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Abstract

Audio compression is a requirement for efficient transmission and storage of high
fidelity digital audio. Recently developed algorithms are able to compress audio up to
12 times, without losing any audible quality. In this thesis we look at different audio
compression standards with regards to both compression rate and sound quality. The
chosen algorithm, MPEG-1 Layer III, is discussed in detail concerning complexity and
structure. We have also looked at different hardware technologies, especially digital
signal processor solutions, suitable for an implementation of real-time encoders. A
software prototype of a real-time encoder was built, based on MPEG-1 Layer III
standard. The encoder was tested and verified in a simulator.
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1 Introduction

1.1 Why real-time audio encoding?
The use of computers and digital equipment for different multimedia applications has increased
tremendously over the last years. The same goes for the use of different networks to transmit
multimedia data such as video and audio. Since neither the storage capacity in the computers, nor the
bandwidth in the networks is infinite, there is a limit for how much multimedia data it is possible to
manage. To be able to handle more data, some kind of compression might be in place. To manage
high fidelity audio with CD quality you would need approximately 1.4 Mbit/s bandwidth. Using modern
audio compression algorithms, it is possible to decrease the bandwidth up to 12 times. This explains
the need for an encoder to compress the data, but not the need for real-time compression. The real-
time demand is easy to explain. Imagine an encoder that should be able to compress data to deliver a
bitstream that never stops, an Internet radio station, for instance. If it should be able to send 24h/day
and not being able to compress the input in advance, the need for a real-time encoder is quite
obvious.

1.2 The thesis background

The idea of this project came up after Björn Wesén did a similar thesis about a “DSP based
decompressor unit for high fidelity MPEG-Audio over TCP/IP networks” also at Axis Communications
in 1997. Since they had this work about a decompressor, there was a need for a compressor.

There exists already real-time hardware encoders in the market, but all of them are based on
Fraunhofer’s own developed DSP (Digital Signal Processor) hardware. Licencing Fraunhofer’s DSP
core is quite expensive, which reflects the products, using their code, price [1].

Since Björn´s thesis the new AAC standard has finished its development, and that was also one of the
compression algorithms we looked closer on.

1.3 The goal of the project

The goal of this master thesis was to make a hardware implementation of an MPEG audio encoder.

Specifically the parts of the thesis was:

• Examine and chose an MPEG audio encoding standard that is possible to implement on
hardware, with regard to compression ratio, performance, complexity, sound quality, parallelizing-
ability etc.

• Implement and optimize the compressor in software using the audio-standard and reference
compressor to make a first analyze of how much computation power and what types of operations
that is needed to do a good real-time implementation.

• Chose a computational architecture to implement the encoder in hardware.
• Implement the compressor on the chosen hardware, with needed assembler-optimizations and

verify that it fulfills the real-time demands.
• The implementation will be on self-developed hardware. If shortage of time occur, some kind of

developer card or simulator can be used. Lower compressor quality might be necessary if
hardware performance is too low.

The optimum goal was to produce a card with analog and digital (S/PDIF) input, and output from the
hardware would be an MPEG compressed bitstream.
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2. Digital Audio and Compression Algorithms

2.1 Introduction to Digital Audio

The sound that a human ear detects is basically changes in the air pressure. We are able to hear
frequencies from 20 Hz to 20 kHz. This is the audio range that is interesting to save, in order to later
reproduce the original sound and air pressure. Saving audio digitally has been very common lately,
much thanks to the popular CD format introduced by Philips in 1982. The digital format has many
advantages compared to the analog, such as better audio quality, processing abilities and less
bandwidth consuming.  The fact that computers and digital networks can not use analog sound makes
digital audio a requirement.

The most common format for storing digital sound is the Pulse Code Modulation (PCM) technique.
PCM is simply the sound sampled at a fixed rate and with a fixed number of bits representing the
signal’s amplitude.  The PCM technique was first invented in 1937 by A.H. Reeves [2].

A PCM sound can use various numbers of bit and sampling frequencies, but 16 bit 44.1 kHz is by far
the most common format for high fidelity audio, this is also the format recommended for “consumer
applications”. 48 kHz is recommended for “origination, processing, and interchange of program
material” (used on DAT-players) and for “transmission-related applications” is 32 kHz the standard
frequency (common in digital radio; see [3], p. 782). Using the Nyquist theorem 44.1 kHz allows
reconstruction of sound with frequencies up to 22.05 kHz. This allows some imperfection in filters and
other components and still having more than 20 kHz left for audio.  The sampling frequency is linear to
the number of bits needed for the signal, thus a 48 kHz sample uses 1.5 times more bandwidth than a
32 kHz.

Bits per sample.

Using n bits for each sample allows for 2n quantization levels. The quantization can be done uniform
(linear) or non-uniform (non-linear). In the uniform case, if a sample with the amplitude A and
quantization level 1, a sample with 2*Amplitude will have a quantization of level 2 and so on. For each
bit the signal to noise ratio (SNR) increases by 6 dB, thus a 16-bit sample has 96 dB SNR. This
scheme is the most frequently used.  The non-uniform case has a lot of different algorithms to
quantize the digital sample, all of them are more complicated than the uniform scheme, but with its
own set of advantages and disadvantages. Most of the non-uniform quantization schemes are based
on the fact that one knows the signal characteristics and/or how the sound is percepted by the human
ear.

Audio that is coded in 44.1 kHz 16 bit stereo uses 44100*16*2 bits per second. This means to be able
to play a PCM file over a network, you need more than 1.4 Mbits/s in bandwidth. Storing one song,
consisting of three minutes (180 seconds) audio coded in 44.1 kHz 16 bit stereo PCM format, uses
180*44100*16*2 bits, or over 30 MB computer storage.

These two examples give a hint that some kind of sound compression would be useful.

2.2 Audio Compression Techniques

2.2.1 Human Hearing and Auditory Systems
The human is not a perfect creature and the same applies for our ears and hearing. There are lots of
different passages that sound has to travel before we can percept it in our mind. The first thing is the
ear and it’s physical limitations. This is for instance where our frequency range limit of 20Hz-20 kHz
comes from. After the ear, the sound travels through the nerves and to the auditory cortex of the brain.
Here the brain transforms the sound to different perceptions that we become aware of in our mind.

Loudness
Two sounds with the same amplitude can sound differently loud to the human depending on what
frequencies the sounds have. This effect occurs because the human perception of determining a
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sound loudness is not constant to the frequency. Looking at the curve in Figure 2.1 we can see that
the human ear is most sensitive to sounds between 1000 Hz and 5000 Hz. Figure 2.1 shows the
“loudness curve”, that changes with the amplitude.

  Figure 2.1. The human loudness [6]

Frequency Range
The 20-20kHz audio range mentioned before, has it’s physical explanation. In the inner ear we have
the cochlea. It consists of small sensory hair cells that sit on the basilar membrane. The hairs have
different length that absorbs different frequencies. The cochlea in a cat is more sensitive, and is able
to recognize frequencies from 100 Hz up to 40 kHz. The frequency range changes with age, you lose
the ability to hear higher frequencies when aging.

Dynamic Range
The lowest air pressure variation a human can detect is 20 micro Pascal, this is measured at the
frequencies we are most sensitive to (see Figure 2.1). [4] This sound pressure level is often used as a
reference when describing acoustic sound pressure. Based on this reference as 0 dB we measure
how strong other sounds is. A normal conversation is around 50-60 dB and the sound from motor
traffic is about 80 dB. The ear can tolerate sounds at around 130 dB maximum, which gives a human
the dynamic range from quietest to loudest, 0 to 130 dB.

Auditory Masking
Auditory masking is defined as “decreased audibility of one sound due to the presence of another” [5]
p. 283.  Auditory masking consists of frequency masking and temporal masking, which being
described below.

¾ Frequency Masking
Frequency masking, also called simultaneous masking, is best explained with an example. For
instance, if you have a strong tone with a frequency of 1000Hz, and also a tone a nearby at 1100Hz,
which is 18 dB lower. The tone at 1100Hz is inaudible because it’s being masked by the stronger tone
at 1000Hz. This is due to the 1000Hz tone sound is louder and rather close in frequency. A louder
sound masks a weaker and the closer in frequency you come, the louder other frequencies you can
mask away. [4,6]
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Figure 2.2. Shows how nearby frequencies being masked by 1kHz tone. [7]

Temporal Masking
Temporal masking effects occurs before and after a strong sound. If a sound is masked after a louder
sound it’s called post-masking, and if it’s masked ahead in time it’s called pre-masking. This may
sound strange, but the pre-masking phenomena actually exist, even if it’s only for a short moment
(20ms).  The post-masking, on the other hand, can be in effect up to 200ms. [4]

Figure 2.3. temporal masking [9]

Exploiting both frequency and temporal masking makes it possible to reduce substantial audio
information, without any audible change.
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Figure 2.4 shows the combination of frequency and temporal masking. [8]

Stereophonic Redundancy
The fact that human ear not is able to detect the direction of low frequencies, is called Stereophonic
Redundancy. For instance, this property is used in audio system with tree loudspeakers, two satellite
speakers and one Sub Woofer.

All these imperfections, or limitations in the hearing, make it possible to leave out certain audio
information, without affecting what we hear.

2.2.2 Waveform and Perceptual Encoders
There exist two types of audio encoders. First we have the so-called waveform encoders, which try to
reconstruct the signal as exactly as possible after encoding and decoding. Differential Pulse Code
Modulation (DPCM) is one example of waveform encoders. Each sample is compared to the previous
sample, and only the difference between the values is stored, while a regular PCM stores the current
value.

Adaptive DPCM (ADPCM) further refines this technique. If the signal remains at a low level, the
ADPCM provides more resolution to the quantization steps near this level. When the level changes
from the current range, the step size also changes.  Compared to other compression techniques
ADPCM requires very little processing power. ADPCM was later standardized as the G.721 standard.
The perceptual encoders do not attempt to retain the input signal exactly as it was before the encoding
and decoding stage. Instead it tries to ensure that the output sounds like the original to the human ear.
Using knowledge about the ear properties and the human hearing limitations, the perceptual encoder
removes parts of the signal that we are unable to notice.

Virtually all perceptual encoders transform the sound from the time-domain to the frequency domain,
and then it splits the different frequencies into subbands.  After this, the encoder uses its knowledge
about how the ear works, to remove unneeded data. The masking effect is the most commonly
exploited ear-phenomena.

Good examples of perceptual encoders are all the MPEG audio encoders and Sony’s ATRAC [7]
encoder, used in their MiniDisc systems. We will talk some more about MPEG encoders in the
following chapters.

2.3 What is MPEG?
Motion Picture Experts Group (MPEG) is a working subgroup of the International Standards
Organization (ISO) that generates generic standards for digital video and audio compression. MPEG
defines the syntax of low bit rate video and audio bit stream and how to decode it. The algorithms for
encoding is not specified by MPEG. This means that you always can develop new methods or
algorithms to optimize the use of bits in digital audio, as long as you stick to the bitstream syntax. This
is very important for further improvements of MPEG encoders.
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2.4 MPEG-1 Layer III

2.4.1 History
In 1987, the Fraunhofer Institute started to work on perceptual audio coding. Together with other
companies and institutes this finally, 1993, ended in a very powerful algorithm that was standardized
as the MPEG-1 Layer III. [10] This standard is based on modern perceptual audio coding techniques
that exploit the properties of the human ear, thereby made it possible to shrink down the original sound
data from example a CD, by a factor of 12 without losing any sound quality.  Even factors of 24 and
more still maintain the sound quality that is better than reducing the sample rate with half. This
technique works very well for high quality, low bit rate applications like Internet audio, digital audio
broadcasting, etc.

2.4.2 Compression Modes
MPEG-1, also known as phase one, support one (mono) or two (stereo) audio channels with a
sampling rate of 32, 44.1, or 48kHz. The compressed bitstream varies with fixed bitrates in a range
from 32 to 224kbits/sec per channel.  This gives a compression grade ranging from 2.7 to 24 times,
depending on the sampling rate.

The MPEG-1 audio standard has three independent layers for compression. These three layers differ
in matter of complexity, compression and audio quality.  Layer I forms the most basic algorithm, while
each successive layer increases the compression rate and gets more complex, both in encoder and
decoder.

The Layer I algorithm is the simplest one and is best suited for bit rates above 128kbits/sec per
channel. 384 audio samples are coded into every frame. Layer I use the basic filter bank found in each
Layer of MPEG-1. For example, Philips Digital Compact Cassette (DCC), not produced anymore, used
layer I at 192kbits/sec and channel.

Layer II is a bit more complex and improves the compression rate by coding data in larger groups.
Layer II use 1152 samples/frame, which is the same as in Layer III. For example, Digital Audio
Broadcasting (DAB) and Video CD use Layer II. MPEG layer 2 is also known as the MUSICAM
standard in America.

Layer III is even more complex and is described more in chapter 2.4.3.

The second phase, MPEG-2 audio [11], was completed and became an international standard in
1994. This standard extends the first phase of standard with a set of additional features. The big
difference is the support for multichannel and multilingual support.

MPEG-2 support up to five high fidelity audio channels and one low frequency enhancement channel.
This is perfectly suited for digital movies where you want surround sounds. The standard also has
support for up to seven additional commentary channels. This means for instance that you only need
to send one channel of video along with seven different languages, thereby save lot of bandwidth.

Another feature is the additional support for lower, compressed bitrates down to 8kbits/sec. MPEG-2
also introduce support for 16, 22.05, 24kHz as well. The commentary channels are allowed to have a
sampling rate that is half the high fidelity channel.

2.4.3 The Algorithm
An overview of the MPEG-1 layer III encoder algorithm is described by a block diagram in figure 2.5.
The input audio stream passes trough a filter bank that divides the input into multiple subbands. The
filtering is done in parallel with the psychoacoustic analysis that determines the signal-to-mask ratio of
each subband. The noise allocation block uses the signal-to-mask ratios to decide how to divide the
total number of code bits available. Finally the last block take the quantified and coded samples and
format them into a valid MPEG bitstream.
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Figure 2.5 Block diagram of an MPEG-1 layer III encoder [12]

Psychoacoustic Model
There are two psychoacoustic models used in MPEG/Audio. Psychoacoustic model one has been
used in Layer I and Layer II, while model two is used in Layer III. The latter has further improvements
that better suit the human ear properties.  The model two psychoacoustic analysis has two tasks to
perform. Decide what blocktype to use, and calculating the signal to mask ratio.

First the model converts the audio to the spectral domain, using a Fast Fourier Transform (FFT) to get
a good frequency resolution for a correct calculation of the masking thresholds [12]. The output from
the FFT is first used to analyze what type of signal that is being processed. A stationary signal makes
the model choose long blocks and a more transient signal results in a short block. The block type is
later used in the MDCT part in the layer 3 algorithm. After this, the psychoacoustic model calculates
the minimum masking threshold for each subband. These threshold values are then used to calculate
the signal-to-mask ratio (SMR). The model then passes SMR to the noise allocation section of the
encoder for further usage.

Polyphase Filter Bank
One of the most important block, is the polyphase filter bank which is used in all layers of an
MPEG/Audio encoder. Its function is to split the audio signal into 32 subbands. These subbands are
equally spaced in frequency, and do not accurately reflect the ear’s critical bands, which is shown in
figure 2.6 below. The bandwidth is too wide for the lower frequencies and too narrow for the higher
frequencies, so the number of quantizer bits cannot be optimized for the noise sensitivity within each

critical band.

Figure 2.6 MPEG/Audio Filter Band Widths vs. Critical Band Widths [12]

The ear has a limited frequency selectivity that varies in exactness from less than 100 Hz for the
lowest audible frequencies to more than 4 kHz for the highest [13]. Thereby the audible spectrum can
be partitioned into critical bands that reflect the human ear frequency selectivity. Table 2.1 shows how
wide these critical bandwidths are at most.
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Approximate Critical Band Boundaries

Band nummer Frequency (Hz)1 Band nummer Frequency (Hz)1

0 50 14 1,970

1 95 15 2,340

2 140 16 2,720

3 235 17 3,280

4 330 18 3,840

5 420 19 4,690

6 560 20 5,440

7 660 21 6,375

8 800 22 7,690

9 940 23 9,375

10 1,125 24 11,625

11 1,265 25 15,375

12 1,500 26 20,250

13 1,735

1 Frequencies are at the upper end of the band

Table 2.1. Approximate bandwidth of the ears critical bands [12]

The filter is relatively simple, but gives a good time resolution with a reasonable frequency resolution.
The polyphase filter bank is not lossless, even without quantization there is no possibility to recover
the input signal exactly. Fortunately, the human ear is not able to hear the error, introduced by the filter
bank. There also exists a frequency overlap between adjacent filter bands. Therefore a signal at a
single frequency can effect two adjacent filter bank outputs.

Modified Discrete Transform
The Layer III process the outputs from the filter bank with a Modified Discrete Cosine Transform
(MDCT), to compensate for the poor precision of the filter bank. This is done by further subdividing,
the spectral output in frequency to provide better resolution. The MDCT transform is lossless
compared to the polyphase filter banks.

Noise Allocation
Noise allocation is done in Layer III, while Layer I and Layer II use bit allocation. Bit allocation only
approximates the amount of noise caused by quantization, while the noise allocation actually
calculates the noise.

The allocation is done in an iteration loop that consists of one outer and one inner loop. The inner loop
quantifies the spectral values from the MDCT using a certain step size and then Huffman codes the
output values. If the number of bits required for coding the values exceeds the number of bits available
for the chosen bitrate, the loop starts over with a new quantizer step size and runs the quantizing and
Huffman coding again. The loop finishes when the quantized and Huffman coded values uses less or
equal number of bits than the maximum amount allowed.

Now the outer loop has to check if the scalefactor for each subband has more than the allowed
distortion and compares each scalefactor band with the data previously calculated in the
psychoacoustic analysis. If any of the scalefactor bands has too much noise than the maximum
allowed, the loop amplifies that scaleband and runs the inner loop again. The outer loop stops when
one of the following conditions is fulfilled:

1. None of the scalefactor bands has too much noise.

2. The next iteration would amplify one of the bands more than allowed.

3. All scale factor bands has been amplified at least once already.
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Since the loop is very time consuming, there might also be a fourth condition in a real-time application,
that stop the loop and prevent the encoder to run out of time. [12]

Bitstream Formatting
The last step in the encoding process is to produce a MPEG compliant bitstream.
The bitstream formatter stores the encoded audio and some additional data in frames, where each
frame holds information of 1152 audio samples per channel. A frame consists of header and audio
data together with an optional error check and customizable ancillary data. The header describes
among others, which layer, bit rate and sampling frequency that is being used for the encoded audio.
The Huffman coded data and its side information are placed in the audio data part, where the side
information tells what block type, Huffman tables and subband gain factors to use.
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2.5 MPEG-2 Layer 7 (AAC)
AAC is an acronym for Advanced Audio Coding and is a new state-of-the-art MPEG audio encoding
standard, IS 13818-7 [17]. The AAC development was initialized in 1994 by the MPEG group and was
at first called NBC, which stands for Non Backwards Compatible because it wasn't compatible with the
old layers I, II and III. Thanks to this, the AAC format doesn't need to take consideration for any old
formats that might otherwise add unwanted limitations and complexity to the standard.

AAC will be one of the sound algorithms used in the new MPEG-4 standard. The AAC standard
supports up to 48 channels, of which 0 to 16 are Low frequency element  (LFE) channels, 0-16
“coupling channels” that can do either efficient multilingual/voice over and 16 single channels. The
sampling frequency of the LFE channel corresponds to the sampling frequency of the main channels
divided by a factor of 96. This provides 12 LFE samples within one audio frame. The LFE channel is
capable of handling signals in the range from 15 Hz to 120 Hz.

If you compare the encoding techniques for AAC
with it's predecessor, Layer III, you'll find that they
have much in common. The major differences is
the optional tools introduced in AAC, like temporal
noise shaping, prediction and gain control.

The AAC standard uses 10 different "tools" which
some are required and other are optional [15].
Each tool adds more complexity to the algorithm
and thus more processing power. In addition to
those tools, an encoder needs also a
pshychoacoustic phase.

  Gain Control
* Filter Bank
  Temporal Noise Shaping (TNS)
  Intensity/Coupling
  Prediction
  M/S
* Scalefactors
* Quantizer   (the only lossy part of AAC)
* Noiseless Coding (Huffman coding)
* Bitstream Formatter
* means the tool is required, other optional.

          Figure 2.7 Block diagram of AAC encoder [19]
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There exist three different profiles for AAC to allow tradeoff between quality and processing
power/memory requirements:

Main Profile
The main profile encoder/decoder uses all the tools and is the profile with the highest quality and
complexity.

Low Complexity Profile
The low complexity profile is used when available memory and processing power is limited. In this
profile prediction and gain control tool are not permitted and the temporal noise shaping order are
limited.

Scalable Sampling Rate Profile
In the scalable sampling rate profile the gain-control tool is required, but prediction and coupling
channels are not permitted. Like the low complexity profile the TNS-order are limited.

Tests by the MPEG group shows that a Main Profile decoder uses 40% CPU time of an 133 MHz
Pentium for a 2 channel 48kHz at 64kbit/channel and 25% using a low complexity profile decoder [16].

Some of the new tools:

• Gain control tool
This tool is only used in the SSR profile. It consists of a Polyphase Quadrature Filter (PQF) and a gain
detector/modifier [14]. The PQF divides the input signal in four frequency bands with equal width. Then
the detector produces data used for the modifier. The modifier then controls the gain for each
frequency band from the PQF. Output from the tool is a gain-controlled signal, still in the time domain,
and gain control data, a field added to the side-information in the bitstream. The detector has one
frame delay.

• Temporal Noise Shaping tool
The Temporal Noise Shaping (TNS) tool is used for encoding "pitch-based" signals such as speech
and other transient signals, without decreasing the coding efficiency. These kinds of signals are hard
to encode in an ordinary perceptual encoder, like mp3 and other standards [18]. By using this tool, the
quantization noise within each transform window will be decreased for transients. When the tool finds
a transient, the encoder codes the time domain data, instead of the spectral data. This is because a
transient signal in the time-domain requires fewer bits to represent than a transient signal in the
frequency domain (see table below).

Input Signal Optimum Coding
Time Domain Frequency_Doma

in
Direct Coding

Sinussignal Diracpuls Coding of spectral data

Diracpuls Sinussignal Coding of time domain data

• Prediction tool
Prediction is used for an improved redundancy reduction and is especially effective in a case of more
or less stationary parts of a signal. Prediction is a technique commonly established in the area of
speech coding systems. Prediction can be applied to every channel using an intra channel predictor,
which exploits the auto-correlation between the spectral components of consecutive frames.
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2.6 Other compression techniques

There are other audio compression techniques for high fidelity audio than the ones MPEG has
developed. Sony ATRAC (used for MiniDisc systems), Dolby AC-3 and TwinVQ to mention some of
them. Those have all similar techniques for their compression, but they also differ in some encoding
areas, and we will mention what's specific for each of them.

• Sony ATRAC
In the early 90:s Sony realized that there was a need for a portable, recordable digital audio system.
This resulted in their first MiniDisc system presented in 1992, using their ATRAC [20] sound
compression algorithm. ATRAC, which is an acronym for Adaptive Transform Acoustic Coding,
operates exclusively at 16 bit samples with a sampling frequency of 44.1 kHz and provides a
compression rate of 1:5.

Algorithm
The sound is first divided into three frequency bands with frequencies, 0-5.5125 kHz, 5.5125-11.025
kHz and 11.025-22.05 kHz. After this, the bands are transformed into the frequency domain, using a
Modified Discrete Cosine Transform (MDCT). Like the MPEG Layer-III algorithm ATRAC uses an
adaptive block length to avoid pre-echo effects in transient signals. A long block is 11.6 ms and a short
block is 1.45 ms or 2.9 ms, depending on frequency band. The high frequency band uses 1.45 ms
short blocks, and the two lower frequency bands uses 2.9 ms. Unlike the Layer-III algorithm, the
blocksize can be selected individually for each bands. After the MDCT the spectral values produced
are quantized and saved by a bit allocation process. This is also very similar to the MPEG algorithm.

Figure 2.6 Block diagram of ATRAC encoder.

• Dolby AC-3
In 1989 Dolby introduced their AC-2 audio compression system, being one of the pioneers in the fields
of audio compression [21]. This system later emerged to the AC-3 system, that "aervde, inherited?"
many of the AC-2 ideas. The AC-3 system is commonly used in cinemas, but has also been adopted
for the North American HDTV standard and is used as one of the standards in DVD.

Algorithm
The AC-3 bitstream consists of synchronization frames [22]. A frame consists of 6 audio blocks with
256 samples, making a total of 1536 samples per frame (32 ms @ 48kHz). No information is shared
between different frames, making it possible to decode one frame independently, without information
from any other.
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First there is a transient detect phase, to decide block-switching flags. The input signal is segmented
into a hierarchical tree with different block lengths and is then examined for transient detection Using
the block switch flags decided in the transient detect phase, the signal is transformed into the
frequency domain using a MDCT like many other algorithms. The MDCT is one 512 point or two 256-
point transforms, depending on the switch flags. The spectral values are then divided into 50 bands,
not equally spaced but tried to match the human ears critical bandwidth. The spectral values are then
fed to a bit allocation algorithm, analyzing the audio and coding it with respect to masking effects. The
coded values consist of an exponent and a mantissa. The exponents are 5 bit values, and are
transmitted by using delta values based on the previous exponent. There are three different exponent
strategies. The mantissa bits depends on the audio masking analysis.

• TwinVQ
Twin VQ (Transform-domain Weighted Interleave Vector Quantization) is a transform coding like MP3,
AAC or AC-3. It will like AAC, be used in the upcoming MPEG-4 standard and uses some tools of AAC
like interframe backward prediction, but the encoding of music is totally diffrent. The Twin VQ standard
uses a pattern library wich is prepared in advanced and compared against the the bits in the audio
stream. The standard patterns that provides the closest match is selected, and a number associated
with that pattern is transmitted as the compression code.
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3.0 Hardware technologies
To do heavy calculations, like mpeg encoding, there are many different hardware solutions to chose
from. We have looked at a few and will discuss them in regards to cost, availability, power
consumption etc.

3.1 DSP
The DSP technology is known to be a fast, cheap and not consuming much power. We have looked at
two of the fastest floating point DPS:s known today, Analog Devices (ADI) SHARC ADSP-21065L and
Texas Instruments (TI) TMS320c6701, and compared the different technologies and other aspects of
the DSP:s.

3.1.1 SHARC ADSP-21065L
The SHARC ADSP-21065L [23] is a new member in the 2106x family featuring high speed floating
point DSPs. It is fully function and code compatible with its predecessor ADSP-21061. The main
difference is that ADSP-21065L have 544Kbits of internal memory, which is about half the size that
ADSP-21061 have. This makes it able to clock the ADSP-21065L in 60MHz and thereby a
performance increase of 50%. The reduced size in memory also gives a lower price, only $10 per chip
(september 1998). The Super Harvard Architecture Computer, (SHARC) is able to execute three
instructions in parallel, one ALU, one multiply and one shift instruction. This makes 180 MFLOPS in
theory (peak performance). The processor can simultaneously fetch two operands and one instruction
from the instruction cache, all in one cycle. This makes it able to clock the 21065L in 60 MHz. Figure
3.1 shows the block scheme of ADSP-21065L.

   Figure. 3.1 Block scheme of ADSP-21065L

ADSP-21065L calculates a 1024-points complex FFT, radix 2 in 18.221 cycles (0.310ms) and
computes a division in 6 cycles. ADSP-21065L has built in interface to standard SDRAM, which
operate in 60MHz.

3.1.2 TMS320C6701 DSP
The Texas instruments TMS320C6701 [24] DSP, member of the C6x family, achieve high
performance trough the increased level of instruction parallelism. TI C6701 can process up to eight
instructions in parallel, which is made possible by the 256 bits wide instruction fetch.
Since you probably not always can use all eight functional units at the same time, every fetch packet
may contain of multiple execute packets, which make it possible to reduce the number of NOP:s in
program memory. An execution packet consists of those instructions that actually can execute in
parallel. If two or more execution packets together contain no more then 8 instructions, those
execution packets can all be in same instruction fetch. C6701 runs on 167MHz and is able to execute
6 floating point operations per cycle, of which 2 is multiply instruction. This means 1 GFLOPS peak
performance and makes a 1024-points complex FFT in 20,716 cycles (0.124ms), with Texas
Instruments hand optimized assembler code. The CPU has two data paths (A and B) which operate in
parallel. Each data path has four functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, .D2), which execute
logic, shifting, multiply and address operations. One register file of 16 32-bits registers is also
connected to each data path. There is one single data bus connected between the two register files.
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This means that  only one register read and write access is allowed across the register files each
cycle. A functional unit in data path A, for instance, is only able to work with the registers in register file
A, except for reading from one register on side B. Figure below shows the block scheme of C6701.

Fig 3.2 Block scheme of TMS320C6701

The C6701 has 1Mbit On-Chip SRAM divided into one 512Kbit internal program/cache and one
512Kbit internal data memory. The 512Kbit data memory is totally user configurable in any way.
C6701 also has 32bit External Memory Interface (EMIF), which built in support for synchronous
SDRAM, SBSRAM and also asynchronous SRAM and EPROM. Both little-endian byte/half-word
addressing and big-endian addressing are supported by C6701. The today price for TMS320C6701
DSP is $99, but the DSP is not yet available in silicon.

3.3 Custom chip

3.3.1 Trimedia TM-1000
The Philips TriMedia[25] TM-1000 is a custom microprocessor, which have the usual  DSP
instructions, but also special audio, video, graphics and telephony  peripheral blocks. TM-1000 is a
DSP/CPU 32-bit VLIW core processor with 32 KB instruction cache and 16 KB data cache. TM-1000
has 5 issue slots and 27 functional pipelined units. At each cycle up to five of the 27 functional units
can be used simultaneously. TM-1000 has both integer and floating-point arithmetic units and parallel
DSP-like units, which all can access 128 32-bit registers.  While the registers not are separated into
banks, like the c6701, any operation can use any register for any operand. This Chip is available for
$50.
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4 Choosing Algorithm and Hardware

4.1 Choosing compression algorithm

To decide what compression algorithm we should choose, we looked especially at the AAC and Layer
3, both developed under the wings of MPEG. There are some important factors to examine when you
need to encode in real-time. Many of them are closly related to each other, so it is hard to just look at
them one at a time. We have looked at some of the factors in the discussion below.

Complexity
For a realtime application, the complexity is a very important factor when choosing a compression
algorithm. If too many calculations are needed, the hardware demand might be too much, resulting in
extremely complex and expensive hardware solutions.

The MPEG group has done some extensive tests about the complexity of both AAC and Layer 3
decoding. Using the main profile version of the AAC decoder, it is about 2-3 times more complex than
Layer 3. Since no comparasion for the encoders were found, we did one ourselfves, based on the
reference encoders. We found out that the AAC encoder took over twice as much time as the Layer 3
to encode one test sample.

Memory
The memory requirement for the different encoders was hard to find out. We planned to analyze the
requirement of RAM, ROM and program memory, but could not find out any of them. We can only
guess that AAC uses more memore because of the extra tools it employs compared to Layer 3.

Sound quality and compression ratio
Sound quality is very close related to the bitratio. You can achieve a very good sound quality with
MPEG-1 Layer 1 for instance, but then you need a bitrate of about 384 Kbps, wich is a compression
ratio of only about 4 compared to the original input (44.1 Khz 16 bit stereo PCM in this case.). If we
look at a high-fidelity sound quality without any noticeable degradation in soundquality, and use that
for comparing the compression ratio between the different encoders, we find that AAC has a better
sound quality than Layer 3 at the same bitratio. This has been shown in tests performed by the MPEG
audio working group and presented at the different mpeg conventions around the world. The tests
shows that at 96kbit/s gives a better sound quality than Layer 3 at 128kbit/s. This means that the same
quality as layer 3 can be achieved at 70% of the bitrate if using AAC. [26]

Readable and well arranged standard?
We have read the two ISO standards for Layer III and AAC quite much. To understand the algorithms
used in the different audio standards, the readability is very important. The standards formal names in
terms of ISO are ISO/IEC 11172-3 for Layer III and ISO/IEC 13818-7 for AAC. The AAC standard is a
bit more comprehensive and explains the standard pretty good. It’s logically divided in parts about
each tool in the standard. The Layer 3 standard, which also includes the layer 1 and 2, is somewhat
more difficult to read and understand.

Reference source code
Before we choosed a compression standard, we looked very closely on the quality of the reference
code that existed for the two MPEG standards. Since it’s virtually impossible to write your own encoder
only looking on the ISO standards, good reference code is an important factor when choosing between
the standards. The Layer 3 code is publically available and is called dist10 [27]. The AAC code, on the
other hand, is not released to the public yet, since the standard is not approved by ISO yet.

We tried the two encoders and found out that AAC was more than two times slower than Layer 3. We
also listened to the output from the encoders and found out that the Layer 3 encoder produced better
sound quality at 128 Kbps than AAC at 96 Kbps, for stereo audio samples. According to MPEG tests
AAC at 96 Kbps should sound better, but this is not the case for the reference code.

Conclusion
AAC has better compression for the same sound quality and a more readable standard, but the Layer
3 is less complex, probably consumes less memory and has better reference code.
Based on the discussion above, we chosed Layer 3 for our encoder.
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4.2 Choosing hardware technology
We have looked very briefly to the PPC and found that it is very good on floating point operations. The
PPC are also cost effective and low power consuming. While there already exist many encoders for
main purpose processors, the PPC solution would not be any challenge. Trimedia TM-1000 has very
nice MPEG functions, but we discovered this chip late in our project. If we had known about the
Trimedia chip in the beginning of our master thesis, we surely had looked closer to this interesting
chip. With the reasons above we have choose to go for the DSP solution.

4.3 Looking at DSP tools
When choosing DSP we have also looked at the tools that are included in the development kits.

4.3.1 SHARC EZ-Kit Lite
SHARC EZ-Kit Lite board comes with documentation and software development tools at a relatively
low price. The board has an ADSP-21061 that is running at 40MHz and is code and function
compatible with the ADSP-21065L, which at this moment not yet is released. The board has an RS-
232 interface for program download. You can also access a 16bit stereo audio codec, which support
both input and output trough a serial port that connects directly to the SHARC processor. The software
tools included with the EZ-Kit are a C compiler, assembler, linker and simulator. The simulator is
Windows based and is integrated with the CBUG C source debugger. It models system memory and
I/O according to the contents of the systems architecture file. With the architecture file you should be
able to specify how to divide the total amount of memory into different parts, like heap, stack etc. This
was not the case in EZ-KIT Lite. The architecture file was hard coded into the program. Thereby we
are where stuck to the one memory configuration which not fit us at all. All hardware registers and
memory are displayed in separate windows. It support single step execution, break points and break
conditions. It is also possible to alter and make changes in runtime to the register and memory
contents. Plotting memory contents is also possible, useful when verifying functionality of the
application.

Figure. 4.1 picture of ADSP-2106x EZKIT Simulator

The C compiler has a set of ANSI-standard functions, including functions used in signal processing. The library
also includes signal processing functions developed by Analog Devices, like DSP filters and FFT:s. All libraries
are supplied with source code. Assembler programming is usually rather hard, but with the assembler used in
SHARC DSP, Analog Devices has tried to make this stage easier. A usual algebraic statement like, r = x + y is
coded in assembly language as (f0 = f1 + f2), instead of (add f1, f2, f0). This is supposed to make the assembler
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programming more natural and intuitive. This may be for a beginner, but for an experienced programmer this
could be even more confusing.

4.3.2 TMS320C62x Evaluation Module (EVM)
Texas Instruments (TI) provide the TMS320C62x Evaluation Module (EVM) that comes with the fixed-
point TMS320C6201 DSP on a PCI-card. This was really not an option since we did not plan to make
a fixed-point version of the encoder. TI also provides a full functional, 30-day time-limited versions of
compiler and simulator software. The simulator supports all the features that the simulator in the
SHARC EZ-Kit Lite supported. But with a big difference, you are able to specify external ram. The
internal memory are also totally user configurable, i.e. in mean of stack size, heap size, etc. A useful
command line window is also provided. A C-compiler, assembler optimizer and linker are also
included.

4.4 Choosing DSP
When choosing DSP there are some properties that we thought are rather important.
• The DSP must work with at least 24bits data operations.
• It must support floating-point, while a big part of the algorithm work with floating point, and we

don’t want to spend our time converting to fixed-point, while we know that the time will be short.
• If the DSP not is available in silicon, there should at least be a good simulator to use.
• A C-compiler is a requirement, because the MPEG-1 Layer III encoder algorithm is very big and

complex, so assemble writing the whole encoder is not to think of at all. While there are no C-
compilers today which produce enough good optimized assembler code, the DSP should also be
easy to program in assembler.

• Of course it should be as inexpensive as possible.

Fraunhofer IIS [28] has managed to construct a real-time encoder, which use only two DSP320C31.
Mostly of the MPEG-1 Layer 3 algorithm is developed by Fraunhofer IIS themselves, and therefore we
probably need more computational power than just two TMS320C31 to reach the real-time demand.

All DSP:s we looked at supported both 32bits and floating-point operations. Now the only DSP:s left of
interest was Texas Instruments TMS320C6701 and Analog Devices ADSP-21065L. TI did not provide
any development board for there floating-point version c6701. We then ordered the SHARC EZ-Kit
that comes with the ADSP-21061, which supported floating-point and was code and function
compatible with the ADSP-21065L. After verifying that the development board was working and some
manual readings, we discovered that the simulator wasn't able to simulate extended memory. This is a
very important feature, while the different part of the MPEG-algorithm is dependent on data from
previous part. Without that feature we would have to make a lot of extra work when verifying that
different part really works. Analog Devices also provided a simulation tool called "Visual DSP", but this
was in a beta and cost about $3000(too expensive). So we went for the second option, the free (30
days evaluation time) simulator from TI.
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5 Implementation

5.1 Developing Environment

The MPEG audio reference sourcecode from ISO was written primary for UNIX.  Since Linux is both
free and has a very good and neat developer environment, including powerful tools such as gcc, gdb
and emacs, we chosed Linux as operating system for algorithmical changes and optimizing of the mp3
code.  Our Linux-box is running a standard RedHat 5.0 installation on a Pentium Pro 200MHz CPU
with 64MB memory.

For DSP development we used WindowsNT as operating system since all DSP tools we used were
made for the Windows platform like the TI 6701 and the ADI 21x environment. The machine we were
running the simulator on was a PentiumII 266MHz with 128MB memory.

5.2 Encoder/Decoder
A decoder task is reversed the encoder, with one a big difference. The side information in the MPEG-1
bit stream gives information of i.e. what table to use when Huffman decoding, and therefore no
calculations are needed when choosing table.

Complexity
Layer

Encoder Decoder

I 1.5-3 1.0

II 2-4 1.25

III >7.5 2.5

Table 5.1 Complexity value by Philips [29]

In table 5.1 the Layer I decoder is used as a complexity reference and is given index 1.0. When
running the encode/decoder on a general-purpose machine, the complexity has to do with the amount
of processing power and memory, while the complexity in case of a dedicated IC is the silicon area.
Observe that the complexity value “>7.5” in Layer III encoder, is the minimum theoreticle value. The
Layer III is so complex that it is impossible to calculate a maximum complexity value.

5.3 Implementation and Optimizing
The reference source code for MPEG-1 layer III was implemented with regards to understanding the
algorithm, and not for speed. This was very obvious to us when we first tried it. It took 128 seconds to
encode a 10 seconds sample on our Linux box. This code was used as the framework and reference
to verify the functionality of our MPEG encoder.

To reduce the code size, complexity and also memory consumption, we decided early in the project to
limit our encoder to 44.1 kHz 16 bit at 64kbps per channel (mono or stereo).  This is the most common
audio format, with a quality comparable to a music CD.  Another limit is that we don’t support joint
stereo.

We will discuss some of the major optimizing we have done in the sections below.

The profiling facility gave us a good hint about what functions that we should concentrate our efforts
on, to be able to build a real-time encoder. Note that all numbers from the reference source are run on
the Linux system with a Pentium Pro CPU. Most certainly those are all different when running on the
target DSP, but anyhow the numbers give a hint about what functions that need to be rewritten and
optimized.

Psychoacoustic analysis
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The psychoacoustic analysis and filter/window subband is in theory done in parallel, with no
connection to each other, but since a computer is sequencial, one of them has to be calculated prior to
the other.

The most demanding function in the analysis is the 1024-fft, using over 8% of all cpu-time on Linux.
Since all major DSP manufacturers provide hand optimized efficient assembler code for fft-
calculations, we haven’t worried about optimizing the fft-function. The rest of the psychoacoustic
analysis takes about 3 % of the total cpu-time and is very memory consuming since it needs lots of
precalculated tables to generate the minimum masking threshold and calculating the signal-to-mask
ratio (SMR). A pre-calculated hann-window for both long and short blocks is also needed for the fft.

One FFT on C6701 takes 20.665 cycles. Two fft:s is calculated per channel.
38 frames per second gives 20.665*152 = 1.9% CPU time for realtime encoding.

In the our design, figure 5.1, of the MPEG encoder, we don’t use the psychoacoustic analysis.By
ignoring that, we don’t calculate any blocktype and the SMR ratio is never set.  Not using the SMR is
equivalent with only running the outer loop one time in the noise allocation iteration loop, this because
the scalefactor bands will never have too much noise. (see the noise allocation section in 3.4.) This
saves alot of computations and memory, but sacrifices some of the high quality in theory. Using non-
scientific lissening tests we got no noticeable change in sound quality.

                            Figure 5.1. Design of the encoder

Modified Discrete Cosinus Transform (MDCT)

The MDCT processes each subband output from the polyphase filterbank. The MDCT was originally
called 18*32 or 12*6*3 times, depending on long or short block is used. Since we only use long blocks,
the MDCT is always called 18*32 times. The orinially MDCT calculated 18*36*2=1296 floating point
multiplications, we used a modified variant of Lee’s Fast DCT algorithm [30] that uses 244+36=280
multiplications. See appendix A for source code.

These changes is purely done in the algorithmical stage, thus the earned speedup will be in effect for
both DSP and other architectures. With regard to the overhead in start and end of function calls for
saving registers etc, we get a speedup of almost 5 times.
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Noise allocation (inner loop, Huffman coding and quantization)

The noise allocation part is by far the most demanding part of the whole encoder. This is mainly
because of the quantization part, but the Huffman encoding has also a share of the complexity. Since
the quantization and Huffman code calls exists in a loop within another loop, there are three ways to
optimize the noise allocation part. The first is to optimize the quantization and Huffman coding, the
other two is to reduce the number of loops, decreasing the calls to the functions.

BEGIN outer_loop

  BEGIN inner_loop

    quantize

    Huffman code

  END inner_loop

END outer_loop

The outer_loop has been reduced to only run one time, this because we have no SMR calculation and
no psycho acoustic analyze. The inner_loop, on the other hand, can’t be optimized in the same way,
since it would violate the number of bits required and increase the bitrate from the allowed 128kbit.
Instead we use a “trimmed” quantization step size, to get a “good enough” quantization as soon as
possible. The step size is chosed so the inner_loop runs only one or maximum two times.

The Quantization

The quantization formula:

which run 576 times and the power function uses alot of cpu time, in our case on the DSP a power()
takes way too much time. The “nint” function round the the calculated value to the nearest int. We
optimized the Quantize function by using precalculated tables instead of the slow power function, se
appendix b for source-code.

5.4 DSP Specific Optimizations

Since the TMS320C6701 is highly parallell you have to take that in mind when writing your C-code. A
small change in the C-code can produce code that exploits the parallell execution stages much better.
Note that some of the changes in the code would even increase the execution time on an ordinary
CPU, but run faster on the 6701 DSP.

Example optimization of ix_max():

ix_max() is a function in our encoder that returns the maximum value from a vector. Using the
original C-code we got an output from the TI compiler that only was able to compare one value
from the vector every second clockcycle.

for ( i = begin; i < end; i++ )
{
   if ( ix[i] > max )
     max = ix[i];
}

Original C-code for ix_max() function.
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   Generated DSP assembler from original C-code

Knowing that not all resources are fully used, we can improve performance by unrolling the loop.
This is done by accumulating the even elements ix[i], into max1and the odd elements, ix[i+1] into
max2. After the loop max1 and max2 are compared to each other.

for ( i = begin; i < end; i+=2 )
{
  if ( ix[i] > max1 )
    max1 = ix[i];
  if ( ix[i+1] > max2 )
    max2 = ix[i+1];
}
C6701 optimized unrolled loop.

By unrolling the loop, the C-compiler produce assembler code that are able to do one compare
each cycle. This means that the loop now is twice as fast as before.

> DSP assembler generated from C6701 optimized C-code.

Giving the compiler small hints about how you want your code to compile and information about the
datatypes beeing used, helps alot to get more efficient code. The rewriting of the code above is just
one example. Other hints to the compiler include declaring what variables that are constant, minimum
loop count information and optimize data flow bandwidth to and from memory [31]. When giving all
these hints, the c6x compiler is rather efficient.

To optimize the code further in the ix_max() example, you need to write linear assembler. This means
that you use the 6701 assembler language. In this example we won’t get any faster code by using
linear assembler. This is due to more units (see section 3.4) are needed then available, when doing
more then one compare instruction per cycle. All these instructions work with the either the .L, .S or .D
unit. C6701 got two of each unit, this makes 6 available units. The .M1and .M2 units are only used for
multiply instructions. Making two compare instruction each cycle, demands 2 LDH, 2 CMPGT, 2 MV, 1
SUB and 1 B instruction. Thereby we need eight units when only sex units are available. This shows

LOOP:        ; PIPED LOOP KERNEL

CMPGT .L1 A3,A0,A1 ;compare the value
|| [ B0] B       .S2 LOOP ;branch to beginning of loop

[ A1] MV      .S1     A3,A0   ;move into another register for storing
|| [ B0] SUB     .L2     B0,1,B0 ;decrease the counter value
|| LDH     .D1T1 *A4++,A3 ;fetch value from vector

; The || means that that the instruction runs
   in parallell with the previuos instruction.

LOOP:        ; PIPED LOOP KERNEL

   [ A1]  MV     .S1     A4,A0
||         CMPGT .L1     A5,A3,A1
|| [ B0]  B       .S2     LOOP
||         LDH     .D1T1 *++A6(4),A4

   [ A1]  MV      .S1     A5,A3
||         CMPGT .L1     A4,A0,A1
|| [ B0]  SUB     .L2     B0,1,B0
||         LDH     .D1T1 *+A6(2),A5

; The || means that that the instruction runs
   in parallell with the previuos instruction.
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that the C-compiler produced fully optimized assembler code, and there is no need for linear
assembler writing.

If you don’t reach the performance you hoped for, the last step is then to write “real” C6701 assembly
code. This is not recommended by TI and the manuals they provide tells nothing about this topic, but it
should definitively be possible.The problem is that with the architecture and behavioural of the DSP
you have to keep too much in mind, but it might be worth the trouble.

5.5 DSP Timing Analysis

For verifying that our code in the simulator runs in realtime, we timed the different functions in terms of
clockcycles. Since the sampling rate we use is 44100 samples/second and one frame processes 1152
samples, one frame represents 1152/44100 (26.12E-03) seconds. The TMS320C6701 runs at 167
MHz, and one frame should then take 167*1152/44100 miljon cycles maximum, for real-time
performance. That gives us 4.362.449 cycles to spend on each frame.

 Cycles for each frame         stereo       mono

 window +filter subband      871.789     548.161  50%
 MDCT                        281.005     140.564  62%
 iteration_loop          2.454.325 1.649.332  67%
 bitstream formatting        365.350
 theoretical mem copy           12.305

3.984.775

Note that no function for input/output is in the calculation. With 3.984.775 cycles we use 91% of the
DSP capacity, this gives us 377.674 cycles to copy samples from the input buffer, which should be
enough. Note that some functions may take different long time depending on what input data (sound)
that is beeing processed. Its important to have enough time margin to cover the worst-case frame,
otherwise one might violate the real time constraints.
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6 Results

We found out that MPEG encoding was not a simple algorithm. It requires lots of computational power
for realtime, but it was not impossible to implement.

The parts of the thesis are repeated here, along with a short summary of the results:

• Examine and chose an MPEG audio encoding standard that is possible to implement on
hardware, with regard to compression ratio, performance, complexity, sound quality, parallelizing-
ability etc.
- We looked at MPEG-1 Layer-3 and AAC. The Layer 3 was chosen.

• Implement and optimize the compressor in software using the audio-standard and reference
compressor to make a first analyze of how much computation power and what types of operations
that is needed to do a good realtime implementation.
- We analyzed it and the result was that fast floating point multiplications was needed.

• Chose a computational architecture to implement the encoder in hardware.
- A DSP has powerful and fast floating point multiplications. Texas Instruments 6701 DSP was
chosen.

• Implement the compressor on the chosen hardware, with needed assembler-optimizations and
verify that it fulfills the real-time demands.
- We implemented it in dsp simulator. The real-time demands and output audio quality are
verifyed.

• The implementation will be on self-developed hardware. If shortage of time occur, some kind of
developer card or simulator can be used. Lower compressor quality might be necessary if
hardware performance is too low.
- We implemented it in a simulator since shortage of time occured. We also lowered the
compressor quality in theory by ignoring the psychoacoustic analysis step in the encoder.

• The optimum goal was to produce a card with analog and digital (S/PDIF) input and output from
the hardware would be an MPEG compressed bitstream.
- We used a simulator thus no card was produced. This mainly because lack of time.

Other topics not included in the thesis specification:

• Memory requirements
-The current implementation of our encoder uses 43 KB of program memory, 73 KB of RAM and
10 KB of ROM, this fit in the DSP which have 128KB of internal memory. Input buffers not
included. (Approx need data for two frames, which needs 9 KB memory)
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7 Discussion

Problems related to the thesis

• When developing DSP applications it's very important to have good tools. Unfortunatly the big
DSP manufacturers take high prices for the tools, a fact that influenced our choise of DSP very
much.

• The Layer III algorithm is very complex and uses a lot of memory (tables). This is a problem since
most of the DSP:s are develped with the idea that the code should fit in the DSP memory so
external memory bandwidth can be a limiting factor for big algorithms. This problem has been
noticed lately, by Texas Instruments for instance. They have developed a new chip,
TMS320C6211, with L1 and L2 cache for external memory, addressing the external memory
bandwidth problem.

• Since our code could not fit in the DSP internal memory, and external memory access was slow,
we solved the problem by copying sections of external memory to the internal, when the external
memory was needed. The memory was then copied back to external memory after it had been
used. By doing this we had some trouble with memory fragmentation, but after some changes in
the code the problem was solved.

Possible improvements

Next step in this project, would be to let an A/D or digital in write to a circular buffer in the external
memory via DMA. The CPU then copies one frame, 1152 samples, from the external memory and
processes it, frame by frame.

Improve audio quality
To improve the audio quality there is need for a reimplementation of the psychoacoustic analysis. To
include this, much more memory is required. This might be a problem since the DSP has limited
internal memory. The bandwidth to external memory could also be a problem.

Use another DSP
Replace the TMS320C6701 with TMS320C6711, when (if) it comes (TMS320C6211 with floating point
support). Another interesting DSP is the ADSP-21160 which is code compatible with ADI's popular
ADSP-2106x SHARC DSPs, and has 4 Mbit internal memory. Samples of the ADSP-21160 will be
available through ADI in the fourth quarter of 1998.

Use another technology
The TM-1000 MPEG chip from Philips, aimed for set-top-box applications, is very interesting and
alternative architechtures like this chip is certainly worth taking a look at in future MPEG audio encoder
developing. We found out about this chip too late in our project, unfortunately.

Use another algorithm
The AAC algorithm will probably be something to take a closer look at in the future.
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Glossary

AAC Advanced Audio Coding
ADPCM Adaptive Differential Pulse Code Modulation
ATRAC Adaptive TRansform Acoustic Coding
DAB Digital Audio Broadcasting, known as digital radio
DPCM Differential Pulse Code Modulation
DSP Digital Signal Processor
DVD Digital Versatile Disk
Filter bank A set of band-pass filters covering the entire audio frequency

Range.
FFT Fast Fourier Transform. An algorithm for computing the Fourier

transform of a given set of discrete data values. The FFT
expresses the data in terms of its component frequencies. It
also solves the essentially identical inverse problem of
reconstructing a signal from the frequency data.

HDTV High Definition Television
Hi-Fi Audio High Fidelity Audio
IC Integrated Ciruit
Joint stereo coding Any method that exploits stereophonic irrelevance or
Stereophonic redundancy.
Layer III MPEG-1 consist of three layers I, II and III.
LFE Low Frequency Element channel
MDCT A transform which has the property of time domain aliasing

cancellation.
MP3 popular name of the MPEG-1 Layer III standard
MPEG Motion Picture Experts Group
Multilingual A presentation of dialogue in more than one language.
NBC Non Backward Compatibility, old name for AAC
PCM Pulse Code Modulation
PQF Polyphase Quadrature Filter
Psychoacoustic model A mathematical model of the masking behaviour of the human

auditory system.
RAM Read And Write Memory
ROM Read Only Memory
Side information Information in the bitstream necessary for controlling the

decoder
SMR Signal to mask ratio
S/PDIF Sony/Phillips Digital InterFace
SSR Scalable Sampling Rate
TCP/IP TCP/IP Internet Protocol Suite
TNS Temporal Noise Shaping
Twin VQ Transform-domain Weighted Interleave Vector Quantization
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Appendix A
The original MDCT code:
void mdct( double *in, double *out, int block_type )
{
/*-------------------------------------------------------------------*/
/*                                                                   */
/*   Function: Calculation of the MDCT                               */
/*   In the case of long blocks ( block_type 0,1,3 ) there are       */
/*   36 coefficents in the time domain and 18 in the frequency       */
/*   domain.                                                         */
/*   In the case of short blocks (block_type 2 ) there are 3         */
/*   transformations with short length. This leads to 12 coefficents */
/*   in the time and 6 in the frequency domain. In this case the     */
/*   results are stored side by side in the vector out[].            */
/*                                                                   */
/*   New layer3                                                      */
/*                                                                   */
/*-------------------------------------------------------------------*/

  int l,k,i,m,N;
  double sum;
  static double win[4][36];
  static double cos_s[6][12], cos_l[18][36];

  if ( block_type == 2 )
  {
    N = 12;
    for ( l = 0; l < 3; l++ )
    {
      for ( m = 0; m < N / 2; m++ )
      {
        for ( sum = 0.0, k = 0; k < N; k++ )
          sum += win[block_type][k] * in[k + 6 * l + 6] * cos_s[m][k];
        out[ 3 * m + l] = sum;
      }
    }
  }
  else
  {
    N = 36;
    for ( m = 0; m < N / 2; m++ )
    {
      for ( sum = 0.0, k = 0; k < N; k++ )
        sum += win[block_type][k] * in[k] * cos_l[m][k];
      out[m] = sum;
    }
  }
}
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modified version of Lee´s Fast DCT algorithm:

static void mdct( float *in, float *out )
{
    int i;
    float sum;
    float c[18];

   /* do the f(i)*in(i) first. and save the results */

      for(i=0;i<9;i++){
        c[i]= in[i]*win[i]-in[17-i]*win[17-i];
        c[i+9]= in[i+18]*win[i+18]+in[35-i]*win[35-i];
      }

      /* 0 */
      sum =  c[0]  * cos_l[0][0];
      sum += c[1]  * cos_l[0][1];
      sum += c[2]  * cos_l[0][2];
      sum += c[3]  * cos_l[0][3];
      sum += c[4]  * cos_l[0][4];
      sum += c[5]  * cos_l[0][5];
      sum += c[6]  * cos_l[0][6];
      sum += c[7]  * cos_l[0][7];
      sum += c[8]  * cos_l[0][8];
      sum += c[9]  * cos_l[0][9];
      sum += c[10] * cos_l[0][10];
      sum += c[11] * cos_l[0][11];
      sum += c[12] * cos_l[0][12];
      sum += c[13] * cos_l[0][13];
      sum += c[14] * cos_l[0][14];
      sum += c[15] * cos_l[0][15];
      sum += c[16] * cos_l[0][16];
      sum += c[17] * cos_l[0][17];
      out[0]=sum;

      /* 1 */
      sum  = (c[2]+c[3]+c[17]) * cos_l[1][2];
      sum += (c[1]+c[4]+c[16]) * cos_l[1][1];
      sum += (c[0]+c[5]+c[15]) * cos_l[1][0];
      sum += (c[6]-c[9]+c[14]) * cos_l[1][6];
      sum += (c[7]-c[10]+c[13]) * cos_l[1][7];
      sum += (c[8]-c[11]+c[12]) * cos_l[1][8];
      out[1]=sum;

      /* 2 */
      sum =  c[0] * cos_l[2][0];
      sum += c[1] * cos_l[2][1];
      sum += c[2] * cos_l[2][2];
      sum += c[3] * cos_l[2][3];
      sum += c[4] * cos_l[2][4];
      sum += c[5] * cos_l[2][5];
      sum += c[6] * cos_l[2][6];
      sum += c[7] * cos_l[2][7];
      sum += c[8] * cos_l[2][8];
      sum += c[9] * cos_l[2][9];
      sum += c[10] * cos_l[2][10];
      sum += c[11] * cos_l[2][11];
      sum += c[12] * cos_l[2][12];
      sum += c[13] * cos_l[2][13];
      sum += c[14] * cos_l[2][14];
      sum += c[15] * cos_l[2][15];
      sum += c[16] * cos_l[2][16];
      sum += c[17] * cos_l[2][17];
      out[2]=sum;
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      /* 3 */
      sum =  c[0] * cos_l[3][0];
      sum += c[1] * cos_l[3][1];
      sum += c[2] * cos_l[3][2];
      sum += c[3] * cos_l[3][3];
      sum += c[4] * cos_l[3][4];
      sum += c[5] * cos_l[3][5];
      sum += c[6] * cos_l[3][6];
      sum += c[7] * cos_l[3][7];
      sum += c[8] * cos_l[3][8];
      sum += c[9] * cos_l[3][9];
      sum += c[10] * cos_l[3][10];
      sum += c[11] * cos_l[3][11];
      sum += c[12] * cos_l[3][12];
      sum += c[13] * cos_l[3][13];
      sum += c[14] * cos_l[3][14];
      sum += c[15] * cos_l[3][15];
      sum += c[16] * cos_l[3][16];
      sum += c[17] * cos_l[3][17];
      out[3]=sum;

      /* 4 */
      sum =   (c[0]-c[1]-c[4]+c[5]+c[8]-c[11]+c[12]+c[15]-c[16]) * cos_l[4][0];
      sum += (-c[2]-c[3]+c[6]+c[7]-c[9]-c[10]+c[13]+c[14]-c[17]) * cos_l[4][6];
      out[4]=sum;

      /* 5 */
      sum =  c[0] * cos_l[5][0];
      sum += c[1] * cos_l[5][1];
      sum += c[2] * cos_l[5][2];
      sum += c[3] * cos_l[5][3];
      sum += c[4] * cos_l[5][4];
      sum += c[5] * cos_l[5][5];
      sum += c[6] * cos_l[5][6];
      sum += c[7] * cos_l[5][7];
      sum += c[8] * cos_l[5][8];
      sum += c[9] * cos_l[5][9];
      sum += c[10] * cos_l[5][10];
      sum += c[11] * cos_l[5][11];
      sum += c[12] * cos_l[5][12];
      sum += c[13] * cos_l[5][13];
      sum += c[14] * cos_l[5][14];
      sum += c[15] * cos_l[5][15];
      sum += c[16] * cos_l[5][16];
      sum += c[17] * cos_l[5][17];
      out[5]=sum;

      /* 6 */
      sum =  c[0] * cos_l[6][0];
      sum += c[1] * cos_l[6][1];
      sum += c[2] * cos_l[6][2];
      sum += c[3] * cos_l[6][3];
      sum += c[4] * cos_l[6][4];
      sum += c[5] * cos_l[6][5];
      sum += c[6] * cos_l[6][6];
      sum += c[7] * cos_l[6][7];
      sum += c[8] * cos_l[6][8];
      sum += c[9] * cos_l[6][9];
      sum += c[10] * cos_l[6][10];
      sum += c[11] * cos_l[6][11];
      sum += c[12] * cos_l[6][12];
      sum += c[13] * cos_l[6][13];
      sum += c[14] * cos_l[6][14];
      sum += c[15] * cos_l[6][15];
      sum += c[16] * cos_l[6][16];
      sum += c[17] * cos_l[6][17];
      out[6]=sum;
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      /* 7 */
      sum =  (c[0]+c[5]+c[15]) * cos_l[7][0];
      sum += (c[1]+c[4]+c[16]) * cos_l[7][1];
      sum += (c[2]+c[3]+c[17]) * cos_l[7][2];
      sum += (c[6]-c[9]+c[14]) * cos_l[7][6];
      sum += (c[7]-c[10]+c[13]) * cos_l[7][7];
      sum += (c[8]-c[11]+c[12]) * cos_l[7][8];
      out[7]=sum;

      /* 8 */
      sum =  c[0] * cos_l[8][0];
      sum += c[1] * cos_l[8][1];
      sum += c[2] * cos_l[8][2];
      sum += c[3] * cos_l[8][3];
      sum += c[4] * cos_l[8][4];
      sum += c[5] * cos_l[8][5];
      sum += c[6] * cos_l[8][6];
      sum += c[7] * cos_l[8][7];
      sum += c[8] * cos_l[8][8];
      sum += c[9] * cos_l[8][9];
      sum += c[10] * cos_l[8][10];
      sum += c[11] * cos_l[8][11];
      sum += c[12] * cos_l[8][12];
      sum += c[13] * cos_l[8][13];
      sum += c[14] * cos_l[8][14];
      sum += c[15] * cos_l[8][15];
      sum += c[16] * cos_l[8][16];
      sum += c[17] * cos_l[8][17];
      out[8]=sum;

      /* 9 */
      sum =  c[0] * cos_l[9][0];
      sum += c[1] * cos_l[9][1];
      sum += c[2] * cos_l[9][2];
      sum += c[3] * cos_l[9][3];
      sum += c[4] * cos_l[9][4];
      sum += c[5] * cos_l[9][5];
      sum += c[6] * cos_l[9][6];
      sum += c[7] * cos_l[9][7];
      sum += c[8] * cos_l[9][8];
      sum += c[9] * cos_l[9][9];
      sum += c[10] * cos_l[9][10];
      sum += c[11] * cos_l[9][11];
      sum += c[12] * cos_l[9][12];
      sum += c[13] * cos_l[9][13];
      sum += c[14] * cos_l[9][14];
      sum += c[15] * cos_l[9][15];
      sum += c[16] * cos_l[9][16];
      sum += c[17] * cos_l[9][17];
      out[9]=sum;

      /* 10 */
      sum =  (c[0]+c[5]+c[15]) * cos_l[10][0];
      sum += (c[1]+c[4]+c[16]) * cos_l[10][1];
      sum += (c[2]+c[3]+c[17]) * cos_l[10][2];
      sum += (c[6]-c[9]+c[14]) * cos_l[10][6];
      sum += (c[7]-c[10]+c[13]) * cos_l[10][7];
      sum += (c[8]-c[11]+c[12]) * cos_l[10][8];
      out[10]=sum;

      /* 11 */
      sum =  c[0] * cos_l[11][0];
      sum += c[1] * cos_l[11][1];
      sum += c[2] * cos_l[11][2];
      sum += c[3] * cos_l[11][3];
      sum += c[4] * cos_l[11][4];
      sum += c[5] * cos_l[11][5];
      sum += c[6] * cos_l[11][6];



37

      sum += c[7] * cos_l[11][7];
      sum += c[8] * cos_l[11][8];
      sum += c[9] * cos_l[11][9];
      sum += c[10] * cos_l[11][10];
      sum += c[11] * cos_l[11][11];
      sum += c[12] * cos_l[11][12];
      sum += c[13] * cos_l[11][13];
      sum += c[14] * cos_l[11][14];
      sum += c[15] * cos_l[11][15];
      sum += c[16] * cos_l[11][16];
      sum += c[17] * cos_l[11][17];
      out[11]=sum;

      /* 12 */
      sum =  c[0] * cos_l[12][0];
      sum += c[1] * cos_l[12][1];
      sum += c[2] * cos_l[12][2];
      sum += c[3] * cos_l[12][3];
      sum += c[4] * cos_l[12][4];
      sum += c[5] * cos_l[12][5];
      sum += c[6] * cos_l[12][6];
      sum += c[7] * cos_l[12][7];
      sum += c[8] * cos_l[12][8];
      sum += c[9] * cos_l[12][9];
      sum += c[10] * cos_l[12][10];
      sum += c[11] * cos_l[12][11];
      sum += c[12] * cos_l[12][12];
      sum += c[13] * cos_l[12][13];
      sum += c[14] * cos_l[12][14];
      sum += c[15] * cos_l[12][15];
      sum += c[16] * cos_l[12][16];
      sum += c[17] * cos_l[12][17];
      out[12]=sum;

      /* 13 */
      sum =  (c[0]-c[1]-c[4]+c[5]+c[8]-c[11]+c[12]+c[15]-c[16]) * cos_l[13][0];
      sum += (c[2]+c[3]-c[6]-c[7]+c[9]+c[10]-c[13]-c[14]+c[17]) * cos_l[13][2];
      out[13]=sum;

      /* 14 */
      sum =  c[0] * cos_l[14][0];
      sum += c[1] * cos_l[14][1];
      sum += c[2] * cos_l[14][2];
      sum += c[3] * cos_l[14][3];
      sum += c[4] * cos_l[14][4];
      sum += c[5] * cos_l[14][5];
      sum += c[6] * cos_l[14][6];
      sum += c[7] * cos_l[14][7];
      sum += c[8] * cos_l[14][8];
      sum += c[9] * cos_l[14][9];
      sum += c[10] * cos_l[14][10];
      sum += c[11] * cos_l[14][11];
      sum += c[12] * cos_l[14][12];
      sum += c[13] * cos_l[14][13];
      sum += c[14] * cos_l[14][14];
      sum += c[15] * cos_l[14][15];
      sum += c[16] * cos_l[14][16];
      sum += c[17] * cos_l[14][17];
      out[14]=sum;

      /* 15 */
      sum =  c[0] * cos_l[15][0];
      sum += c[1] * cos_l[15][1];
      sum += c[2] * cos_l[15][2];
      sum += c[3] * cos_l[15][3];
      sum += c[4] * cos_l[15][4];
      sum += c[5] * cos_l[15][5];
      sum += c[6] * cos_l[15][6];
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      sum += c[7] * cos_l[15][7];
      sum += c[8] * cos_l[15][8];
      sum += c[9] * cos_l[15][9];
      sum += c[10] * cos_l[15][10];
      sum += c[11] * cos_l[15][11];
      sum += c[12] * cos_l[15][12];
      sum += c[13] * cos_l[15][13];
      sum += c[14] * cos_l[15][14];
      sum += c[15] * cos_l[15][15];
      sum += c[16] * cos_l[15][16];
      sum += c[17] * cos_l[15][17];
      out[15]=sum;

      /* 16 */
      sum =  (c[0]+c[5]+c[15]) * cos_l[16][0];
      sum += (c[1]+c[4]+c[16]) * cos_l[16][1];
      sum += (c[2]+c[3]+c[17]) * cos_l[16][2];
      sum += (c[6]-c[9]+c[14]) * cos_l[16][6];
      sum += (c[7]-c[10]+c[13]) * cos_l[16][7];
      sum += (c[8]-c[11]+c[12]) * cos_l[16][8];
      out[16]=sum;

      /* 17 */
      sum =  c[0] * cos_l[17][0];
      sum += c[1] * cos_l[17][1];
      sum += c[2] * cos_l[17][2];
      sum += c[3] * cos_l[17][3];
      sum += c[4] * cos_l[17][4];
      sum += c[5] * cos_l[17][5];
      sum += c[6] * cos_l[17][6];
      sum += c[7] * cos_l[17][7];
      sum += c[8] * cos_l[17][8];
      sum += c[9] * cos_l[17][9];
      sum += c[10] * cos_l[17][10];
      sum += c[11] * cos_l[17][11];
      sum += c[12] * cos_l[17][12];
      sum += c[13] * cos_l[17][13];
      sum += c[14] * cos_l[17][14];
      sum += c[15] * cos_l[17][15];
      sum += c[16] * cos_l[17][16];
      sum += c[17] * cos_l[17][17];
      out[17]=sum;
}
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Appendix B
void quantize( DOUBLE xr[576], short ix[576], gr_info *cod_info )
{
short i;
DOUBLE step;
DOUBLE ostep;
float temp;

if ( cod_info->quantizerStepSize == 0 )
step = 1.0;

else
   step = pow ( 2.0, cod_info->quantizerStepSize * 0.25 );

ostep = 1.0/step;
for ( i = 0; i < 576; i++ ){
  temp=ostep*fabs(xr[i]);
  if (temp<4.999960e-01)
    ix[i]=0;
  else {if(temp<1.862955e+00) ix[i]=1;
      else if(temp<3.565282e+00) ix[i]=2;
      else if(temp<5.506396e+00) ix[i]=3;
      else if(temp<7.638304e+00) ix[i]=4;
      else if(temp<9.931741e+00) ix[i]=5;
    else
      ix[i] = nint( pow(fabs(xr[i]) / step, 0.75) - 0.0946);
  else
    ix[i] = pow_nint(fabs(xr[i]) * ostep);
  }
}
}

* The vector ix[] holds our precalculated values.


