithm uses the MDCT to
transform the subband data.

The longer the block length, the better is the frequency resolution of the transform
but the poorer is its time resolution. For relatively stationary signals, long blocks provide
better compression (coding gain). On the other hand, the characteristics of ransients are
best captured with short time windows. For best results, the size of the block has to be
adapted to the statistics of the signal.

If a sharp attack occurs at the end of a long block, the psychoacoustic model
would be misled to derive a higher masking threshold for that entire block. As a result,
the signal is coarsely quantized. In the time domain, the quantization noise is spread over
the entire block and it would be higher than the signal level at the beginning of the block,
manifesting itself as a perceptible pre-echo just before the attack of the signal.

To control pre-echo, the first problem is to detect the occurrence of such
transients. The decision to switch to short windows is derived from the calculation of the
masking threshold by calculating the estimate of psychoacoustic entropy (PE) and

switching when it exceeds an empirically determined value.
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Fig. 5.6  Pre-echo distortion for long blocks.

An empirically determined absolute masking threshold, the threshold in quiet
Tq(f), as defined in Eq. 2.1, is used as a lower bound on the audibility of sound. The
threshold derived for the current frame is compared with that of the previous frame and

the threshold in quiet. The maximum of these values is chosen as the threshold.

thr(z) = max[Tq(z), min[nb(z), nb,_, (2), nb,_,(2)]] (5.21)

where nb, ;,(z) and nb, ,(z) are the energy thresholds from the previous two

frames, that are computed as

nb, ,(2) =2 nb(2)

(5.22)
nb, ,(z) =16 nb(z)
For Layer |11, the perceptua entropy is determined as outlined below
Z ax é PIA
PE =- & sbwidth(b) - logZ ) & (5.23)

aé Een(b) + 110
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where cbwidth(b) is the width of the threshold calculation partition.

The Layer 111 algorithm also incorporates other measures to compensate for pre-
echo such as a *bit-reservoir’. The bit reservoir is a pool of extra coding bits that are
saved when the target quality is met below the estimated bit-rate. These extra bits are
used in compensating for the demand of additional bits while coding transients (Sec
5.5.4).

5.2.10 Calculatethe JND estimate

For use of Model 2 with Layer | or I, the IND estimate computed (in the
threshold partition domain) above is spread over the spectral lines before comparing
against the absolute threshold of hearing.

nb(z)

high ~ flow +1

nb(f) =
(5.24)

thr( f) =max|[nb( ), Tq( f)]

For Layer 111 encoding, the threshold is not spread over the FFT lines. Instead, the
threshold calculation partitions are converted directly into scale-factor bands. There are
tables that indicate the number of partitions that go into each scale-factor band. The first
and last partitions in each scale-factor band are weighted by w1l and w2 respectively. For
each sampling frequency supported, there are 21 bands for long (and transition) windows
and 12 bands each for short windows.

The energy in each scale-factor band is given by



77

b=bo- 1
en(sb) =wl- eb(bu)+ &g eb(b) + w2 - eb(bo) (5.25)
b=bu+1
The parameters bo and bu, used for converting threshold calculation partitions to
scae-factor bands, are listed in tables. So are the weights wl and w2, for each scale-

factor band.

The threshold in each scale-factor band is given by

b=bo-1
thrn(sb) =wl - thr(bu) + & thr(b) + w2 - thr(bo) (5.26)

b=bu+1

5211 Calculation of the signal-to-mask ratio (SMR)
For Layers | and Il, SMR is calculated as a ratio of signa energy within the
subband. Each subband is identified as a psychoacoustically narrow or wide scale-factor

band. A psychoacoustically narrow scale-factor band is one whose width is less than

approximately % critical band.

The energy in each scale-factor band epart,, is

fhigh,
gpart, = Q R*(f) (5.27)

f =flow,

For anarrow scale-factor band, the noise level npart,, is calculated as

fhigh,
npart, = @ thr(f) (5.28)

f =flow,

For a psychoacoustically wide scale-factor band, the noise level npart, is



caculated as

npart, = min[thr( flow,),...thr( fhigh,)](fhigh, - flow, +1)

The SMR is defined as

For Layer I11, the SMR in each scale-factor band is defined as

thrn(sb)

wm@:m®)

Thisis the fina output of the psychoacoustic model.

5.3 MDCT and the Hybrid Filterbank
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Fig.5.7  Window-switching State Machine.
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The filterbank outputs are processed using a Modified Discrete Cosine Transform
(MDCT) as it has very good energy compaction properties. Unlike the filterbank, the
MDCT is alosdess transformation. The MDCT further subdivides the filterbank outputs
in the frequency domain. Layer |11 specifies two block sizes for the transform, a short
block of 6 samples and a long block of 18 samples. The MDCT has been designed such
that there is a 50% overlap between adjacent time windows. As aresult in the short block
mode, it takes 12 time domain samples and gives 6 frequency domain samples. Similarly
for the long block mode it results in 18 frequency lines for 36 time domain samples. Prior
to cascading the subband outputs with the MDCT, each of the odd subbands must
undergo a frequency inversion correction so that the spectral lines will appear in proper
monotonic ascending order. The frequency inversion consists of multiplying each odd
sample by —1.

The psychoacoustic model detects conditions of pre-echo and triggers short
blocks for transients (better time resolution) or long blocks (better frequency resolution)
for signals with stationary statistics. When the perceptual entropy exceeds the value
1800, an empiricaly determined constant, the MDCT filterbank is switched to short
windows. To maintain perfect reconstruction properties of the MDCT, switching between
short and long blocks cannot be instantaneous. Long-to-short and short-to-long transition
windows are provided for this purpose. Fig. 5.7 illustrates the possible state transitions
for the window switching logic.

The size of the short block is one-third the size of along block. In the short block

mode, three short blocks replace one long block so that irrespective of the kind of
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window applied, the number of MDCT lines remains constant. For a particular block of
data, all the filterbank channels can have the same MDCT block-type (short or long) or a
mixed mode where the two lower frequency subbands have long blocks while the
remaining 30 upper bands have short blocks. The mixed mode provides better frequency
resolution for the lower frequencies, while maintaining a high time resolution for the
higher frequencies.

The polyphase filterbank and the MDCT are together called as the Hybrid

Filterbank as they adapt to signal characteristics.

Subband 0 | MDCT MOCT !
window < : I
Subband1 | MDCT \ MOCT \ ! '
window N | !
PCM | 2 | \ \ = |
Audio E £o
i Z | = |
s | -
i oo .
% % g‘ To Quantizer
| I
———
window \ : I
Long, lohg-ta-zhart, Long or shart block contral
sﬁgrgtl, sizgrlt-tz-slnr?; [fram Pepchoacoustic Mode)
window zelect

Fig. 5.8  Hybrid Filterbank.

Once the MDCT converts the audio signal into the frequency domain, the aliasing
introduced by the subsampling in the filterbank can be partially cancelled. Alias

reduction is applied for long blocks only.
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Fig.5.9 Aliasreduction butterfly for the Encoder.

The anti-aliasing butterfly for the encoder is as shown in Fig. 5.9. Each anti-
aliasing butterfly is an orthonormal transformation (rotation) applied to one of the eight
designated pairs of spectral lines. They do not affect the perfect reconstruction properties
of the filterbank, but improve the compression factor of the coder by trying to contain the
energy within each subband.

As can be seen in Fig. 5.10, a granule (group of 576 samples) is the time-
frequency mapping of half a frame of the input data. Unlike the usual time-frequency
plane, they are now rearranged for alias-reduction - first in the order of frequency
(subband) and then in time. So, 18 time-domain samples of each subband are grouped

together. The butterflies are applied to every aternate sample in every aternate subband.
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Fig. 5.10 Alias reduction operations for a granule of MDCT data.

The decoder has to undo this in order for the inverse MDCT to reconstruct the

subband samples in their origina aiased form for reconstruction by the synthesis

filterbank. The decoder butterflies are similar, except for changesin sign.
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Fig.5.11 Aliasreduction butterfly for the Decoder.

54 The Noise Allocation, Quantization and Coding
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Fig.5.12 Calculation of mask-to-noise ratio based on simultaneous masking [78].
Consider the tone in Fig 5.12. The masking produced by this tone is determined
by simulating the excitation pattern on the BM (by applying a spreading function),
deleting an offset and finally comparing it with the threshold in quiet. Assuming that the
masker is quantized using an m-bit uniform scalar quantizer, noise might be introduced at

level m. Sgnal-to-mask ratio (SMR) and Mask-to-Noise ratio (MNR) represent distances



84

from the minimum masking threshold to the masker and noise levels respectively, in the
log domain.
The mask-to-noise (noise-to-mask) ratio can be computed as

MNR,, = NMR,; = NR; - MR, (5.32)

where SNR is the signal-to-noise ratio and SMR is the signal-to-mask ratio from
the psychoacoustic analysis.

The Layer 111 encoder quantizes the spectral values by allocating just the right
number of bits to each subband to maintain perceptua transparency at a given bit-rate. It
controls and shapes the spectrum of the quantization noise to lie below audible levels. So,
the scheme is called as noise allocation, as opposed to bit allocation.

Rate control (quantization of spectral values) is realized using two nested loops.
The outer loop is called as the distortion control loop while the inner loop is caled rate
control loop. The outer loop controls the quantization noise produced by the quantization
of the frequency lines within the inner loop. The inner loop does the actual quantization
of the spectral values to meet the desired bit-rate.

So, the inner loop chooses a quantizer, quantizes the spectral values and counts
the number of bits required for Huffman coding. If the resulting bit-rate is higher than the
desired rate, it iteratively increases the quantization step-size, recomputes the resulting
bit-rate; and continues to do so until the target rate is met. The outer loop computes the
guantization noise resulting from this coarse quantization. If some of the scale-factor
bands have more than the permissible distortion, it amplifies the corresponding values

and as a result decreases the quantization step-size for those scale-factor bands.



85

This process continuestill
There is no scale-factor band with more than the allowed distortion.
All scae-factor bands are already amplified
The amplification of at least one band exceeds the upper limit, which is
determined by the transmission format of the scale- factors.
A time-out is reached (for real-time implementations).
55 Other refinementsin Layer 111
In addition to the MDCT window switching and alias reduction, the Layer IlI
algorithm includes other refinements like
55.1 Non-uniform Quantization
The quantizer raises its nput to the % power before quantization to provide a
more consistent SNR over the range of quantizer values. This is undone at the decoder.

The encoder the samples xr[i] are quantized to ix[i] according to the equation

3

e =
& ] ¢ G
|X[|] =nint é m+ - 00946[:] (533)
2 4 g u
e 9]

where nint() represents the nearest integer. The maximum alowed quantized
value is limited to constrain the size of the tables used for lookup at the decoder.
552 Scale-factor bands

The scale-factor bands cover severa MDCT coefficients and have approximately
critical-band widths. . Scale-factor values are adjusted in the noise allocation loop to fit

the masking threshold.
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55.3 Entropy coding of quantized values

Similar to the perceptual model, the lossless coding backend also divides a frame
into two granules. A granule is defined as a set of 576 frequency lines that carry their
own side information. Due to energy compaction and quantization, the higher frequency
components are zero or have negligible energy. The quantized samples are ordered by
increasing frequency, to get a string of zeros at the end of the spectrum. For short blocks,
the coefficients are arranged in ascending order, first by block and then by frequency
number. Starting from the Nyquist frequency, the longest possible stretch of pairs of
zeros is identified. Their number is named rzero. Next, quadruples of quantized values
with absolute value not exceeding 1 (3 possible quantization levels) are identified. They
are named countl. The remaining part of the spectrum may contain spectral amplitudes
upto 8191 (13 quantization levels). This part of the spectrum, called big values is divided
into three significant regions and coded using Huffman tables optimized for the statistics
of each region.

Fig. 5.13 depicts the unquantized MDCT for a sub-frame of audio data. Since this
has been flagged as a short block by the perceptual model, the coefficients are reordered
for entropy coding. The rate-control loop iteratively changes quantizers till the target rate
of 128 kb/s is met while maintaining the noise-floor below the masking threshold. The
resulting coefficients are as shown in Fig. 5.14. It can be seen that some of low-energy

coefficients present at higher frequencies are discarded in the process.
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Fig.5.14 MDCT coefficients (magnitude) quantized to meet atarget bit-rate of 128
kbr/s.

554 Bit reservoir
The encoder operates on blocks of data 1152-samples long. When a frame of data

is coded with less than the average number of bits necessary, the encoder donates the
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extra bits to a reservoir. It can borrow these extra bits when the coding gain is low,
especially during transients, to maintain perceptual quality. The encoder can borrow bits
donated from past frames; it cannot borrow bits from future frames. As aresult, the coded
representation for a block of data need not necessarily be confined to one frame in the
bitstream; it can start from previous frames.
5.6 Error Sensitivity, Detection and Concealment
56.1 Bit-error Sensitivity

Sensitivity of individual bits of the various logical elements of the bitstream can

be indicated on a 6-point scale defined as below.

Sensitivity Description
| ndex

Catastrophic
Very Annoying
Annoying
Slightly Annoying
Audible
Insensitive

O |N|(W|H~|O1

Table 5-1 Index of Bit-error Sensitivity.
The sensitivities of the various elements of the Layer 111 algorithm are indicated in
Table 5-1. The values are not results of precise measurements; rather they rely
upon the knowledge of the codec. They assume that an error detection scheme is not in
use. Some fields in the bitstream are variable length and al bits in these fields are rated
for error sengitivity, even if not in use.
The header and error check information are the first logical elements in the frame.

The decoder identifies a new frame by seeking for the synchronization sequence at the
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beginning of the frame. Loss of synchronization means the loss of an entire frame of
compressed data. The CRC word, if present is the next logical element. Therefore, the

header and error check information are considered to have the highest sensitivity.

Parameters #bit Senditivity

scfsi al bits 5
part2 3 length all bits 4
big values al bits 3
global_gain all bits 5
scalefac_compress all bits 5
window_switching flag 0 5
block _type all bits 4
mixed block flag 0 4
table select al bits 5
region0_count all bits 3
regionl count al bits 3
preflag 0 2
scalefac scale 0 2
countl table select 0 3
subblock _gain 2(msb) 4
1 3
0 2

scale fac 3(msb) 3(2)

2 3(2)

1 2(1)

0 2(1)

Huffmancodebits() 0...n1 3-0

Table 5-2 Table of Bit-error Sensitivity.

5.6.2 Huffman Codeword Reordering
Interleaving Huffman codewords as opposed to logical ordering provides implicit

error robustness for the low frequency spectral components. If max_hlen is the maximum

! The scalefac length depends on scalefac_compress. The bit sensitivity values refer to the scalefac_scale
value 1 (if O, the value in parenthesis)

2 |f nisthe number of bits for Huffman coding in one block the bit sensitivity decreases linearly from 3 to 0
as the bit number varies from 0 up to n (from low to high frequency)
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length of a Huffman codeword (over the tables which are used to code the particular

block) and n is the number of bits used for Huffman coding of data in the block (not

frame), then int EEL— dots are filled with the codewords, starting at low
max

blen g
frequencies. And the remaining codewords are filled into the remaining place, again in

the order of increasng frequency. After interleaving, the sendtivity of bit

- int 2 decreases linearly from 3 to O as k varies from O up to
gmax bleng

n
é‘grnalx blen

, Where i=0, ..., max_hlen-1, and n is the number of bits for

C>£\Cf

Q -0

Huffman coding of one block. Thisis the recommended practice for Layer |11 datafor all
channels where error robustness is important.
56.3 Error Concealment

Source-coded bhitstreams are very susceptible to channel errors, both random and
burst errors, when directly used in transmission applications. In such situations, it is
always recommended to protect them with channel codes. The MPEG-1 algorithm
provides an optional CRC to provide some error detection facility to the decoder. The
CRC check diagram is shown in Fig. 5.15. The Hamming distance of this detection code
is d =4. This permits to detect up to 3 single bit errors or for the detection of one error
burst of up to 16-bit length. The amount and the position of the protected bits within one
encoded audio frame generaly depend on the layer, the mode, data rate and sampling

frequency.
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When critical parts of the bitstream are corrupted, a ssimple method of error
concealment is to repeat the previous frame, if it is error-free. Muting is another option.
Error in specific parts of the decoding process can be handled by substitution of average
values. For example, if there is an error in decoding Huffman-coded values, the corrupted

value can be replaced by an average value.
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Fig. 5.15 CRC check diagram.



CHAPTER 6
THE ASU MP3TOOL: IMPLEMENTATION OF THE MP3 ALGORITHM IN
MATLAB

The Arizona State University MATLAB MP3Tool is a graphical user-interface
(GUI) based tool for introducing audio-DSP concepts to both undergraduate and graduate
students. This chapter briefly reviews this simulationtool. The tool consists of a user-
friendly graphical interface along with a complete MATLAB realization of all aspects of
the audio MPEG-1 Layer 3 (MP3) algorithm. The tool is accompanied by a series of
computer experiments and exercises that can be used to provide hands-on training to
class participants. The tool may aso be used by instructors in a class setting to
demonstrate key signal processing concepts associated with the processing of high
fidelity audio. The MATLAB MP3 tool has been used in Arizona State University
undergraduate DSP courses as well as in a graduate course on speech and audio coding
and in a continuing education short course. A complexity profile for the implementation
is aso presented
6.1  Description of the ASU MP3TOOL

The tool is invoked by running the MP3Encoder.m script. A copyright notice is
first displayed, as shown in Fig. 6.1. The user has to accept the terms of the copyright to
use the software. Next, the tool asks the user if he would like to visualize and plot the
results at crucial stages of the algorithm. On an affirmative response, the main user-
interface for the tool will be enabled; else the visual cues are disabled. It is recommended

to enable the GUI.
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The Encoder Configuration menu is shown in Fig. 6.3 provides a graphical
method to input the encoding parameters. Essentia inputs are the names of the source
and destination files and the target bit-rate. Other optional parameters include

Mode selection: select from stereo, intensity and/or ms-stereo, stereo and mono
De-emphasis: select from none, 0-15 pusand CCITT J.17

Private Bit: bit for private use. This will no longer be used in future by 1SO/IEC
Error Protection: information for CRC-based error checks.

Copyright: Is this material copyrighted ?

Origina: Isthis material origina ?

+# | Copyright 3 il

Copyright [] 2007 Arizona State University [A50).

Educational MATLAE Simulation of MPEG-1 Layer 3 [MP3]

Coded from the standard in MATLAE

by rezearch aszociates of the ASL Speech Processing lab
under the direction af Prof Andreas Spanias.

Far queztionz email to Prof. Andreaz Spanias [zpaniaz@asu. edu)
Director of Speech Proceszing Laboratorny, A5

Thiz MP3 MATLAE software iz intended OMLY for

educational purpogzes. Mo other uze iz intended or authorized.
Thiz iz not public domain software and unauthonzed

distribution to individuals or networks iz prohibited.

Be aware that uze of the ISOAEC 11172 standard in any form is
aoverned by US Copyright law and patents by zeveral entities
including Fraunhofer 115, Thomzon Consumer Electronics, AT&T,
Apaare, CCETT, CHET and others.

Although the developers of this zoftware at ASL believe that

thiz educational implementation of MP3 iz funchional,

there iz no waranty or even implied warranty that the software

iz free of errors.

Arizona State Univerzity does not provide ary WARRANTY ar even
implied warranty of MERCHAMTABILITY or FITHESS FOR & PARTICULAR
PIURPOSE. There iz no commitment or implied commitment on behalf

of Arizona State Univerzsity or Andreas Spanias for maintenance

ar any future suppart of this code.

Accept | Decline |

Fig.6.1  The copyright notice.
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Fig. 6.2 The modal diaog to enable/disable the GUI.

# [Encoder Configuration x|

Source ﬂ
T arget % L

tade I Stereo j
De-emphasiz I Mo j
Private Bit '

Error Pratection

Copyright r
Driginal r
Bitrate I 120 j

Fig. 6.3  The menu for determining the encoder configuration

The main graphical user interface of the MATLAB MP3 tool is shown in Fig. 6.4.
This consists of a block-by-block graphical representation of the MP3 algorithm. Each of
the blocks is associated with the relevant signal processing functions that can be activated

by opening the corresponding context menus.
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Fig.6.4  The main user interface for the MP3Tool.

The algorithm operates on blocks of data. The block of PCM audio data to be

encoded passes through a filterbank that divides the spectrum into 32 uniform subbands.

The energy in each subband is further compacted by the application of the MDCT. The

same frame of audio datais also fed to a psychoacoustics model that determines the ratio

of signal energy to the masking threshold for each subband. Based on this threshold and

the target bit-rate, the quantization block iteratively allocates bits to the MDCT spectral

components of the various subbands to minimize the perception and audibility of the

guantization noise. These quantized subband samples and the side information are packed

into a coded bitstream by entropy coding. Every block of data, thus operated on, is

represented as a frame in the coded bitstream. The agorithm steps through each frame of

data and displays corresponding results.
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The context menu of the analysis filterbank block provides for the visualization of
not only the actual filterbank outputs, but also frequency responses of the prototype filter
and the entire cosine modulated filterbank, as shown in Fig. 6.5-6.7.

4 | Filterhank Dt pat ._"-'-:.:_' .d:lﬁl
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Fig. 6.5 The output of the Analysis Filterbank.
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Fig.6.6  Theresponse of the Prototype filter.
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Fig. 6.8  The Psychoacoustics user interface.

Fig. 6.8 represents the user interface for the psychoacoustics model. A drop-down
list-box provides many results to choose from; these results can be viewed for every
granule of every channel. The data and its spectrum can be viewed. The energy in the
partition domain, the resulting JND profile and an indicator of tonality of each of the
components are provided on a single plot to elucidae the differences in the masking

properties of tona and noise maskers.
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Fig.6.9  The masking phenomenon.

Even though spreading the JND profile over the FFT components is not part of
the coding strategy of the MP3 algorithm, it is a powerful demonstrator of the concept of
masking, as shown in Fig. 6.9.

The MP3 agorithm tracks changes in the PE of the signal and switches the time-
frequency resolution of the hybrid filterbank accordingly. Non-stationary spectra
correspond to instances of high energy that have a potential to trigger a reorganization of
the time-frequency plane. The tool uses a buffer to track and display the PE of the

previous 10 frames and bring such events to the attention of the user.
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Fig.6.10 The PE tracker.

The MDCT is a losdess transformation that further subdivides the filterbank

outputs in the frequency domain. The agorithm specifies two block sizes for the

transform, a short block of 6 samples and a long block of 18 samples. In the MDCT

domain, the aliasing introduced by the subsampling in the filterbank can be partially

cancelled by the application of alias reduction butterflies. This helps to contain the energy

within each subband and increase the compression factor of the coder. The MDCT

spectra are displayed for both the aliased and alias-reduced case, as shown in Fig. 6.11

and Fig. 6.12.
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Fig.6.11 The MDCT outputs with aiasing.

The quantized MDCT components are displayed as the output of the rate-control
loop. The quantized spectrum is basically divided into three categories. run-length zeros,
values in the range[-1, 1] and big-values. The big-values spectrum is further divided into
three regions and coded with Huffman code-books designed for each region. Observation
of the quantized spectrum shows the performance of the algorithm at various bit-rates.
The degradation in signal quality at high compression ratios can, in part, be attributed to

the truncation of high frequency spectral during rate-control.
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Fig.6.12 Thealias-cancelled result for the MDCT components in Fig. 6.8.

The most interesting part of the bitstream formatter is the bit-reservoir. The
encoder operates on blocks of data 1152-samples long. When a frame of data is coded
with less than the average number of bits necessary, the encoder donates the extra bits to
areservoir. It can borrow these extra bits when the coding gain is low, especially during
transients, to maintain perceptual quality. A logical representation of the bitstream is
provided to convey the idea and its parameters are updated every frame to demonstrate

the bit-reservoir at work.
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Fig.6.13 The quantized MDCT coefficients at the output of the rate control 1oop.

6.1.1 Tutorial Exercises

A set of experiments have been designed to provide hands-on experience with the
various aspects of the algorithm. Select exercises have been given to undergraduate
students at ASU as part of a computer project in a DSP class. The students performed the
experiments and responded to the questions in the quiz section. They then submitted a
typed report that described the results obtained in the computer exercise along with
severa relevant figures and graphs that are copied in their report using a drag-and-drop

process. Select exercises for our graduate class in speech and audio coding included



104

subjective evaluations based on records that are obtained by modifying audio parameters
directly in the MATLAB MP3 code. A set of experiments in the form of a tutorial have

been included in the Appendix.
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Fig. 6.14 The bit-reservoir in action

6.2  Complexity Profile of the MATLAB implementation

To anayze the distribution of computational complexity, the encoder and decoder
were profiled. The results are as shown in Fig. 6.15 — Fig. 6.17. It is to be noted that
complexity profile is highly dependent on the tool (in this case, MATLAB), the
Operating System (OS) and the underlying hardware architecture. MATLAB is a high

level double-precision floating-point engine that provides a highly advanced and flexible



105

interface for testing and visualization. On the flip side, execution is sower than the more
traditional compiled binaries and libraries. And bit-manipulation routines are definitely
dower. The profile of the reference C-language implementation is aso shown for
comparison.

Bit-manipulation operations, nested for-loopsand dynamic memory allocation are
very expensive in MATLAB. Therefore, the bitstream formatting takes up most of the
computational horsepower for the encoder. Most of the remaining processing bandwidth
is used up in the rate-control loop. At the decoder, Huffman decoding is costly in terns of
bit- manipulation and as expected, is the most expensive part of the algorithm.

Psychoacoustics Misc

MDCT o 0%

1%

SubBand Analysis
2%

EBitstream Formatting
EQuantization Loop
OSubBand Analysis
OMDCT
WPsychoacoustics
EMisc

Quantization Loop
11%

Bitstream Formatting
85%

Fig. 6.15 Encoder Complexity Profile for the MATLAB implementation.
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Fig.6.16 Profile details of the Quantization Loop for the MATLAB implementation.
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Fig. 6.17 Decoder Complexity Profile for the MATLAB implementation.
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Fig. 6.18 Encoder Complexity Profile for the C implementation.
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Fig. 6.19 Decoder Complexity Profile for the C implementation.
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Optimization of the MATLAB encoder is an important issue, especialy for
running on slower hardware. Hot-spots in the code were identified from the profile in Fig.
6.15. Three critical functions in the bitstream formatter were optimized using the
MATLAB Compiler to improve speed and till maintain a high readability of the code.
The resulting code is 4.5times faster than the unoptimized version. Fig. 4.20 shows the

distribution of computational complexity for this version of the code.

Misc
0%
MDCT
3%

SubBand Analysis
3%

Psychoacoustics
5%

Bitstream Formatting WBitstream Formatting
46% Quantization Loop

O Psychoacoustics

OSubBand Analysis

EMDCT

@ Misc

Quantization Loop
43%

Fig. 6.20 Encoder Complexity Profile for the optimized MATLAB implementation.



CHAPTER 7
IMPROVING PERFORMANCE OF THE MP3 ALGORITHM AT LOW
BITRATES

The MPEG-1 standard [30] embodies first generation coders that provide modest
coding gains at the cost of fine-grain scalability of bit-rate, bandwidth and complexity.
They were not designed for streaming applications. The MPEG-2 standard [37] addressed
some of these issues. For audio coding, MPEG-2 LSF [38] extends stereo and mono
coding of MPEG-1 standard to halved sampling rates (16, 22.05 and 24 kHz) for
improved quality for bit-rates at or below 64 kb/s per channel. Nevertheless, it is to be
pointed out that retrofitting a high fidelity audio coder for lower sampling frequencies
and consequently lower bit-rates is not the best solution to the problem at hand. On the
contrary, parametric and analysis-by-synthesis coders perform very well at very low bit-
rates [82]. In the light of these issues, to improve quality at high compression ratios, this
chapter concerns itself with the proposal of an algorithm for embedding a parametric
model as an enhancement layer in the standard MP3 bitstream.
7.1  Motivation

All high-fidelity audio coders rely upon a model of human auditory masking for
shaping quantization noise in the frequency domain. In the case of MP3, rate control is
achieved by iteratively changing quantizers till the (quantization) noise is below the JIND
for al scale-factor bands. This process is nonlinear and aims to maximize SMR at the
expense of pruning higher frequencies. Fig. 7.1 shows the original and decoded MP3

bitstream at 64 kb/s. Fig. 7.2 shows the original and decoded MP3 bitstream for more
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severe case, 48 kb/s. The decoded signals have a marked low-pass filtered effect.

On closer observation, it can be seen that the design of the lossless coding
(Huffman) backend of the encoder is based on the fact that, statistically, higher frequency
components have low energy. So, as the bit rate control loop iteratively increases
quantizer step-sizes, part of the quantized high-frequency spectrum will contribute to the
string of run-length zeros. The bits thus saved are distributed among the stronger signal
components.

This study proposes a scheme for embedding information about the truncated

spectrum to enhance the quality of the decoded bitstream, as outlined below.
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Fig. 7.1  High frequencies are sacrificed for compression at low bit-rates (64 kb/s).
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Fig. 7.3 isalogical representation of the MP3 bitstream. Also, it can be seen from

Fig. 5.1 that the inclusion of ancillary data is optional. The ancillary bitstream may be

used to encode information not necessarily related to the audio data being compressed.

On the contrary, the ancillary bitstream may in some way be related to the data being

compressad; for example, an enhancement layer. For a particular target bit-rate, ancillary

data may be included only be reducing the number of bits for encoding the audio data.
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Given that the encoder is working at very high compression ratios and that the
enhancement layer can only be supported at the cost of compromising the primary
bitstream, it is of paramount importance to use a minimal number of bits in the ancillary
data. Typically, at bit-rates below 64 kb/s, the quality is not expected to be transparent
and it is desirable to have any noticeable improvement in audio quality with only a
moderate increase in computational complexity. Parametric models can be engineered for

low complexity and they can inherently be represented by a compact set of parameters.

Sampling Rate | Bit-rate (kb/s) Average PE (%) | Average number of
(kHz) in the run-length | scae-factor bands in
Zeros the run-length zeros

64 42.32 2

56 48.77 3

44.1 48 56.18 4

32 73.33 8

64 32.56 2

56 39.41 3

32 48 47.86 3

32 69.42 6

Table 7-1 Average PE contained in the run-length zeros of the Huffman spectrum and the
equivalent number of scale-factor bands.

As part of this study, an experiment was devised to calculate the average
perceptual entropy in the run-length zeros of the Huffman spectrum for a combination of
sampling rates and bit-rates. The corresponding number of scale-factor bands was aso
determined as an average. Table 7-1 lists the results. It is obvious from the table that at
higher compression ratios, a significant part of the PE is contained in the truncated
spectrum. Representing this part of the spectrum by a single coding gain for the quantizer

undermines the quality of the reconstructed signal.
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7.2 The Enhancement Algorithm
A block diagram of the proposed enhancement model that aims to model the

truncated spectrum by a combination of sinusoids and noiseis as shown in Fig. 7.4.
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T
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Ancillary data
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+—— Bitpacker
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bitztrearn Eitzream Frequ&;nc}l Synthesis audio zarmples
unpacking [ _ . rec;:srtnrﬂgtiun Filkerbank,
|
Ancillary data i
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o Enhancernent
Iulodel
[b] Decoder

Fig. 7.4  The Enhanced MPEG/Audio codec. (a) Encoder. (b) Decoder.

The scheme is based on a two-pass rate-control loop for dynamically determining
the number of bits required for the model. In the first pass, the MDCT components are
guantized and the number of scale-factor bands in the truncated spectrum is counted. This
is compared against the statistical average determined in the table above and the

minimum of the two is chosen. In effect, the scheme preferentially models higher scale-
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factor bands. Once the actual model parameters are determined, a small part of the audio-
data bits are apportioned to the ancillary bitstream and the spectral components of the
hybrid filterbank are finally quantized by a second pass of the rate-control loop. Since the
MP3 agorithm switches to short blocks when the PE is high and utilizes the bits in the
bit-reservoir (if necessary), the model is applied only for long blocks.

At the decoder, the model parameters are extracted and the parametric spectrum is
appended to the standard MDCT spectrum. Given the way the model is computed, it
never overlaps with the original spectrum; even in the best of cases, this resultsin a small
gap in the reconstructed spectrum between the two regions. The advantage of this method
is that there is no need for smoothing of any potential spectral overlap. The time-domain
signal is reconstructed from the standard synthesis filterbank.

721 Details of the Sines and Noise M odel

Sampling | Sb15 | sib16 | sb17 | b18 | Sb19 | sb20 | b 21 | b 22
Rate (kH2)
48 3 5 6 6 6 6 6 8
441 5 5 6 6 6 6 7 8
32 5 6 6 6 7 7 7 5
24 5 6 6 6 6 7 7 6
22.05 5 6 6 6 6 7 7 5
16 5 6 4 7 6 7 6 5

Table 7-2 Bit-alocation for the differential encoding of the sinusoidal frequencies.
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To keep the bit-rate requirements and complexity at a minimum, every scale-
factor band in the model has a single sinusoid. The remaining energy in the scale-factor
band is modeled as bark-band noise. From the results obtained in Table 8.1, only the last
eight scale-factor bands are modeled. The sinusoidal and noise amplitudes are quantized
by alogarithmic quantizer with a fixed bit-allocation of 4 bits per element. The sinusoidal
frequencies are encoded as differences from the lower boundaries of the scale-factor
bands. The scale-factor band boundaries are defined in Table B.8 of the standard. The bit-
allocation for the differential encoding of the frequencies is depicted in Table 8.2.

7.3 MP3PRO

A recent commercia product to improve the MP3 codec at low bit-rates is the
MP3PRO [80] [81]. It has adso been designed to mitigate the lowpass filter effect. The
technique used is caled Spectral Band Replication (SBR). SBR, as the name suggests,
does not redly encode the high-frequency spectrum; it reconstructs it from the lower
frequencies. The SBR encoder stores information about the part of the origina band-
limited signal from which the upper frequencies should be replicated in the ancillary data
of the standard MP3 file. At 64 kb/s, around 4 kb/s are used for the SBR model. The
spectrum up to 8 kHz is encoded in a conventional way. This part of the resulting MP3
file can be decoded by any MP3 decoder, so compatibility is kept with conventional
decoders. The SBR technique reconstructs the missing high frequency part, from 8 kHz
up to 16 kHz, by duplicating the spectrum. The quality of the MP3PRO codec comes at
the price of 300% increase in computational complexity of the decoder, not to mention

additional licensing costs in a price sensitive market.
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7.4 Results

Since the enhancement model parameters are transmitted as ancillary data, the
bitstream is compatible with legacy MP3 decoders. To get the benefits of the parametric
model, the decoder has to be re-engineered to decode the model, replace the truncated
MDCT spectral components with those derived from the model and then synthesize the
time-domain waveform.

7.4.1 Subjective Evaluation
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Fig. 7.5 MOS results for the original and decoded signals at 64 kb/s.

Informal subjective evaluation of the enhanced codec was conducted at 64 kb/s

and 48 kb/s. There were three test signals and eight listeners. The Mean Opinion Scores



(MQOS) for both the tests are indicated in Fig. 7.5 and Fig. 7.6.

MOS

35

25

15

05

7.4.2

3.75

75 /
.

3375
3.5375 3.4625

\/

2.9

117

—4— Enhanced
—f#— Standard

1 2 3
Test Signal

MOS results for the original and decoded signals at 48 kb/s.

Objective Evaluation

Fig. 7.7 and Fig. 7.8 depict the objective results obtained from the standard and

enhanced decoders. It is obvious that diverting a small percentage of the bits to the

parametric model dramatically improves the spectral matching at high frequencies.

Informal listening tests also indicated that the enhanced model contributes to an

improvement in perceptual quality.

The designed enhancement model was also compared against the MP3PRO

codec. Informal investigation of the MP3PRO codec revealed that it does quite a good

job of tracking the spectral envelope, as shown in Fig. 7.9. At times, the reconstructed
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signal suffers what appears to be excess harmonic excitation that results in a “tinny”
output. It was also observed that the MPPRO codec does not capture sinusoidal
components a high frequencies, confirming that it does not explicitly model the high
frequency spectrum.

The proposed algorithm is of very low complexity when compared to the
MP3PRO; a direct comparison would be unfair. The output of the designed moddl is

closer to the standard MP3 agorithm than to the MP3PRO, with a slight improvement in

quality.
40 T T T T
— Original
‘ - —- Sianderd Dscods
20 || - —- Enhancad Decade |-
. l, Ty\:“h o
i W. ll‘ !\ 1:"( ‘ﬂ _:.’ | l
g | I '{!‘ VA i 1‘ |
IR t" s |
§ I ( J ! y , I |
= I ; sl ! i |I
g. “ J TG
il ELER
oy V
80 - i |: | T
‘ :U (i/\ﬂl..[k'rnll. /'I‘({‘-.I “‘\ Ly
g W
i |
-100 05 1 15 2
Frequency (Hz) ¥ 10*

Fig. 7.7  Original and decoded signals at 64 kb/s.



Ampitude {dB)

Amplituda (0B)

— Original
-— - Standard Decode
20 ) -— - Enhanced Decode |
ik 1 I
of TG of |
| K ‘ I kl / |‘ !'{7,' | l‘.“‘i ’ ”’ : A ‘ ‘ |
=20 r 9 é Y\ i; ‘Q\ 11 ! _
| IR il i
40 \l I J |{| " i
i ]rJ |I’“* iy 1 ii rel- e
_w L ' .
0| " /h ]|L 0 ', W\"(‘,JI/“]’ly 9'{|F
\ vl\; \Hr \, f
00 | | .
120 . ' ' -
0.5 1 13 2
Frequency (Hz) x 10°
Fig. 7.8  Origina and decoded signals at 48 kb/s.
50 :
— Original
- —- Standard Dacode
, —— S+N Enhanced Decode
_ MP3Pro Enhanced Decode
il
of Ml M il -
l“ G LT ._
I | Y } }”H |,”;"w Hi
| ] | Th i
i ! | , ‘* i ,| “ il
i 'k \ \w
m - \I
!
i
iy
H’ 1
i 05 1 15 2
Frequency (Hz) x 10"

Fig.

40

7.9

Comparison of the designed model with MP3PRO at 64 kb/s.

119



CHAPTER 8
CONCLUSIONSAND DIRECTIONS FOR FUTURE RESEARCH

The MPEG-1 Layer 1Il (MP3) algorithm is aimost a decade old and has
proliferated into desktop computers and embedded cevices alike. Even though newer
algorithms based on the MPEG-2 and MPEG-4 standards perform better, they are
definitely more complex; the MP3 algorithm is a better choice for low complexity
implementations. Besides, the normative description of the MPEG-1 encoder provides
ample scope for improving its performance.
8.1  Summary of Contributions
811 ASU MATLAB MP3Tool

As part of this research, a software simulation tool was developed for introducing
perceptual audio coding concepts in senior undergraduate and graduate DSP courses. The
tool consists of a user-friendly graphica interface along with a MATLAB redlization of
the audio MPEG-1 Layer Il (MP3) agorithm. The tool is accompanied by a series of
computer experiments and exercises that can be used to provide hands-on training to
class participants. The tool may also be used by instructors in a class setting to
demonstrate key signal processing concepts associated with the processing of high
fidelity audio. The MATLAB MP3 tool has been used in Arizona State University
undergraduate DSP courses as well as in a graduate course on speech and audio coding
and in a continuing education short course. The experiments designed are listed in

Appendix-A.
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8.1.2 Development of an algorithm to improve performance at low bit-rates

For the MP3 agorithm, the best compromise between bit-rate and quality is
obtained at around 128 kb/s. Bitstream syntax issues aside, for streaming applications,
typical bit-rates are at or below 64 kb/s. At these hit-rates, the agorithm is not
transparent; it is a well known fact that the MP3 algorithm has a marked low-pass effect
a lower hit-rates. In such cases, any incremental improvement in quality is definitely
desirable. This thesis also concerned itsaelf with the development of a parametric signa
model to improve the performance of the MP3 agorithm at very low rates. The designed
model has a very low complexity and demonstrates the viability of the solution.

8.2  Directionsfor futureresearch

Feedback obtained from a wider user-base can help improve the quality of the
MP3Tool by incorporating small enhancements. The tutorial can be further expanded to
include a more detailed description and a larger set of exercises. Tracking and fixing bugs
is an essential part of code maintenance and support.

It is imperative to test the algorithm over a wider range of audio material and
listeners. Since the enhancement model developed here is applied only for long blocks,
the performance is highly dependent on the signal characteristics. It would be interesting
to apply the model to al types of MDCT blocks and compare the results. Also,
introducing memory in the model can help track the signal better.

A more advanced algorithm can be designed to model the low-end spectrum by
transform coding (MDCT) and the rest by a parametric model. The point of conjunction

of the two can be adaptively determined based on a perceptual metric and the bit-rate.
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APPENDI X
A: TUTORIAL EXERCISES
A.1  Psychoacoustics-based compression islossy

Exercise: This exercise aims to look at the waveform matching properties of the
MPEG-1 Layer Ill agorithm. This is achieved by comparing the time and frequency
domain representations of the original and decoded signal at various bit-rates: 320, 256,
192, 128, 64 and 32 kb/s. Ex1.wav isthe test signal used.

Procedure: Invoke the MP3 encoder by running the MP3Encoder.m script. When
asked for visualization, press the ‘no’ button; this disables the GUI. In the encoder
configuration menu, choose the source file to be Ex1.wav. If you do not choose a target
file-name, the name will be similar to the source but with a .mp3 extension. In the
advanced options, choose the target bit-rate from the drop-down list-box. For this
experiment, leave the other options at their default values.

Encode® the signal under consideration at each of the target bit-rates. The encoded
files are decompressed and the time domain waveforms are superposed. Similarly, for a
particular segment of data, the spectra are also superposed.

Observation: Fig. A.1 represents the results of the experiment. Compressing and
reconstructing a frame of data at various bit-rates reveals that psychoacoustics based
compression is lossy. It does not aim to faithfully capture the time-domain signature of

the audio signal. It tries to capture the perceptually relevant characteristics of the signal,

3 This MATLAB software has neither been designed for speed nor performance but for strictly educational

purposes. In general, do not useit for encoding large files. See Ch. 6.2 for a profile of the code.
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as seen from the spectral plots. At high compression ratios, part of the high frequency

spectrum is compromised, resulting in a degradation of signal quality.

(c) 192 Kb/s
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(f) 32 Kb/s

Fig. A.1 Time and Frequency-domain representations of the signal at various hit-rates.
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A.2 The Analysis Filterbank
In the context of subband coding, the primary function of an analysis filterbank is
to localize energy in the subbands and provide a first step gain. That is, the quantizers in

each subband can be optimized independently to achieve compression.

The analysis filterbank used in the MP3 agorithm splits the incoming signal into
32 equal subbands. This critically sampled filterbank divides the block of audio into 32
bands, each of a nominal bandwidth p /(32T), where T is the sampling interval. The 512

coefficients of the lowpass prototype filter are plotted in Fig. 5.2.

The corresponding impulse response plotted in Fig. 5.3, attenuates the side-lobes
by more than 96 dB. This lowpass filter is cosine modulated to obtain a bank of filters
with center frequencies at odd multiples of p /(64T) , depicted in Fig. 5.4. At a sampling
rate of 44.1 kHz, the nominal BW of the prototype filter is given by

Nomina BW = Pl/(number of subbands) = Nyquist/32

= (sampling rate/2)/32

= 22050/32 = 689.0625 Hz

Exercise: Create a signal comprising of 4 sinusoids centered at the subbands® 0,
8, 15, 26.Use a sampling rate of 32 kHz. For display reasons, it is recommended to add
white noise at a low energy. Save it as a Windows .wav file. The number of samples
should be at least 10 frames long. In the rest of the manual, unless stated explicitly, all

data to be generated and used are mono. Similarly, encode at least 3 frames before

* The convention used isthat 0 isthe first and 31 the last subband.
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observing outputs.

Procedure: Invoke the MP3 encoder by enabling the GUI. Select the generated
synthetic signal as the input file. Observe the outputs of the filterbank and the
corresponding spectrum in the psychoacoustics block.

Observation: At a sampling rate of 32 kHz, the nominal BW of the prototype
filter is 500 Hz. The sinusoidal frequencies (250, 4250, 7750 and 13250 Hz) are centered
at the middle of the corresponding subbands, we expect the gain to be high in those
subbands. The spectral estimate in the psychoacoustics block also identifies these
frequencies, but at a higher resolution. In essence, we can consider the filterbank as a
low-resolution spectral estimate; or alternately, the spectrum as a high-resolution

filterbank. Fig. A.2 and Fig. A.3 clarify this conclusion.
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Fig.A.2 Thetime-domain output of the Analysis Filterbank.
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A3 Aliasing at the Analysis Filterbank and its (partial) cancellation in the
MDCT domain

In an ideal situation, the anaysis filterbank is a set of brick-wall filters. But, as
seen from Fig. 5.4, there is significant overlap between the adjacent subbands of the MP3
filterbank. This results in leakage of energy and as a consequence, a reduction in subband
gain. To complicate matters, critical-sampling in the filterbank introduces significant
aliasing.

The outputs of the subbards are transformed into the frequency domain via a
signal-adaptive MDCT. Part of the aliasing can be cancelled out in the frequency domain

by the application of anti-aliasing butterflies.

Exercise: Create a signal comprising of two sinusoids at 675 Hz and 11000 Hz.
Use a sampling rate of 44.1 kHz. For display purposes, it is recommended to add additive

white noise a alow energy.

If the analysis filterbank were an ideal set of brick-wall filters, what would the

subband boundaries be? In which of the subbands would you expect maximum gain?

Observe and explain what happens in the actual case. Also, observe the MDCT

outputs before and after aliasing cancellation butterflies. Comment on the same.

Procedure: Invoke the MP3 encoder by enabling the GUI. Observe the outputs of

the filterbank and the MDCT block before and after alias-cancellation.

Observation: We know that at a sampling rate of 44.1 kHz, the nominal BW of

the prototype filter is 689 Hz. If the analysis filterbank were composed of a set of brick-
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wall filters, their boundaries would be as indicated in Table A-1. For the given signdl, it
can be seen that the maximum gains would be in subbands 0 and 15. From Fig. 5.4, it can
be seen that there is significant overlap b/w adjacent subbands. The actua subband
outputs are shown Fig. A.4. The tone at 675 Hz produces outputs at subbands 0 and 1.

Similarly, the tone at 11000 Hz produces outputs at subbands 15 and 16.

Subband The upper Subband The upper
Number boundary (Hz) Number boundary (Hz)
] 0 689 16 11714
1 1378 17 12403
2 2067 18 13092
3 2756 19 13781
4 3445 20 14470
5 4134 21 15159
6 4823 22 15848
7 5512 23 16537
8 6201 24 17226
9 6890 25 17915
10 7579 26 18604
11 8268 27 19293
12 8957 28 19982
13 9646 29 20671
14 10335 30 21360
= 15 11025—— 31 22050

Table A-1 The ideal brick-wall filterbank.
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The MDCT coefficients of the second granule of a frame are as shown in Fig.
A.5. It can be seen that the application of aliasreduction butterflies reduces the strength

of the signal in the aliased subbands.
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FigA.4  Time-domain output of the Analysis Filterbank.
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A4 The notion of Perceptual Entropy

The ear perceives only a part of the information present in the stimulus. This is
called as Perceptual Entropy (PE). From a compression standpoint, this is the *critical
mass of the signal, the minimum number of bits required to represent the perceptually
relevant information in the signal. Any extra information can be safely discarded without
affecting the perceptual quality of the signal reconstructed from a compact representation
of this critical mass. Decidedly, the scheme is lossy, but perceptually transparent.

A model for computing the perceptual entropy mimics the working of the auditory
system and computes a Just Noticeable Distortion (JND) profile for a given frame of
audio data - a measure of he maximum quantization noise that can be injected for
perceptually lossless signal recovery. The JND profile can then be used to shape the
spectrum of the quantization noise to make it inaudible.

Exercise: Play the audio record (Ex4.wav) and feel the variations in the signal
strength/energy. Plot its time-domain waveform. Modify the MP3 source code to
successively store the PE value of every frame into a file and encode the signal at 128
kb/s. Plot the resulting PE values. Correlate the audio and visual cues and state your
conclusions.

Note: To speed up the computation by orders of magnitude, comment out calls to
the bitstream-formatter®. You may also comment out calls to the analysis filterbank , the

MDCT and the rate-control loop.

® See Ch. 6.2 for aprofile of the code.



140

Procedure: The code in the PsychoAcoustics.m function is modified by adding
the following code starting at line 72:

Line 71: Psycho.PE(ch, gr, 10) = P.pe;

f_pe=fopen(‘petxt’, ‘a’);

fprintf(f_pe, P.pe);

fclose(f_pe);

Invoke the MP3 encoder by disabling the GUI. Encode the file and plot the datain
pe.txt.

Observation: The signal waveform and its PE are depicted in Fig. A.7 and Fig.
A.8 respectively. Perceptual entropy, a measure of ‘audible’ entropy/information in the
signal, is based on a model of human perception. It is computed from a measure of local
energy. Using the audio cues and the two figures below, it is clear that sudden increase in

local signa power is aclear indicator of an increase in PE.
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A5 Pre-echo and its control

Audio coding algorithms transform blocks of data and code them efficiently using
the energy compaction properties of the transformation, supplemented by psychoacoustic
analysis to extract perceptual redundancies. The Layer Il agorithm uses the MDCT to
transform the subband data.

The longer the block length, the better is the frequency resolution of the transform
but the poorer is its time resolution. For relatively stationary signals, long blocks provide
better compression (coding gain). On the other hand, the characteristics of transients are
best captured with short time windows. For best results, the size of the block has to be
adapted to the statistics of the signal. See Ch. 5.2.9.

Exercise: Take the test signal (attack.wav) and encode it. Decode the compressed
bitstream and observe at the origina and reconstructed time-domain waveforms.

Study the source code for the MPEG Psychoacoustics Model 2 carefully. Alter the
code to disable the pre-echo control mechanism and the MDCT window-switching state-
machine by forcing al blocks to be flagged as long (NORM_TYPE). With these
modifications in effect, repeat the experiment. Listen to the original and decoded signals
(with and without pre-echo control). Examine at the original and reconstructed time-
domain waveforms. Comment on the same.

Procedure: Conduct the first part of the experiment as explained before. You
may decode the compressed bitstream using the MATLAB MP3 decoder or acommercial

application like Goldwave.
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In the file PsychoAcoustics.m, replace lines 396 — 401 with

% pre-echo control, bug of IS
for b = 1.CBANDS

thr(b) = max(gthr_I(b), nb(b));
end;

Similarly, replace lines 415 — 505 with the following:

% calculate perceptual entropy
pe(gr, chn) = 0.0;
for b = 1:CBANDS
tp = min(0.0, log((thr(b)+1.0)/(eb(b)+1.0)) ); % not log
pe(gr, chn) = pe(gr, chn) - numlines(b) * tp ;
end; % thr[b] -> thr[b]+1.0 : for non sound portition

Psycho.pe = pe(gr, chn);
switch_pe = 1800;
blocktype = NORM_TYPE;

% all blocks are forced to be long

% threshold calculation (part 2)

for sb = 1:.SBMAX |
en(sb) = w1 _I(sb) * eb(bu_I(sh)+1) + w2_I(sb) * eb(bo_I(sb)+1);
thm(sb) = wl_I(sb) *thr(bu_I(sb)+1) + w2_I(sb) * thr(bo_I(sb)+1);

b =bu_I(sb)+1:bo_I(sb);
en(sb) = en(sb) + sum(eb(b));

thm(sb) = thm(sb) + sum(thr(b));

if en(sb) ~=0.0
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ratio(chn, sb) = thm(sb)/en(sb);
else
ratio(chn, sb) = 0.0;
end;
end,;
% get a copy of the struct ...
cod_info = get_gr_info_from_I3_side(I3_side, gr, chn);
cod_info.block _type = blocktype old(chn);
blocktype_old(chn) = blocktype;
cod_info.window_switching_flag = 0O;
cod_info.mixed_block flag = 0;
% now copy the change ...
I3_side = put_gr_info_to_I3_side(cod_info, I3_side, gr, chn);

Observation: We see that if a sharp attack occurs at the end of a long block, as
for the signal under consideration (Fig. A.9), the psychoacoustic model would be misled
to derive a higher masking threshold for that entire block. As a result, the quantization

noise is spread over the entire block as shown in Fig. A.10. Switching to shorter windows

controls the spread of noise in the time domain, as shown in Fig. A.11.
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A.6 The effect of Rate Control

Exercise: Take the test signa (Ex6.wav) and observe the quantized MDCT
outputs for target bit-rates of 320, 192, 128, 64 and 32 kb/s for a particular frame,.
Comment on the same.

Procedure: Start the encoder with the GUI enabled. At each target bit-rate,
encode about 3 frames before settling on a granule for comparison. Capture the results of
the rate-control loop.

Observation: All high-fidelity audio coders rely upon amodel of human auditory
masking for shaping quantization noise. The MP3 algorithm meets the target bit-rate by
iteratively changing quantizers till the (quantization) noise is below the JND for all
scalefactor bands. So, as the bit rate control loop iteratively increases quantizer step-
sizes, part of the quantized high-frequency spectrum will contribute to the string of run-
length zeros. The bits thus saved are distributed among the stronger signal components.
This process is nortlinear and aims to maximize SMR at the expense of pruning higher
frequencies. It can be seen from Fig. A.12 — Fig. A.16 that as the target bit-rate gradually

increases, the quantized spectrum has a marked low-pass filtered effect.
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Fig. A.14 Quantized MDCT coefficients for a target bit-rate of 128 kb/s.
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