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Abstract

Many musical audio signals are well represented as a sum of sinusoids with slowly

varying parameters. This representation has uses in audio coding, time and pitch scale

modification, and automated music analysis, among other areas. Transients (events

where the spectral content changes abruptly, or regions for which spectral content is

best modeled as undergoing persistent change) pose particular challenges for these

applications. We aim to detect abrupt-change transients, identify transient region

boundaries, and develop new representations utilizing these detection capabilities to

reduce perceived artifacts in time and pitch scale modifications. In particular, we

introduce a hybrid sinusoidal/source-filter model which faithfully reproduces attack

transient characteristics under time and pitch modifications.

The detection tasks prove difficult for sufficiently complex and heterogeneous mu-

sical signals. Fortunately, musical signals are highly structured – both at the signal

level, in terms of the spectrotemporal structure of note events, and at higher levels, in

terms of melody and rhythm. These structures generate context useful in predicting

attributes such as pitch content, the presence and location of abrupt-change transients

associated with musical onsets, and the boundaries of transient regions. To this end,

a dynamic Bayesian framework is proposed for which contextual predictions may

be integrated with signal information in order to make optimal decisions concerning

these attributes. The result is a joint segmentation and melody retrieval for nom-

inally monophonic signals. The system detects note event boundaries and pitches,

also yielding a frame-level sub-segmentation of these events into transient/steady-

state regions. The approach is successfully applied to notoriously difficult examples

like bowed string recordings captured in highly reverberant environments.
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The proposed transcription engine is driven by a probabilistic model of short-time

Fourier transform peaks given pitch content hypotheses. The model proves robust to

missing and spurious peaks as well as uncertainties about timbre and inharmonicity.

The peaks’ likelihood evaluation marginalizes over a number of observation-template

linkages exponential in the number of observed peaks; to remedy this, a Markov-chain

Monte Carlo (MCMC) traversal is developed which yields virtually identical results

with greatly reduced computation.
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Preface

This dissertation concerns the detection and modeling of transient phenomena in

musical audio signals, and applications in audio segmentation, analysis-based sound

transformation, and related areas. Since musical signals are often highly structured,

at the signal level in terms of the spectrotemporal evolution of note events, and at

higher levels, in terms of melody and rhythm, the primary focus is on how we can use

this information to improve detection and modeling capabilities. This is not a mere

academic exercise, since real-world musical recordings can be highly complex. One

needs to make use of as many sources of information as possible.

The systematic integration of structural aspects with signal information is perhaps

the key point of this dissertation. Everything else (while possibly interesting in its

own right) plays a supporting role. Additional material may demonstrate applications

(hence, situating the dissertation work in the greater context of past literature), or

it may provide tools which are necessary to fully implement the proposed integration

in the context of real-world signals.

I have organized this material in a linear fashion, which may not be the best choice

for any particular reader. Nonetheless, it makes for the most concise presentation.

Acknowledging this, I have also attempted to make each chapter self-contained, sum-

marizing at the beginning of each the necessary information from previous chapters,

although one must often take this information at face value.

Chapter 1 introduces the transient detection and modeling problems, surveys ap-

proaches from past literature, and (in light of this background) previews the contri-

butions most specific to this dissertation. Chapter 2 details modeling applications

and develops a set of detection requirements common to these applications. Chapter
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3, perhaps the heart of the dissertation, develops a systematic approach for the use of

signal-level and higher-level musical structures to improve the detection capabilities

in light of the requirements discussed in Chapter 2. An application towards the joint

segmentation and melody extraction for nominally monophonic recordings (which,

however, may be corrupted by significant reverberation, note overlaps due to legato

playing, and background instrumentation) is shown for a variety of piano and violin

recordings. Chapter 4 discusses methods for robust pitch hypothesis evaluation which

are vital towards implementing the methods covered in Chapter 3. Several appen-

dices provide more details concerning the algorithms proposed in Chapter 3. These

appendices can probably be skipped unless one is considering implementation issues.

Since the main focus is on the role of musical structure, I would encourage the

beginning reader to skim Chapter 1 then read Chapter 3 as early as possible, taking

the “transient detection requirements” stated at the beginning of that chapter at

face value. Then if the reader desires further background on detection or modeling

issues, a full development can be found in Chapter 2. If the reader is more interested

in low-level implementation issues concerning the material in Chapter 3, Chapter 4

and the two appendices may immediately prove useful. However, the reader may be

interested in robust pitch detection (and pitched/non-pitched classification) in more

general scenarios, in which case Chapter 4 may be the best place to start. From

that perspective, Chapter 3 serves as a way to adapt the pitch detection methods

developed in Chapter 4 towards tracking pitch content over time, in a way that is

robust to transients and nominally silent portions of the audio.
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Chapter 1

Introduction

The detection and modeling of transient phenomena in musical audio signals is a

long-standing problem with applications in areas as diverse as analysis-based sound

modification, lossy audio compression, and note segmentation for automated music

analysis, transcription, and performance parameter extraction. We begin by defining

“transient” in musical audio contexts and describing common transient phenomena

which occur in these contexts. We review extensively the past literature on transient

modeling, particularly in sound modification and compression applications which use

sinusoidal models; additionally, we introduce a model for attack transients which

hybridizes sinusoidal and source-filter modeling to facilitate novel, transient-specific

processing methodologies.

Most of these modeling applications, we find, concern essentially two types of

transient phenomena: abrupt changes in spectral information, usually associated with

musical onsets, and transient regions, during which spectral information undergoes

persistent, often rapid, change. To apply transient models, therefore, we must be able

to detect abrupt changes and identify transient region boundaries. These detection

tasks become quite challenging for real-world musical signals. For instance, consider

the class of nominally monophonic recordings; here, each is considered to have been

generated from a monophonic score. Nominally monophonic recordings often contain

significant interference as well as effective polyphony due to reverberation, overlap-

ping notes, and background instrumentation, all of which increase the possibility of

1



CHAPTER 1. INTRODUCTION 2

detection errors. On the other hand, musical signals are highly structured – both

at the signal level, in terms of the spectrotemporal evolution of note events, and at

higher levels, in terms of melody and rhythm. These structures generate context

useful in predicting attributes such as pitch content, the presence and location of

abrupt-change transients, and the boundaries of transient regions. Perhaps the key

contribution of this dissertation is the integration of these contextual predictions with

raw signal information in a Bayesian probabilistic framework, in order to minimize the

expected costs associated with errors which arise in transient detection. We present

not a single solution for one set of recording conditions, but an entire framework in

which musical domain knowledge may be systematically encoded (via prior or tran-

sitional probability distributions) and adapted for a wide variety of applications and

contexts.

1.1 Definition of “transient”

Both analysis-based sound modification and lossy audio compression make extensive

use of sinusoidal models. Traditional approaches include the phase vocoder [41, 90],

as well as methods based on short-time Fourier transform (STFT) analysis and peak-

picking [81, 110, 106]1. A primary reason for its widespread use is that the sinusoidal

model offers an explicitly parametric representation of a sound’s time-frequency evo-

lution. The sinusoidal model for input yt, t ∈ 1:N is given as follows:

yt =

p
∑

k=1

Ak(t) cos

(

φk(t) +

t−1
∑

s=0

ωk(s)

)

(1.1)

Here Ak(t) is the amplitude of the kth sinusoid, ωk(t) is the frequency, and φk(t) is

the phase offset2. Since the time-frequency paradigm, at least to first approximation,

1The method proposed in [106] by Serra and Smith, called “spectral modeling synthesis” (SMS),
is of particular interest because it represents also the part of the signal which is not well-modeled
by sinusoids. This part, known as the residual, is obtained by subtracting the sinusoidal part from
the original signal. For lossy compression purposes, unless absolute perceptual fidelity is necessary,
this residual may be modeled via filtered white noise; see also [74, 75, 77] for related applications.

2Since frequency is the time difference of phase, it is redundant to represent both frequency
and phase using time-varying functions. However, this redundancy becomes quite useful when we
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reflects our “mental image” of sound [53, 44], sinusoidal models help us apply musical

intuition towards designing interesting and meaningful sound modification schema.

Furthermore, most regions in typical musical audio signals are considered steady-state

with respect to the sinusoidal representation; in other words, these regions may be

represented using either constant or slowly time-varying parameter trajectories. For

compression applications, this facilitates significant reductions in bitrate with minimal

perceptual distortion [81, 77, 91, 76].

Unfortunately, real-world musical signals contain many instances, called tran-

sients, which violate these steady-state conditions. Common instances include:

• Abrupt changes in amplitudes, phases, or frequencies: in recordings of acous-

tic material, these changes are often due to energy inputs on the part of the

performer; hence, abrupt change transients often associate with onsets of note

events or other phenomena that may be notated in the score

• Rapid decays in amplitudes, usually associated with attack regions following

onsets of percussive sources

• Fast transitions in frequencies and amplitudes: musical examples include ex-

pressive pitch variations (portamento, vibrato, etc.) and timbral transitions

(such as a rapid shift in the vocal formant structure)

• Noise and chaotic regimes, primarily responsible for textural effects: environ-

mental sounds, such as rain or crackling fire, exhibit persistent textures which

are important to preserve in resynthesis; textures can also arise from nonlinear

feedback mechanisms in acoustic sources, e.g., bowed string and wind instru-

ments [103, 99]; in most circumstances, the latter are likely to be found in short

regions near onsets, as such regimes are often activated when the performer’s

energy input becomes large

What is considered “transient”, however, depends on the details of the underlying

sinusoidal model. More than one model may represent a particular signal. To cite

constrain the variation of either quantity. For instance, if frequency is modeled as piecewise-constant
or piecewise-linear over short regions, the phase-offset trajectory may absorb the remainder of the
local frequency variations which actually do occur.
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an extreme case, the Fourier theorem guarantees that any signal of finite length, for

instance a sinusoidal chirp sampled at 44100 Hz for which the pitch varies linearly

from zero to 2000 Hz in 0.01 seconds, may be represented as a sum of sinusoids with

constant amplitudes, frequencies, and phases (the chirp example requiring exactly

221 sinusoids). If one wants to warp a time-varying sinusoid’s frequency trajectory,

modifying the trajectories of each individual sinusoid in the “Fourier representation”

will likely not have the desired effect. Figure 1.1 displays the results of such an

experiment with the aforementioned chirp signal where the frequencies of all Fourier

component sinusoids are doubled. Contrary to one’s expectation, the result is no

longer a single chirp, and will hence be heard as an artifact.
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Figure 1.1: Modification of sinusoidal chirp via stationary Fourier model

The sinusoidal modeling ambiguity manifests in more common scenarios, such as

amplitude and frequency modulation. For example, let yt be a sinusoid with zero

phase and constant frequency ω1, and time-varying amplitude At = 1 + cos(ω1t):

yt = (1 + cosω1t) cos ω0t (1.2)
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But yt, as defined via (1.2), is equivalently the sum of three sinusoids with constant

parameters:

yt =
1

2
cos(ω0 + ω1)t +

1

2
cos(ω0 − ω1)t + cos(ω0t) (1.3)

Which representation is heard depends on the relationships between ω0, ω1, and the

integration time of the ear. Generally, if |ω1 − ω0| is less than the critical bandwidth

about ω0, the result will be heard as time-varying, according to the representation

(1.2).

1.2 Modeling and detection requirements

As the discussion throughout Chapter 2 attempts to motivate, the types of transient

phenomena introduced in the previous section (abrupt changes, rapid decays, fast

timbral transitions, and noise/chaotic regimes), may for the vast majority of mod-

eling applications discussed in the literature, be combined into two types: abrupt

changes and transient regions of nonzero width. The associated detection require-

ments become as follows.

• Detect the presence of all abrupt changes, and estimate their locations

• Detect the presence of all transient regions, and estimate their beginning and

end points

Chapter 2 summarizes key applications of transient modeling in analysis-based

sound modifications which use sinusoidal models (cf. [31, 81, 93, 67, 74, 75, 68, 39, 35],

among others). In particular, time and pitch scaling3 are addressed. Since pitch scal-

ing is usually implemented by time scaling followed by sampling rate conversion [67],

we focus on time scaling. Traditional time scaling methods assume a steady-state

representation; as such, they focus on preserving the magnitudes and instantaneous

3Changing the playback speed of a recording modifies both duration and pitch; time and pitch
scaling attempt to allow us independent control of each attribute. As such, time and pitch scaling
are among the most well-known modification possibilities. Further definitions and relevant examples
are given in Section 2.2.1.
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frequencies of each sinusoidal component in the resynthesis. In the steady-state rep-

resentation, the phase relationships become perceptually unimportant4. However, at

abrupt-change transients, the situations become reversed: phase relationships instead

play vital roles in the perception of these events whereas instantaneous frequency rela-

tionships become less important [93, 39]. Additionally, for high-fidelity applications,

it becomes necessary to either preserve or guarantee appropriate scaling of instanta-

neous magnitude time differences [93]. Failure to preserve phase relationships (and to

a lesser extent magnitude time differences) may generate audible artifacts in resyn-

thesis. In Section 2.2.3, we illustrate the importance of phase relationships at the

abrupt-change transient boundary using the simple example of a sub-audio impulse

train. This impulse train is normally heard as a series of “ticks”. Simply by modifying

phase relationships, we can generate entirely different-sounding results ranging from

sinusoidal chirps to noise textures (Figure 2.8), though the instantaneous frequency

and magnitude content remains the same.

With transient regions, it becomes additionally necessary to maintain phase rela-

tionships throughout [39, 35]. By so doing, we preserve textures and other nonstation-

ary phenomena which are otherwise difficult to model. A fundamental conflict exists

between the maintenance of phase relationships throughout a contiguous region and

the appropriate scaling of magnitude time differences at the beginning of that region,

at least within the framework of existing methods; Section 2.2.4 discusses this conflict

at length. It is usually resolved in favor of preserving phase relationships [74, 35], be-

cause perceptually, this is the more important goal [35]. However, significant portions

of some signals (e.g., some percussion sources) consist entirely of transient regions.

In this case, failure to appropriately modify the initial decay envelopes will cause the

resynthesis to be perceived as “same instrument, different tempo” [35]. If one wishes

to speed up a drum loop by a factor of, say, 25 percent, failure to shorten the decay

envelopes by this amount may lead to an unnaturally “dense” resynthesis, leaving

less room for other instruments in the mix.

4This fact has been well-known in even the earliest literature on modern psychoacoustics. The
ear’s insensitivity to absolute phase during steady-state portions was proposed by Ohm and given
psychoacoustic verification by Helmholtz [98, 17].
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On the other hand, these perceptual artifacts become less pronounced if transient

regions are sufficiently short [74]. If the conflict between phase relationship preserva-

tion and magnitude time-difference scaling cannot be resolved within the framework

of existing methods, one is hence motivated to seek an extended signal representation

such that the transient regions (or, the signal information necessary to reconstruct

these regions) become as short as possible. This leads down the path of source-filter

modeling [116]. To this end, a hybrid sinusoidal/source-filter representation for at-

tack transients is developed (Figure 1.2), as discussed in Section 2.3. The main idea

TRANSIENTS SINES

NOISE

(source)
(filter)

OUTPUT

Figure 1.2: Hybrid sinusoidal/source-filter representation for attack transients

is that signals of effectively short duration called input residuals excite a bank of

exponentially-decaying sinusoidal oscillators (Figure 2.11). Added to these oscillators

is an output residual which for noise added during the recording process. Absent

modification, the model is perfect reconstruction; i.e., the resynthesis is identical to

the input.

A piano attack transient and the extracted input residuals associated with the first

and 32nd partials, respectively, are displayed in Figure 1.3. The effective temporal

support of the input residuals appears substantially less than that of the input. Sec-

tion 2.3.4 discusses the improved time and pitch scaling methods facilitated by this

hybrid representation as well as some novel, “transient-specific” effect possibilities

involving residual modifications.

In summary, the discussion in Chapter 2 establishes that a tremendous variety

of transient modeling goals for analysis-based sound modification, especially those

involving sinusoidal models, require the detection and location estimation of abrupt-

change transients, and the identification of beginning and end points of transient

regions. These detection capabilities find use as well in lossy audio compression. For
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Original piano waveform

Residual for oscillator #1

Residual for oscillator #32

Figure 1.3: Residuals vs. original attack transient for ′D2′ piano tone

instance, window switching [36] has helped increase the efficiency and perceptual fi-

delity of transform audio codecs (e.g., MP3, AAC) in the reproduction of transient

sound material [16, 15, 120, 14]. At least two reasons exist for the efficacy of window

switching. First, the spectral content of transient regions is generally broadband and

rapidly time-varying. Hence, it is appropriate to use shorter windows for these re-

gions and longer windows for the steady-state regions, because shorter windows have

less frequency resolution but more time resolution than longer windows. Second, the

asymmetric nature of temporal masking about abrupt change transients [82] makes

it necessary to limit the scope of pre-echo artifacts in reconstruction by applying

shorter and possibly differently-shaped windows at these occurrences [14]. A further

application concerns lossy compression schema which allow compressed-domain mod-

ifications [74, 75]. The spectrotemporal properties of transient regions as well as the

need to preserve phase relationships throughout these regions after modification and

resynthesis imply that different encodings and modification strategies must be used
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for these regions [74].

Finally, the detection of abrupt-change transients and identification of transient

regions both have direct applications in automated music analysis and performance

parameter extraction5. The main reasons concern the spectrotemporal structures

commonly associated with “note events”. Most often in acoustic recordings, abrupt-

change transients result from energy inputs or decisions on the part of the performer.

Ideally, we would like to say that abrupt changes associate always with musical onsets,

defined as the beginnings of note events, as this is often the case. Unfortunately, the

level of detail provided by most traditional score-based representations may be too

coarse to adequately represent all of the performer’s energy inputs and decisions. For

instance, consider a recording of an overblown flute. During a single notated event,

multiple pitched regions may occur due to the different regimes of oscillation. Tran-

sient regions may exist between these pitched regions because of chaotic behaviors

activated upon transitioning between oscillatory regimes [99]. Nevertheless, despite

what may or may not be explicitly notated, the navigation between oscillatory regimes

is under the performer’s control, and may hence be characterized as a sequence of

discrete decisions. Discovering these decision points provides valuable information

for performance parameter extraction, which may be of use, for instance, in driving

a physical model of the same instrument [52, 79, 29], or animating a virtual per-

former [104]. Since this low-level segmentation based on abrupt-change events and

transient regions may err on the side of too much, rather than too little, detail for

score extraction purposes, this information may be clustered in a subsequent pass.

As Chapter 3 discusses, the transient detection problem may be considered jointly

with note segmentation. Particularly in the violin examples analyzed in Section 3.9,

ornamentations such as portamento and vibrato do not cause extraneous detail in the

note segmentation.

5Perhaps the primary difference in detection requirements for automated music analysis and
performance parameter extraction is that less temporal accuracy may be required for music analysis
tasks when compared with applications in analysis-based sound modification and audio compression;
see the beginning of Section 3.10 and also 3.10.2 for further details.
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1.3 The role of musical structure in transient de-

tection

With sufficiently complex musical signals, the transient detection tasks required for

the modeling applications summarized in the previous section may be difficult to

reliably perform. Even restricting to simpler cases such as nominally monophonic

signals (which may be considered as lead melodies, arising from monophonic scores),

we encounter difficulties such as noise, interference, and effective polyphony due to

background instrumentation, overlapping notes, and reverberation. These difficulties

may lead to false alarms or missed detections for both abrupt-change events and

transient regions, as well as estimation errors in the locations of abrupt-change events

and transient region boundaries.

On the other hand, musical signals are highly structured; both at the signal level,

in terms of the spectrotemporal evolution of note events, and at higher levels, in terms

of melody and rhythm. This structure manifests by constraining what is possible con-

cerning attributes such as pitch content or the presence and location of abrupt-change

events and transient region boundaries. These tendencies generate contextual predic-

tions regarding these attributes; such predictions may be combined with raw signal

information to improve detection and estimation capabilities in ways that are robust

to uncertainties in this contextual knowledge and noise in the signal. For instance,

Sections 3.3.2 and 3.3.3 demonstrate how the consistency of pitch information dur-

ing steady-state regions of note events influences our ability to detect abrupt-change

transients associated with note onsets. The beginning of Section 3.3 as well as Sec-

tion 3.10.1 discusses the role of melodic expectations, while Section 3.10.2 addresses

temporal expectations of note onsets due to the presence of rhythm.

Let us now demonstrate what is meant in a general sense by “the ability of contex-

tual predictions to improve estimation capabilities” using the framework of a linear

Gaussian model. This framework is useful because everything we wish to demon-

strate follows in closed algebraic form. Suppose y1:N is an independent and identi-

cally distributed Gaussian sequence with unknown mean x and known variance σ2
y ,

and consider the estimation of x. An estimate, x̂, is derived as a function of y1:N ; we
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want this estimate to be “best” in the sense that it minimizes the expected squared

error, E|x̂ − x|2.
A well-known lower bound on the expected squared error; i.e., the Cramer-Rao

bound [26] applies in this case:

E|x̂ − x|2 ≥ σ2
y/N (1.4)

It is easily shown (in this example) that the Cramer-Rao bound is achieved by x̂MLE :

x̂MLE = argmax
x

p(y1:N |x, σ2
y)

=
1

N

N
∑

t=1

yt (1.5)

where p(y1:N |x, σ2
y) is the conditional probability density function of the observations

given x and σ2
y .

If conditions are such that σ2
y/N becomes unacceptably large, (1.4) indicates that

nothing further can be done with the current set of observations, since no estimator

exists with less mean square error. Nevertheless, many problems contain additional

sources of information, which do not take the form of extra observations. Suppose a

context is established, where we expect that x lies “close to” some value, say x0. To

be precise, suppose that x is Gaussian with mean x0 and variance σ2
x. Now construct

the following estimator:

x̂MAP = argmax
x

p(x|y1:N , σ2
x, σ

2
y)

=
σ−2x0 + σ−2

y

∑N
t=1 yt

σ−2
x + Nσ−2

y

(1.6)

where p(x|y1:N , σ2
x, σ

2
y) is the posterior density of x given the observations and variance

parameters σ2
x and σ2

y . Some algebra shows that the expected squared error, E|x̂−x|2,
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is

E|x̂MAP − x|2 = (σ−2
x + Nσ−2

y )−1

< (Nσ−2
y )−1

= σ2
y/N (1.7)

The strict inequality in (1.7) holds provided that σ2
x < ∞. That is, we have

constructed an estimator, given an additional source of contextual knowledge as rep-

resented by a prior distribution on x, with expected squared error less than that of

the Cramer-Rao lower bound. Hence, this example demonstrates in concrete, quanti-

tative terms, what is meant by prior contextual knowledge “extending our abilities”

to estimate unknown attributes from data. Analogous properties for the signal-level

structures encountered in musical audio signals (e.g., the consistency of pitch infor-

mation during pitched portions of note events) are derived in Section 3.3.2.

Unfortunately, the vast majority of transient detection approaches in the music

signal processing literature are fundamentally heuristic in nature. It is hence unclear

how we can adapt them to exploit contextual knowledge from musical structure in

ways which are robust to uncertainties in this knowledge. Most commonly, these

methods threshold “novelty functions” [48] (usually filtered derivatives; cf. [9, 7])

based on signal characteristics such as amplitude [102], phase [10], combined phase

and amplitude [33, 34], sinusoidal-model-residual level [74, 35], or automatically-

weighted combinations of individual features [48], to detect abrupt-change transients.

(This novelty-function approach may be adapted for the detection of transient re-

gions; cf. [35].) While these heuristic methods may be easy to implement, they are

often difficult to adapt to changing problem conditions (e.g., signal-to-noise ratio, the

expected rates of change of the signal characteristic during nominally steady-state vs.

transient regions, and so forth.) because they lack explicit models for uncertainty in

these conditions. If a method fails under certain conditions, it is difficult to ascertain

by what extent that method can be improved.

On the other hand, a variety of statistical methods have been applied to the

problem of detecting abrupt changes in spectrotemporal structure. These methods
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provide robustness to uncertainties; as well, they address portability and optimality

concerns. Of note are the online (real-time) methods based on sequential hypothesis

testing; e.g., the divergence algorithm [8], the forward-backward method [5], offline

maximum-likelihood methods [111, 61], and integrated online-offline approaches [115].

Unfortunately, few applications of these techniques exist in musical audio; known

exceptions being [56, 50, 115]. Perhaps the primary reason is that these methods fail

to incorporate contextual predictions from musical structure, so that the limitations

imposed by adverse problem conditions (i.e., poor signal-to-noise ratios, complex

model structures, and limited amounts of data) may be overcome.

To this end, Chapter 3 proposes a Bayesian probabilistic framework for joint

melody extraction and note segmentation of nominally monophonic signals for which

steady-state regions have discernible pitch content6. This framework may be con-

sidered as a transcription system with additional features for transient detection. A

block diagram is shown in Figure 3.13; objectives may be summarized:

• The recording is segmented into discrete note events, possibly punctuated by

null regions. Null regions are gaps between note events containing only silence,

recording noise, or spurious events such as the performer knocking the micro-

phone, or clicks and pops from vinyl transfer. For each event, we identify its

onset time, duration, and MIDI note value.

• Note events are further segmented into transient and steady-state regions, where

applicable. Hence, we identify all abrupt-change transients which associate

with musical onsets as well as all boundaries of transient regions. Transients

resulting from spurious events are suppressed; this becomes a key robustness

consideration when dealing with musical audio.

• The system makes efficient use of prior contextual knowledge from musical struc-

ture, both at the signal level and at the level of syntax (melody and rhythm).

6To conform to real-world cases involving instruments such as piano and marimba, inharmonicity
and more generally, uncertainty in harmonic structure is tolerated; see Chapter 4 for further discus-
sion of the evaluation of pitch hypotheses, in particular Section 4.3.3 which addresses the modeling
of uncertainties in harmonic structure.
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The system proposed in Chapter 3 operates on framewise short time Fourier

transform (STFT) peak features. Use of STFT peak features substantially reduces

computations when compared against sample-accurate methods, without sacrificing

too much information relevant for note identification. Unfortunately, this limits

the segmentation’s temporal resolution to the frame rate7. A frame-accurate seg-

mentation may suffice for automatic transcription, but finer resolutions may be re-

quired for sound transformation and compression applications. Nonetheless, a frame-

accurate segmentation may facilitate subsequent sample-accurate processing. The

frame-accurate method identifies local neighborhoods where abrupt-change events

and transient region boundaries are likely to be found; moreover, it provides infor-

mation regarding pitch content before and after the segment boundary locations.

Section 3.10.4 discusses how the present methods may be extended to produce a

sample-accurate segmentation.

Contextual knowledge from musical structure is incorporated at the signal level

via consistency of pitch and amplitude information during steady-state (pitched) re-

gions of note events. In conjunction we exploit prior knowledge that the signal arises

from a monophonic score, according to a stochastic grammar governing the succession

of transient, pitched, and null signal regions, null regions representing gaps between

note events. Section 3.4 introduces the grammar while Section 3.6 provides its dis-

tributional specification. Since tempo, the amount of legato playing, and the relative

presence of transient information in each note event (among other characteristics)

vary from piece to piece, and this variation is otherwise difficult to model, we spec-

ify the grammar’s transition distribution up to a number of free parameters which

must be estimated from the observations. This estimation process, introduced in

Section 3.7.2, is based on the expectation-maximization (EM) algorithm [28].

Additionally, the system enables higher-level, melodic structures to inform the

segmentation, as introduced in Section 3.6.2. Here we represent melodic expectations

(the predictive distributions for subsequent notes based on past information) using a

first-order Markov note transition model. Unfortunately, the latter fails to capture

7For the examples shown in Section 3.9, the frame rate is 11.6 ms.
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common melodic expectations which arise, e.g., in the context of Western tonal mu-

sic. Forthcoming work by Leistikow [71], based on recent music cognition literature

(cf. Narmour [85], Krumhansl [64], Schellenberg [101], and Larson and McAdams

[69], among others) addresses the Markovian probabilistic modeling of melodic ex-

pectations. The resultant models may be integrated with the present signal-level

framework. Section 3.10.1 summarizes these extensions.

To allow rhythmic structure to inform the segmentation, we may extend the

stochastic grammar representing the succession of transient, pitched, and null re-

gions; Section 3.10.2 discusses a proposed extension using probabilistic phase-locking

structures. Previous approaches to modeling rhythmic onset patterns, from recent

literature on tempo and beat induction from the audio signal (cf. [49, 51, 18, 65])

make suboptimal early decisions about onset locations as they use the detected onsets

as “observations” for the higher-level tempo models. By contrast, the probabilistic

phase-locking method introduced in Section 3.10.2 is fully integrated with signal-level

observations, in the sense that onsets (and other transient boundaries) are identified

jointly with tempo and beat information. Which is to say, not only do the detected

onset (and region boundary) patterns inform the tempo and beat induction; a reverse

path of influence is established between the tempo/beat layer and the onset detection

via temporal expectations. Moreover, the use of probabilistic phase-locking structures

in tempo and beat induction may find application in music cognition research, be-

cause each temporal expectation therein explicitly encodes the anticipation that a

certain event is about to occur. One may investigate affective qualities: for instance,

the buildup of tension from sustained anticipation.

Structurally, the proposed Bayesian framework for joint transient detection and

region segmentation relates to recent work in automatic transcription; cf. Kashino

et al. [60], Raphael [95, 96], Walmsley et al. [119], Godsill and Davy [46], Sheh and

Ellis [107], Hainsworth [51], [20, 18], and Kashino and Godsill [59], among possibly

others. Indeed, the use of Bayesian methods in automatic transcription is presently

an emerging field. Regarding modeling aspects, perhaps the most similar work is

that of Cemgil et al. [20, 18]. The authors therein propose a generative probabilistic
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model for note identification in both monophonic and polyphonic cases8. Their model

contains what can be interpreted as a simplified version of the stochastic grammar

proposed in Section 3.6.2, in that a discrete (in this case binary) variable indicates

if a note is sounding at a given time. However, [20] models the transient information

in an additive sense, as filtered Gaussian noise superposed with the sinusoidal part,

paralleling the “sines plus noise” approach of SMS [106]. This clearly fails to satisfy

the detection requirements for the transient modeling applications in sound modifi-

cation and lossy audio compression as previously discussed. These applications favor

the explicit characterization of abrupt-change transients as well as the restriction of

transient information to contiguous regions within each note event. By contrast, the

stochastic grammar proposed in Section 3.6.2 yields not only a segmentation into

individual note events, but also a sub-segmentation of each event into transient and

steady-state regions.

A further innovation of the present method is the use of cost functions which

adequately represent the effects of various types of transcription errors, rather than

relying on byproducts of standard Bayesian filtering, smoothing, or Viterbi inference

techniques. As an example, it is less problematic for the locations of note onsets to

be shifted by small amounts than it is for notes to be missing or extra notes intro-

duced. By using an appropriate cost function, the solution to the decision problem

yields the transcription. Since one goal of Bayesian inference methods is to produce

sufficient statistics for decision problems, this means that the inference results may

be immediately converted into MIDI data without requiring complex heuristics in

postprocessing. A straightforward conversion process is detailed in Section 3.8. Here

two hidden variables associate with each STFT frame: Mt, which encodes the seg-

mentation (i.e., an indication whether or not the current frame contains an onset, as

8In the framework proposed in Chapter 3, polyphonic extensions are not presently implemented.
The primary reason is that the results would characterize all abrupt-change transients and transient
regions for note events which overlap in time. To use these results in sound modification and
compression appliations, the transient modeling would need to perform also the source separation
and demixing of individual note events which is by no means an easy task. However, the polyphonic
extensions are readily applicable in performance analysis and parameter extraction. The extensions
are conceptually straightforward but may experience computational difficulties using the Bayesian
inference methods discussed in Section 3.7. Section 3.10.3 provides a thorough discussion of these
issues, suggesting approximate inference schema which may greatly reduce computational costs.
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well as the type of region containing this frame), and St, which encodes hidden sig-

nal characteristics representing inherent spectral content (pitch, sinusoidal amplitude,

and transient amplitude information). The result of standard Bayesian smoothing in-

ference is the computation of the smoothed posterior P (Mt, St|Y1:N) for all t ∈ 1 :N ,

where Yt is the vector of STFT peak observations (peak frequencies; amplitudes) as-

sociated with the tth frame. From P (Mt, St|Y1:N), P (Mt|Y1:N) may be extracted by

marginalizing out St. Now, via (3.38), the collection {P (Mt|Y1:N)}N
t=1 is a sufficient

statistic for the decision problem which minimizes the expected number of frames for

which the detected Mt is in error. In practice, most segmentation errors arise from

ambiguities concerning whether the onset boundary occurs in a given frame or the

adjacent frame. Two errors are particularly common: first, the detected onset could

occur in the wrong frame; second, onsets could be detected in both frames. Detecting

an onset in the wrong frame results in a shift of the onset location by the frame

resolution, which has only a slight effect, especially since onset times are quantized to

this resolution. Detecting onsets in both frames, however, introduces an additional

note event. This becomes disastrous for transcription-related purposes. Hence, mini-

mizing the expected number of frames for which the detected Mt is in error is clearly

not the proper cost objective for transcription.

Our solution is to preserve the integrity of the entire segmentation sequence M1:N .

That is, as described in Section 3.3.3, we estimate M̂1:N to minimize the probability

that any M̂t is in error for the entire sequence M1:N , which leads naturally to a

Viterbi-type approach. Unfortunately, straightforward Viterbi inference chooses M̂1:N

and Ŝ1:N jointly to minimize the corresponding error probability in {M1:N , S1:N}, This

is clearly not the same thing as minimizing the probability that M1:N alone is in error

because it avoids the implicit marginalization over S1:N . Moreover, the estimated Ŝ1:N

should be synchronous with M̂1:N in that Ŝ1:N is chosen to satisfy some expected cost

objective under which Y1:N and M∗
1:N are both entered into evidence. Inference and

estimation objectives which do satisfy these requirements are derived in Sections 3.3.3

and 3.5.2; Section 3.7.1 describes an approximate inference algorithm satisfying these

requirements.

Lastly, the present method proves robust to interference from recording noise
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and actual instances of polyphony resulting from background instrumentation, note

overlaps from legato playing, and excessive reverberation. These results are demon-

strated in Section 3.9. We find that this robustness is largely due to the integration

of contextual predictions concerning the consistency of inherent pitch and amplitude

characteristics during pitched regions of note events with STFT peak observations.

For instance, suppose that a frame belonging to a pitched region of a note event is

occluded by interference. The method in this case automatically relies on the sur-

rounding frames within this region to estimate the instantaneous pitch and amplitude

characteristics for this frame, as demonstrated in Section 3.3.3. However, this robust-

ness is also partially due to the way pitch and amplitude information is extracted

from STFT peak observations, via the distributional model P (Yt|St). The quality

and robustness of this evaluation may be assessed by embedding it in a single-frame

maximum-likelihood pitch estimator, as the latter does not use information from

surrounding frames.

Chapter 4 introduces a model for evaluating P (Yt|St) based on a harmonic tem-

plate, demonstrating its use in robust maximum-likelihood pitch detection under

moderately adverse interference conditions. The harmonic template idea is intro-

duced in Section 4.2.2 and may be summarized as follows. Consider a pitch hypoth-

esis9 {f0, A0} generated from one of the possibilities for St: here f0 represents the

pitch value and A0 the corresponding (pitched) reference amplitude. The probabilis-

tic model of Chapter 4 generates a joint distribution over all frequency and amplitude

peak values potentially observed in the STFT. This model accounts for additive Gaus-

sian noise in the time domain plus uncertainties in harmonic structure resulting from

inharmonicity and other timbral variations. It may be considered an extension of the

template model in Goldstein’s probabilistic pitch detector [47], although Goldstein’s

approach ignores amplitude information.

Unfortunately, thanks to interference, we do not know which template peaks cor-

respond to peaks actually observed in the STFT. Without this linkage we cannot

evaluate P (Yt|f0, A0) via the template distributions described above. Our solution

9The necessary extension to non-pitch hypotheses, represented by the reference amplitude AQ
0 ,

is discussed in Section 4.1.
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is to marginalize over the unknown linkage possibility with respect to a prior (see

Section 4.3.2) favoring the survival of template peaks with a low harmonic index.

The exact marginalization, however, proves computationally intractable because the

number of linkage possibilities grows exponentially with Np where Np is the minimum

of the number of template peaks and the number of observed STFT peaks. Never-

theless, we recognize that in practice, virtually all but a few possibilities contribute

negligibly to the likelihood evaluation (see Section 4.4 for examples and further dis-

cussion). This motivates a fast Markov-chain Monte Carlo (MCMC) approximate

evaluation, developed in Section 4.5, which obtains virtually identical results for a

noisy (single-frame) piano example when compared against the exact evaluation, at

a small fraction of the computational cost. In either case, MCMC evaluation vs. ex-

act evaluation, maximum-likelihood pitch estimation yields acceptable results under

these conditions (as shown in Sections 4.4 and 4.5). On the other hand, the MCMC

evaluation may still be too slow for some applications. Alternatively, we derive a less

exact, but (in most circumstances) faster, determinstic approximation, as discussed in

Section 4.6. The computational cost of the deterministic approximation is quadratic

in Np, as opposed to the exponential cost of the exact method. This deterministic ap-

proximation is used to evaluate P (Yt|St) for the joint melody extraction and transient

detection results shown in Section 3.9.

1.4 Conclusion

In conclusion, the main contribution of this dissertation appears to be the introduction

of prior information from musical structure towards the transient detection problems

outlined above, which arise repeatedly in both established and newly introduced tran-

sient modeling contexts. Structural information is introduced both at the signal level,

in terms of the “standard note evolution” grammar, and at the level of syntax, in terms

of melodic structure. As the results of Section 3.9 demonstrate, the resultant system

for melody tracking, note onset identification and note sub-segmentation (revealing

both transient and steady-state regions within a particular note event) for nominally

monophonic musical audio appears robust to real-world interference phenomena and



CHAPTER 1. INTRODUCTION 20

actual instances of polyphony; e.g., reverberation, overlapping notes, and background

instrumentation. Moreover, because the relevant structural information is explicitly

represented using conditional probability distributions, it becomes straightforward to

adapt this system across varying musical contexts. Secondary contributions include

the robust evaluation of pitch hypotheses using a highly reduced feature set, that

of STFT peak data. This evaluation becomes useful in scenarios (e.g., maximum

likelihood pitch estimation) where prior structural information may not be readily

available, and it is easily extended to the polyphonic case as described in [72]. Ex-

tensions and further applications are discussed in Sections 3.10.1 (incorporation of

more sophisticated models of musical expectation), 3.10.2 (incorporation of temporal

expectations from rhythm via probabilistic phase-locking networks), 3.10.3 (extension

to the polyphonic case), and 3.10.4 (extension to sample-accurate segmentation and

applications in interactive audio editing).



Chapter 2

Modeling and detection

requirements

2.1 Introduction

Sinusoidal modeling is readily applicable to the analysis, transformation and resyn-

thesis of recorded sound. The main reason is that the sinusoidal model offers an

explicitly parametric representation of a sound’s time-frequency evolution. Since the

time-frequency paradigm, at least to first approximation, reflects our mental image of

sound, one may readily apply musical intuition towards specific strategies for sound

transformation.

When the realities of the signal model work contrary to musical intuition, the

result after transformation is not as expected. Here we say that artifacts occur. A

typical sinusoidal model is usually given as follows:

yt =

p
∑

k=1

Ak(t) cos

(

φk(t) +

t−1
∑

s=0

ωk(s)

)

(2.1)

where Ak(t) is the amplitude of the kth sinusoid, φk(t) is the phase, and ωk(t) is the

frequency at time t, where t ∈ 1:N .

Figure 2.1 depicts the usual “analysis-synthesis” framework for transforming sounds

21
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via the model (2.1). In the figure, the labeling of canonical blocks analysis, transfor-

ANALYSIS TRANS-
FORMATION RESYNTHESIS

PARAMETRIC SINUSOIDAL MODEL

y1:N z1:NY1:N Z1:N
Input Resynthesis

Figure 2.1: Analysis, transformation, and resynthesis

mation, and resynthesis, is inspired by Serra [105]; also Pampin [86]. Analysis means

the estimation of the amplitude, phase, and frequency trajectories from the input

y1:N ; in the figure, we denote these trajectories collectively as Y1:N . Transformation

modifies these trajectories, producing Z1:N . The output, z1:N , is then resynthesized

from Z1:N , again using (2.1). We also refer to z1:N as the resynthesis.

The canonical assumption regarding the model (2.1) is that it is steady-state,

meaning that the amplitude, phase, and frequency trajectories do not vary rapidly

with time. In this way, a short time Fourier transform may be used as a front

end for the analysis, as originally proposed by Gabor [44] and adapted for digital

implementation by Portnoff [90]1.

However, musical signals contain many instances or time intervals, called tran-

sients, which violate the steady-state assumption. Transients are hence a common

source of resynthesis artifacts. We recall the types of transients defined in Section 1.1:

• Abrupt changes in amplitudes, phases, or frequencies: in recordings of acoustic

material, these changes are often due to the energy input on the part of the

1Among others, see also [31]. For a thorough overview of contemporary applications of the short
time Fourier transform in sinusoidal modeling and music signal processing, see [108].
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performer; hence, abrupt change transients often associate with onsets of note

events or other phenomena that may be notated in the score

• Rapid decays in amplitudes, usually associated with attack regions following

onsets of percussive sources

• Fast transitions in frequencies and amplitudes: musical examples include ex-

pressive pitch variations (portamento, vibrato, etc.) and timbral transitions

(such as a rapid shift in the vocal formant structure)

• Noise and chaotic regimes, primarily responsible for textural effects: environ-

mental sounds, such as rain or crackling fire, exhibit persistent textures which

are important to preserve in resynthesis; textures can also arise from nonlinear

feedback mechanisms in acoustic sources, e.g., bowed string and wind instru-

ments [103, 99]; in most circumstances, the latter are likely to be found in short

regions near onsets, as such regimes are often activated when the performer’s

energy input becomes large

What is considered “transient” depends greatly on the underlying signal model:

numerous examples are presented in Section 1.1.

2.2 Transient processing in the phase vocoder

2.2.1 Time and pitch scaling

Some of the most widespread applications of sinusoidal modeling (in the sense of

analysis-synthesis transformations) consist of time and pitch scaling and variants. It

is well known that changing the playback speed of a sound may be accomplished in

digital systems by a sampling-rate alteration; unfortunately, this operation modifies

both pitch and duration. Often we desire independent control, over these attributes.

In time scaling, the goal is to modify the sound’s duration while preserving its pitch.

This means that the amplitude and frequency trajectories for each sinusoidal compo-

nent (the parameters Ak(t) and ωk(t) in (2.1)) are interpolated over the resynthesis
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time base, and φk(t) is adjusted to preserve instantaneous frequency relationships

between analysis and resynthesis. In pitch scaling, the goal is to modify the fre-

quencies of each sinusoidal component; specifically, in transposition, each frequency

is multiplied by a fixed amount. The ideal effect of each operation (playback speed

alteration, time scaling, and transposition pitch scaling) is displayed in Figure 2.2.

Since transposition is usually implemented by time scaling followed by playback speed

alteration [67], we consider only time scaling.

0 200 400 600 800 1000
−1

−0.5

0

0.5

1
ORIGINAL SIGNAL

0 200 400 600 800 1000
−1

−0.5

0

0.5

1
PLAYBACK SPEED ALTERATION

0 200 400 600 800 1000
−1

−0.5

0

0.5

1
TIME SCALING

0 200 400 600 800 1000
−1

−0.5

0

0.5

1
PITCH SCALING

Figure 2.2: Ideal resyntheses for playback speed alteration, time scaling, and pitch
scaling operations

2.2.2 Phase vocoder time scaling

A common method for high quality time scaling makes use of a heterodyned filterbank

called the phase vocoder, originally developed for speech coding by Flanagan and

Golden [41], and adapted for digital implementation by Portnoff [90]. A schematic is

displayed in Figure 2.3. In the figure, j
∆
=

√
−1.

Ideally, each component sinusoid of yt is isolated in exactly one analysis channel.
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yt

L
...

...

(N-1)
BPF

ωc   = 2π(N-1)/N

(k)ωc   = 2πk/N

(0)ωc   = 0

BPF

BPF

exp(-jtωc    )(N-1)

exp(-jtωc )(k)

exp(-jtωc )(0)

L

L

Y(N-1)
lL

Y(k)
lL

Y(0)
lL

Figure 2.3: Phase vocoder analysis section

This enables the time scaling process to proceed on a sinusoid-by-sinusoid basis.

Now, suppose the bandpass filters are ideal. This means, letting H(k)(ω) denote the

response of the bandpass filter for the kth channel:

H(k)(ω) =

{

1, |ω − ω
(k)
c | < πk

N

0, otherwise
(2.2)

where ω
(k)
c , the channel center frequency, equals 2πk/N . Then, each channel’s output

may be reconstructed after heterodyning by e−jtω
(k)
c and downsampling by N , by

means of ideal sinc interpolation and subsequent modulation by ejtω
(k)
c . Since the

bandpass filters are generally non-ideal, their bandwidth will exceed 2πk/N and hence

a more conservative downsampling by factor L < N is advised.

To achieve time expansion by factor α, we reconstruct each Y
(k)
lL at instants t = lL′,

where L′ = αL, to produce the modified channel output Z
(k)
lL′ . If the component

is perfectly isolated by H(k)(ω) and the latter produces no phase distortion, this

component may be recovered at the frame boundaries t = lL, as Ỹ
(k)
lL :

Ỹ
(k)
lL

∆
= ejlLω

(k)
c Y

(k)
lL (2.3)
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according to the preceding discussion. Hence, if we define:

Z̃
(k)
lL′

∆
= ejlL′ω

(k)
c Z

(k)
lL (2.4)

then, absent modification, the resynthesis may be taken at t = lL′ to be Z̃
(k)
lL′ . Between

these times, both the amplitude and phase of Z̃
(k)
lL′ may be interpolated to obtain Z̃

(k)
t .

This is of course assuming the phase of Z̃
(k)
lL′ is appropriately unwrapped, which, as

we will see, is facilitated by the heterodyning process.

The resynthesis procedure is diagrammed in Figure 2.4, where the magnitude/phase

interpolation, detailed in Figure 2.5, proceeds according to the approach of McAulay

and Quatieri [81], which uses linear interpolation for the log amplitude and cubic

interpolation for the unwrapped phase2.

Y(k)
lL

TRANS-
FORMATION

Z(k)
lL'

MAGNITUDE
AND PHASE

INTERPOLATION

exp(jlL'ωc )
(k)

Z(k)
lL'

Z(k)
tL'

Figure 2.4: Resynthesis from single channel of phase vocoder analysis

It remains to determine the mapping Y
(k)
lL → Z

(k)
lL′ , such that the resyntheses, Z̃

(k)
t

and Ỹ
(k)
t , maintain desired relationships at frame boundaries. These relationships are

as follows [31, 68]:

• Preservation of magnitudes:

|Z̃(k)
lL′ | = |Ỹ (k)

lL | ∀k ∈ 0:M−1, l ∈ 1:Nl (2.5)

2Fitz et al. summarize the benefits of cubic phase interpolation for coding purposes (unmodified
reconstruction) as follows: “In unmodified reconstruction, cubic interpolation prevents the propa-
gation of phase errors introduced by unreliable parameter estimates, maintaning phase accuracy in
transients, where the temporal envelope is important” [39].
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MAG

PHASE

log(⋅) LIN.
INTERP.

lL

exp(⋅)
Z(k)lL'

Z(k)

L'

CUBIC
INTERP.

jlLZ(k)
Z(k)t

Figure 2.5: Magnitude and phase interpolation for phase vocoder resynthesis

where Nl is the number of frames.

• Preservation of frequencies:

ω̃
(k,Z)
lL′ = ω̃

(k,Y )
lL′ ∀k ∈ 0:M−1, l ∈ 1:Nl (2.6)

where each instantaneous frequency is defined as the average per-sample change

in the unwrapped phase:

ω̃
(k,Y )
lL

∆
=

1

L

(

∠Ỹ
(k)
(l+1)L − ∠Ỹ

(k)
lL

)

ω̃
(k,Z)
lL′

∆
=

1

L′

(

∠Z̃
(k)
(l+1)L′ − ∠Z̃

(k)
lL′

)

(2.7)

• Maintenance of phase continuity at frame boundaries

Figure 2.6 displays the time scaling of a sinusoid with linearly increasing frequency

and exponentially increasing amplitude. In the figure we observe the matching of

sinusoidal magnitudes and instantaneous frequencies across frame boundaries, as well

as the continuity of the phase in both analysis and resynthesis.

The standard phase propagation approach [83, 89, 31] maps Y
(k)
lL → Z

(k)
lL (see Fig-

ure 2.4) in order to preserve the desired relations between Ỹ
(k)
lL and Z̃

(k)
lL . Magnitudes

and phases are treated separately. By the definitions (2.3 - 2.4) and the magnitude
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Figure 2.6: Time scaling of single sinusoid with increasing frequency and amplitude

preservation criterion (2.5), it becomes equivalent to specify:

|Z(k)
lL′ | = |Y (k)

lL | ∀k ∈ 0:N−1, l ∈ 1:Nl (2.8)

From (2.6), we see that instantaneous frequency preservation and phase continuity

are satisfied if we maintain:

∠Z̃
(k)
(l+1)L′ = ∠Z̃

(k)
lL′ + L′ω̂lL ∀k ∈ 0: M−1, l ∈ 1:Nl (2.9)

where ω̂lL, the common instantaneous frequency, is derived:

ω̂lL
∆
=

∠Ỹ
(k)
(l+1)L − ∠Ỹ

(k)
lL

L
(2.10)
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Now, from (2.3 - 2.4):

∠Ỹk,lL = ∠Yk,lL +
2πklL

M

∠Z̃k,lL′ = ∠Zk,lL′ +
2πklL′

M
(2.11)

Substituting (2.10) and α = L′/L into (2.9), then applying (2.11) obtains:

∠Z
(k)
(l+1)L′ = ∠Z

(k)
lL′ + α

(

∠Y
(k)
(l+1)L − ∠Y

(k)
lL

)

(2.12)

Since analysis phases are sampled only at the frame boundaries, the role of hetero-

dyning in the phase vocoder analysis becomes clear: the heterodyned phase difference

∠Y
(k)
(l+1)L−∠Y

(k)
lL used in the transformation (2.12) is likely to be small compared with

the actual phase difference ∠Ỹ
(k)
(l+1)L−∠Ỹ

(k)
lL ; the actual difference is exactly 2πklL/M

greater than the heterodyned difference. As such, heterodyning facilitiates the req-

uisite phase unwrapping task implicit in the instantaneous frequency determination

(2.10).

2.2.3 Phase locking at the transient boundary

Unfortunately, the requirements for sound reproduction at the transient boundary [93,

39] differ somewhat with respect to the generic requirements proposed in the previous

section; i.e., instantaneous frequency/magnitude preservation and maintenance of

phase continuity at frame boundaries. For instance, suppose that frame l∗ contains

an abrupt-change transient, such as the onset of a new note event. Quatieri et al.

suggest that the following qualities of the transient’s instantaneous temporal envelope

be maintained in resynthesis:

• Preservation of magnitudes

|Z̃(k)
lL′ | = |Ỹ (k)

lL | ∀k ∈ 0:M−1, l ∈ 1:Nl (2.13)

• Preservation of phase relationships For all j, k ∈ 0 : M −1, wrapped phase
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differences must be identical:

mod
(

∠Z̃
(k)
l∗L′−∠Z̃

(j)
l∗L′, [π, π)

)

= mod
(

∠Ỹ
(k)
l∗L −∠Ỹ

(j)
l∗L, [π, π)

)

(2.14)

• Appropriate scaling of magnitude time differences If one time-scales a percussive

event by a factor of two, we expect that the event will decay twice as slowly,

even initially. Hence, under scaling factor α, we desire that the per-sample time

difference of the resynthesis amplitude envelope be scaled by 1/α, immediately

after the transient boundary. In other words, we desire:

1

L′

(

|Z̃(k)
(l∗+1)L′ |−|Z̃(k)

l∗L′ |
)

=
1

αL

(

|Ỹ (k)
(l∗+1)L|−|Ỹ (k)

l∗L |
)

∀k ∈ 0:M−1 (2.15)

The importance of preserving phase relationships as opposed to instantaneous fre-

quencies is demonstrated by the following example. Consider a bandlimited impulse

train at some sub-audio fundamental frequency, say 4 Hz. As this fundamental is

sufficiently low, the result is heard as a periodic repetition of individual “ticks”, each

comprising a distinct transient event. The impulse train may be synthesized using a

bank of sinusoidal oscillators for which each frequency is an integer multiple of the

fundamental, and all amplitudes and phases are the same, i.e.,

yt = A0

p(ω)
∑

k=1

cos(kωt + φ0) (2.16)

The number of sinusoids, p(ω), is chosen such that the frequency, kω, is always less

than the Nyquist limit π rad/sample, i.e.,

p(ω) = dπ/ωe − 1 (2.17)

With φ0 = 0, ω = 5.699 · 10−4 rad/sample establishing a 4.0 Hz fundamental

at a sampling rate of 44.1 kHz , and A0 establishing a peak amplitude of 1.0, the

first 441 samples of the bandlimited impulse train are plotted in the top section

of Figure 2.7. The resyntheses displayed in the bottom sections of the figure have
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Figure 2.7: Effect of phase relationships on transient reproduction

identical amplitudes and frequencies for all sinusoidal components, but different phase

relationships:

yt = A0

p(ω)
∑

k=1

cos(kωt + φk) (2.18)

In the middle section of the figure, φk is random, following a uniform distribution over

[−π, π). In the bottom section, φk = −1.0 · 10−5k2, producing a chirp with rapidly

increasing frequency. This example demonstrates the role of phase relationships to-

wards the perceived character of the transient reproduction.

To analyze the phase propagation algorithm with respect to the instantaneous

temporal envelope criteria outlined above, we recall that the magnitude preservation

is immediate from (2.8). As for the scaling of magnitude time differences, if we
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multiply both sides of (2.15) by L′ and substitute the definition α = L′/L, we obtain:

|Z̃(k)
(l∗+1)L′ | − |Z̃(k)

l∗L′ | = |Ỹ (k)
(l∗+1)L| − |Ỹ (k)

l∗L | ∀k ∈ 0:M−1 (2.19)

But (2.19) is immediate from the magnitude preservation criterion (2.13).

Unfortunately, the phase propagation generally fails to preserve phase relation-

ships in the sense of (2.14). Even if (2.14) were true for a specific l∗, there is no

guarantee, unless α = 1, that this criterion will hold for subsequent frames. For

instance, suppose the first transient boundary occurs when t = 0 (frame l = 0),

and analysis phases are identically zero at this point. For this frame we may choose

the resynthesis phases to match the analysis phases, hence preserving phase relation-

ships. Now, suppose that the kth sinusoid has constant frequency ω(k). Suppose then

at t = l∗L, a second transient occurs, for which amplitudes and frequencies experi-

ence a sudden discontinuity but the phases remain continuous. In this example, the

analysis phases are as follows:

∠Ỹ
(k)
l∗L = ω(k)l∗L ∀k = 0:M−1 (2.20)

Due to the phase propagation (2.9), the resynthesis phases obtain:

∠Z̃
(k)
l∗L = ω(k)l∗L′ ∀k = 0:M−1 (2.21)

From (2.20) and (2.21), it follows that analysis phase relationships are not preserved

in resynthesis. For j 6= k, the difference between analysis phases is (ω(k) − ω(j))l∗L;

the corresponding difference between resynthesis phases is (ω(k) − ω(j))l∗L′. Unless

L′ = L, meaning that there is no modification, the phase differences will fail to match

for arbitrary ω(j), ω(k), and l∗.
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To remedy this, Quatieri et al. [93] propose locking resynthesis to analysis phases

at the transient boundary3; i.e.,

∠Z
(k)
l∗L′ = ∠Y

(k)
l∗L′ (2.22)

While resetting the resynthesis phases modifies instantaneous frequencies for t ∈ (l∗−
1)L′ : l∗L′, the latter becomes less problematic than modifying phase relationships in

the immediate vicinity of the transient boundary. For instance, consider the impulse

signal plotted in the top section of Figure 2.7. This signal is synthesized via (2.16)

using a fundamental frequency of 4 Hz. If instead the fundamental is 6 Hz and all

other parameters are unchanged4, the transient characteristics remain qualitatively

similar despite the 50% increase in all component frequencies. A comparison is shown

in Figure 2.8. Finally, it is important to emphasize that the phase locking at the

transient boundary, while an effective solution for reducing artifacts due to abrupt-

change transients, requires the detection of the frame l∗ in which the transient occurs.

2.2.4 Phase locking throughout transient regions

A problem with phase locking only at transient boundaries is that the lock is not

maintained during transient regions of nonzero duration unless α = 1. This is clear

from the discussion in the previous section surrounding (2.20 - 2.21). Maintaining

phase relationships throughout transient regions becomes especially important in the

resynthesis of textural sounds. Particularly problematic are textures composed of

a large collection of superposed, randomly spaced impulsive events, such as rain,

crackling fire, and so forth. Figure 2.7 displays the effects of various phase distortions

on a single impulsive event.

To this end, a number of authors, for instance Levine [74, 75], and later Duxbury

3The actual scheme is more general: it involves detecting specific groups of sinusoids which
undergo abrupt changes in amplitude, phase, or frequency characteristics. Phase locking is then
applied individually to each group. In this way, the method can deal with more complex sounds
where transient phenomena may overlap significantly in time, but become more sparse throughout
time when restricted to particular subbands.

4The number of sinusoids, p(ω0), is also adjusted via (2.17) to avoid aliasing.
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Figure 2.8: Effect of frequency relationships on transient reproduction. The top figure
uses a fundamental frequency of 4 Hz, the bottom uses 6 Hz. Despite the 50 % increase
in all oscillator frequencies, little qualitative difference can be seen or heard

et al. [35] propose the locking of resynthesis to analysis phases at the beginning of

the transient region, as well as setting α = 1 to maintain phase locking throughout

the entire transient region. The scaling factor may be adjusted during steady-state

regions to achieve the desired resynthesis tempo which equals α times the analysis

tempo. For instance, if the input signal’s duration is 5000 samples and the desired

stretch factor equals 2.0, and the initial 1000 samples are designated as a transient

region, one specifies α = 1 for the first 1000 samples and α = 2.25 for the remainder.

One problem with this method of locking resynthesis phases to analysis phases

during transient regions is that the magnitude time differences are no longer scaled by

the inverse of the scaling factor throughout these regions. Instead, the resynthesis’s

initial decay envelope becomes identical to that for the analysis. If transient regions

are sufficiently long, the result will begin to sound like the same instrument, but
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played at a different tempo. Duxbury et al. claim this as desirable: “...despite being

an ill-posed problem, it is generally agreed that when time scaling audio, the aim is for

the resulting signal to sound as if the piece is being played at a different tempo” [35].

However, this approach severely restricts the user’s ability to effect timbral changes.

Furthermore, it may generate artifacts in pitch scaling if the latter is implemented

by time scaling followed by sampling rate conversion. In pitch scaling, we expect the

initial decay rates of the resynthesis to match those of the original signal. If, instead,

these rates match after time scaling, they will no longer match after the sampling

rate conversion.

To this end, we seek a more flexible representation of transient regions within the

context of sinusoidal modeling in which the temporal support of the raw information

necessary to reconstruct these regions is as short as possible. One such representation,

introduced by the author and Leistikow [116], effectively hybridizes source-filter and

sinusoidal modeling to achieve this task. This approach relates to aspects of the

nonlinear parameter estimation by Wold [122], the Prony modeling by Laroche [66],

earlier transient modeling work by the author and Gouyon [115], spectral estimation

work by Qi et al. [92], as well as the signal-level models used in the transcription

methods of Cemgil et al. appearing around the same time [20, 19]. Section 2.3 presents

a brief overview of this hybrid sinusoidal/source-filter approach to time scaling, as

well as detailing new kinds of delay-based effects based on splitting the transient

information among different sinusoidal components.

In conclusion, essentially two types of detection are required to reduce time/pitch

scaling artifacts for sounds with significant transient content: first, the detection of

abrupt-change phenomena; second, the identification of transient regions of nonzero

width (meaning the determination of beginning and end points for these regions).

Furthermore, as the following section demonstrates, applications are by no means

limited to time and pitch scaling.



CHAPTER 2. MODELING AND DETECTION REQUIREMENTS 36

2.3 Improved transient region modeling via hybrid

sinusoidal/source-filter model

One may recall the sinusoidal modeling approaches of Levine and Smith [75], com-

monly called “transients + sines + noise”, for which the signal is segregated in time

into regions containing either transient information or “sines plus noise”. Figure 2.9

displays a schematic for this representation.

SINES + NOISE SINES + NOISE

TRANSIENT TRANSIENT

Time (frames)

Figure 2.9: “Transients + sines + noise” representation, after [75]

By contrast, [116] proposes a convolutive representation, which may be summa-

rized as “transients ? sines + noise”. Here each sinusoid consists of an exponentially

damped, quadrature oscillator which is driven by the information necessary to re-

construct the transient region. A block diagram of this approach is displayed in

Figure 2.10.

TRANSIENTS SINES

NOISE

(source)
(filter)

OUTPUT

Figure 2.10: “Transients ? sines + noise”, or convolutive representation

The “transients ? sines + noise” representation facilitates the modeling of attack

transients, which consist of an abrupt-change event signifying the onset of a new note,
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followed by a transient region where the sinusoidal amplitudes undergo a rapid, quasi-

exponential decay. Attack transients may also exhibit textural characteristics which

are difficult to represent by a direct sum of exponentially damped sinusoids. As later

demonstrated, the source-filter representation facilitates time-scaling modifications in

such a way that preserves textural characteristics as well as guarantees appropriate

scaling of the decay rate by the inverse of the time expansion factor, following (2.15),

because the effective temporal support of the “source” is greatly reduced with respect

to that of the original signal.

2.3.1 The driven oscillator bank

The filter (sines) component in Figure 2.10 consists of a driven oscillator bank, dis-

played in Figure 2.11. In the figure, s
(I)
t (k) denotes the in-phase component and

ro,t
ytOSCIL

St(k) s(Q)t

s(I)tr(I)i,t (k)
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(1)

(1)

IN
PU

T 
RE

SI
DU

AL
S

OSCILLATOR STATES 

OUTPUT
RESIDUAL

...

...

Figure 2.11: Driven oscillator bank

s
(Q)
t (k) the quadrature component of the kth oscillator at time t. The amplitude and
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phase of this oscillator may be retrieved:

At(k) =

√

[

s
(I)
t (k)

]2

+
[

s
(Q)
t (k)

]2

φt(k) = tan−1

[

s
(Q)
t (k)

s
(I)
t (k)

]

(2.23)

The in-phase and quadrature input residuals associated with the kth oscillator are

r
(I)
i,t (k) and r

(Q)
i,t (k), which drive the respective oscillator states, s

(I)
t (k) and s

(Q)
t (k).

Starting from zero initial state for t ≤ 0, the residuals must supply the excitation for

subsequent oscillation. However, suppose r
(I)
t (k) and r

(Q)
t (k) are identically zero for all

t ≥ T , where T is subsequent to the excitation, then the kth oscillator’s contribution

becomes for t ≥ T , a pure, exponentially decaying sinusoid. Residual contributions

which persist after the onset time contribute to non-sinusoidal qualities, such as the

perceived “texture” of the attack.

For the kth oscillator, the relation between the current oscillator state, the previous

oscillator state, and the residual at time t may be represented by the following (linear)

recursion:

[

s
(I)
t (k)

s
(Q)
t (k)

]

= eγt(k)

[

cos ωt(k) − sin ωt(k)

sin ωt(k) cos ωt(k)

][

s
(I)
t−1(k)

s
(Q)
t−1(k)

]

+

[

r
(I)
t (k)

r
(Q)
t (k)

]

(2.24)

The output, yt, sums over the in-phase oscillator states, adding a scalar output resid-

ual, ro,t:

yt =

p
∑

k=1

s
(I)
t (k) + ro,t (2.25)

This output residual accounts for additive noise due to the recording process. It be-

comes important to distinguish additive noise from the possibly noise-like transient

information responsible for non-sinusoidal qualities of the attack, the latter encoded

by input residuals. In this way, the driven oscillator bank effectively generalizes the
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canonical “sines + noise” model introduced by Serra and Smith, also known as “spec-

tral modeling synthesis” (SMS) [106], although it specializes this approach as well,

not allowing for arbitrary envelope shapes. In SMS, a single residual is obtained

by subtracting the sinusoidal resynthesis (absent modification) from the original sig-

nal. If all input residuals are identically zero except for the initial excitation, the

SMS residual equals ro,t; the present method augments this by separating residual

information inherent to the acoustic source (ri,t) from information inherent to the

recording process (ro,t). Furthermore, the association of input residuals with individ-

ual oscillators generates novel resynthesis possibilities which go beyond the canonical

time/pitch scaling paradigm; e.g., oscillator-variable delay effects. Further details

concerning these effects are discussed in Section 2.3.4.

The oscillator bank also may be viewed as a collection of second-order resonant

filters of bandpass/formant type, excited by input residuals: hence the “source-filter”

interpretation of Figure 2.10. This interpretation results from analyzing transfer

relations between r
(I)
i,t (k) and s

(I)
t (k), and between r

(Q)
i,t (k) and s

(I)
t (k), since only

s
(I)
t (k) is observed in the output. Assuming ωt(k) and γt(k), are constant with respect

to t, taking z-transforms of both sides of (2.24) obtains as follows.

S(I)(z; k) = H(I→I)(z; k)R(I)(z; k) + H(Q→I)(z; k)R(Q)(z; k) (2.26)

where R(I)(z; k), R(Q)(z; k), and S(I)(z; k), assuming appropriate convergence of the

ensuing summations5, are defined as follows.

S(I)(z; k)
∆
=

∞
∑

t=−∞

s
(I)
t (k)z−t

R(I)(z; k)
∆
=

∞
∑

t=−∞

r
(I)
t (k)z−t

R(Q)(z; k)
∆
=

∞
∑

t=−∞

r
(Q)
t (k)z−t (2.27)

5In other words, we consider r
(I)
t (k), r

(Q)
t (k), and s

(I)
t (k) bounded and causal and z ∈ C; |z| ≤ 1.

The boundedness of s
(I)
t (k) is guaranteed when γ(k), the assumed constant value of γt(k), is less

than 0.
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and

H(I→I)(z; k) =
1 − eγ(k) cos ω(k)z−1

1 − 2eγ(k) cos ω(k)z−1e2γ(k)z−2

H(Q→I)(z; k) =
eγ(k) sin ω(k)z−1

1 − 2eγ(k) cos ω(k)z−1 + e2γ(k)z−2
(2.28)

In (2.28), ω(k) is the (assumed) constant value of ωt(k) and γ(k) < 0 is the

constant value of γt(k). Both transfer functions share the same denominator; common

poles are z = eγ(k)±jω(k).

Figure 2.12 plots magnitude responses |H(I→I)(ω; k)| and |H(Q→I)(ω; k)| as a func-

tion of radian frequency ω, for γ(k) = −0.5 and ω(k) ∈ {π/10, π/5, π/2}. The
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Figure 2.12: Magnitude responses of oscillator components viewed as filters

in-phase response, |H(I→I)(ω; k)|, obtains a pure bandpass characteristic while the
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quadrature response, |H(Q→I)(ω; k)|, obtains more of a formant/lowpass characteris-

tic at low values of ω(k), changing to a bandpass characteristic at high values.

2.3.2 State space representation, Kalman filtering and resid-

ual extraction

If we concatenate oscillator and residual states into the following vectors

st
∆
=

[

s
(I)
t (1) s

(Q)
t (1) s

(I)
t (2) s

(Q)
t (2) . . . s

(I)
t (p) s

(Q)
t (p)

]T

ri,t
∆
=

[

r
(I)
i,t (1) r

(Q)
i,t (1) r

(I)
i,t (2) r

(Q)
i,t (2) . . . r

(I)
i,t (p) r

(Q)
i,t (p)

]T

(2.29)

the model (2.24 - 2.25) may be expressed in state-space form:

st = Ftst−1 + ri,t

yt = Hst + ro,t (2.30)

where Ft ∈ R
2p×2p is block diagonal with 2 × 2 blocks Ft(k):

Ft(k)
∆
= eγt(k)

[

cos ωt(k) − sin ωt(k)

sin ωt(k) cos ωt(k)

]

(2.31)

and H ∈ R
1×2p sums over the in-phase components of st:

H
∆
=

[

1 0 1 0 . . . 1 0
]

(2.32)

If we model input and output residuals as independent Gaussian vectors, i.e.,

ri,t ∼ N (02p×1, qI2p)

ro,t ∼ N (0, r) (2.33)

where, additionally, ro,t and ri,t are independent, one may estimate the oscillator state
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recursively for all t ∈ 1:N using a Kalman filter [57]. This estimate is

ŝt
∆
= E(st|y1:t) (2.34)

From [57], the Kalman filtering recursions are:

• Time Update

ŝt+1|1:t = Ft+1ŝt|1:t

Pt+1|1:t = Ft+1Pt|1:tF
T
t+1 + qI (2.35)

• Measurement Update

Kf,t+1 = Pt+1|1:tH
T (HPt+1|1:tH

T + r)−1

ŝt+1|1:t+1 = ŝt+1|1:t + Kf,t+1

(

yt+1 − Hŝt+1|1:t

)

Pt+1|1:t+1 = (I − Kf,t+1H)Pt+1|1:t (2.36)

where, for 1 < r, t < N ,

ŝt|1:r
∆
= E(st|y1:r)

Pt|1:r
∆
= Cov(st|y1:r) (2.37)

These recursions, which run for t ∈ 1 : N , are initialized:

ŝ0 = 02p×1

P0 = ε−1I2p (2.38)

and the limit is taken as ε → 0. The estimate ŝt, as defined in (2.34), is taken to be

ŝt|1:t; the latter is commonly referred to as the filtered estimate. Combined with the

original state-space model (2.30), the filtered estimates are used to extract residual
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quantities, as follows.

r̂i,t = ŝt − Ftŝt−1

r̂o,t = yt − Hr̂i,t (2.39)

Resynthesis proceeds by substituting r̂i,t and r̂o,t in place of ri,t and ro,t in the

original state-space model. Absent modification to the state dynamics parameters

γ(k)t, ω(k)t, or the Kalman parameters q, r, the resynthesis will be perfect recon-

struction, producing exactly yt. In general one may modify the residuals r̂i,t and r̂o,t,

and the state dynamics parameters to produce a variety of transformations; e.g., time

and pitch scaling, and other novel effects. Section 2.3.4 explores these possibilities in

greater detail.

Since the bulk of the residual energy accounts for the excitation, the input resid-

uals’ effective temporal support becomes significantly reduced with respect to the

original attack transient. Figure 2.13 compares the temporal supports of a ′D2′ piano

tone with those of the in-phase residuals corresponding to the first and 32nd partials,

using a 32-oscillator harmonic-comb model fit via the methods of [117]. Indeed, each

residual appears quite similar despite the difference in oscillator frequencies. The

excitation part where the energy of each residual is most significant occupies at most

a few hundred samples. As indicated via informal listening tests, one may truncate

the remainder without affecting the recognizable character of the original piano tone.

2.3.3 Tuning of the residual covariance parameters

If frequency and decay trajectories are modified, the residual covariance parameters

q and r, defined via (2.33), exert a considerable influence on the resynthesis. How-

ever, we show that the parameterization {q, r} is redundant; assuming 0 < q, r < ∞,

only the ratio ρ
∆
= r/q affects the resynthesis. Furthermore, the input residual be-

comes identically zero when ρ → ∞, and the output residual vanishes when ρ → 0.

Implications for intermediate values of ρ are as follows.

• A large ρ favors a small input residual and a large output residual. Here the
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Original piano waveform

Residual for oscillator #1

Residual for oscillator #32

Figure 2.13: Residuals vs. original attack transient for ′D2′ piano tone

state estimation becomes more robust to additive noise, but it loses the ability

to track actual variations in state dynamics if γt(k) and ωt(k) are assumed

constant for any length of time.

• A small ρ favors a large input residual and a small output residual, yielding

increased ability to track variations in state dynamics at the expense of greater

sensitivity to additive noise. Furthermore, an excessively small ρ may lead to

envelope distortion artifacts in resynthesis. If input residuals are large, the

individual state resyntheses (each 2k − 1 component of ŝt for k ∈ 1 : p) may

also be large, even with respect to yt. Since output residuals are small, how-

ever, the sum of these resyntheses (before the output residual is added) must

be close to yt. This suggests that the individual state resyntheses must undergo

phase cancellation in the summation producing yt − ro,t. With modifications

(e.g., pitch scaling), for sufficiently large t the individual state resyntheses will
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begin to deviate from the specific phase relationships responsible for the can-

cellation. Even though the individual state resyntheses may decay over time,

their summation may grow substantially over time, leading to the perception of

an unnaturally soft attack. Such envelope distortion artifacts, if they exist only

at moderate levels, may be corrected in postprocessing by applying envelope

corrections. Nonetheless, one should avoid specifying ρ too small.

To analyze the effect of ρ on the residual extraction, we first establish that the

filtered estimates depend on q and r only through ρ. In other words, if for any c > 0,

we replace q → cq and r → cr in the Kalman recursions (2.35, 2.36), and replace P0

in the initialization (2.38) by cP0, an identical expression for ŝt|1:t should result.

To begin, (2.35) and (2.36) obtain the following identities:

Pt+1|1:t+1 =
[

(

Ft+1Pt|1:tF
T
t+1 + qI

)−1
+ r−1HT H

]−1

(2.40)

Kf,t+1 =
(

Ft+1Pt|1:tF
T
t+1+qI

)

HT
[

H
(

Ft+1Pt|1:tF
T
t+1+qI

)

HT +r
]−1

(2.41)

ŝt+1|1:t+1 = (I − Kf,t+1H) F ŝt|1:t + Kf,t+1yt+1 (2.42)

Now, define:

P
(c)
t+1|1:t+1

∆
=

[

(

Ft+1Pt|1:tF
T
t+1 + cqI

)−1
+ (cr)−1HT H

]−1

= c
[

(

Ft+1(c
−1Pt|1:t)F

T
t+1 + qI

)−1
+ r−1HTH

]−1

(2.43)

Hence, if q is replaced by cq and r by cr in (2.40),

P
(c)
t+1|1:t+1 = cPt+1|1:t+1 ∀t ∈ 1:N (2.44)

To achieve (2.44) for all t ∈ 1 : N , it suffices to set P
(c)
0 = cP0 in the initialization

(2.38). In the limit as ε → 0, however, these initializations each tend to the same

result.
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Similarly, define K
(c)
f,t+1 by replacing q by cq and Pt|1:t by P

(c)
t|1:t on the r.h.s. of

(2.42). With some algebra, it is easily shown:

K
(c)
f,t+1 = Kf,t+1 (2.45)

Since no other term in (2.42) besides K
(c)
f,t+1 depends on c, it follows that ŝt|1:t remains

unchanged, as was to be shown.

To justify the assertions made at the beginning of this section concerning the

effect of ρ on the state estimates, we consider the limiting cases, ρ → ∞ and ρ → 0.

As established previously, no loss of generality results by fixing q = 1 and r = ρ. If

r → ∞, the term
[

H
(

Ft+1Pt|1:tF
T
t+1 + qI

)

HT+ r
]−1

vanishes; by (2.41), all elements

of Kf,t+1 converge to 0. By (2.42):

ŝt+1|1:t+1 → F ŝt|1:t (2.46)

According to (2.39), (2.46) implies that ri,t → 02p×1, as was to be shown.

On the other hand, multiplying both sides of (2.42) on the left by H obtains:

Hŝt+1|1:t+1 = (H − HKf,t+1H
T )Ft+1ŝt|1:t + HKf,t+1yt+1 (2.47)

As ρ → 0, it follows from (2.41), that HKf,t+1 → 1. Substituting this limit into

(2.47) obtains Hŝt|1:t+1 → yt+1. As a result, (2.39), implies that ro,t → 0, as was to

be shown.

2.3.4 Analysis, transformation and resynthesis

The general analysis-transformation-resynthesis process is summarized by Figure 2.14.

• Analysis: The input signal y1:N is analyzed to extract frequency and decay

trajectories ω1:N(k) and γ1:N(k) for k ∈ 1 : p. These trajectories are converted

into the state transition matrix sequence F1:N by repeated application of (2.31).

Then y1:N and F1:N are passed to the Kalman filter consisting of the recursions
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:ITERATIVE FILTERBANK
(DYNAMICS ESTIMATION)

(INPUT/OUTPUT RESIDUAL

           EXTRACTION)

KALMAN FILTER

INPUT OUTPUT

MODEL TRANSFORMATION RESIDUAL TRANSFORMATION

STATE−SPACE RESYNTHESIS

RESIDUAL
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FREQS & DECAY RATES
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(ENVELOPE MODIFICATION)

INPUT SIGNAL

OUTPUT SIGNAL

Figure 2.14: Block diagram for analysis-transformation-resynthesis using the hybrid
sinusoidal/source-filter model

(2.35, 2.36), initialized by (2.38). The Kalman filter produces the sequence of

filtered state estimates ŝ1:N (defined via (2.34)), from which, given y1:N , the

residual sequences ri,1:N and ro,1:N are extracted via (2.39).

• Transformation The frequency and decay trajectories may be modified, along

with the residual sequences, to produce new versions of F1:N , ri,1:N , and ro,1:N .

If storage is at a premium, all but the initial excitation part of these residuals

may be discarded without too much effect on the quality of the resynthesis.

• Resynthesis The modified sequences: F1:N , ri,1:N , and ro,1:N , are presented to

the state-space model (2.30) which synthesizes a preliminary output signal. If

needed, envelope distortion artifacts caused by underspecification of the ratio

ρ
∆
= r/q (see Section 2.3.3) may be addressed in postprocessing which yields the

final output signal.

Extraction of the frequency and decay trajectories, γt(k) and ωt(k), is in general

a quite difficult problem for which the literature remains incomplete. Nevertheless,

there exist many special cases concerning acoustic sources for which feasible extraction
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methods have been developed. For attack transients originating from quasi-harmonic

sources, for instance, the iterative filterbank method of [117] may be used. A quasi-

harmonic source obeys the following criteria [117]:

1. Frequency and decay trajectories are modeled as constant over frames. However,

variations in amplitude and phase characteristics, as encoded by the oscillator

state, may proxy for small, local variations in frequencies and decays.

2. The frequency distribution of spectral components admits a hierarchy in which

components cluster about principal harmonics. Figure 2.15 displays an example

frequency distribution. The frequency associated with the principal harmonic
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Figure 2.15: Sample frequency distribution for quasi-harmonic source

is defined as the amplitude-weighted average of all frequencies within its asso-

ciated cluster. Component frequencies assigned to a particular cluster may be

arbitrarily close.

3. Principal harmonic frequencies exist roughly about integer multiples of some
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fundamental, hence the term quasi-harmonic. Even moderate amounts of in-

harmonicity are allowed, as long as the spacing between principal harmonics

varies smoothly over the entire frequency range.

Many attack transients from acoustic sources (piano, marimba, bowed string, some

bell/chime tones etc.) may be modeled as quasi-harmonic; some cannot, such as

cymbals and gongs. For more general sources the literature is by no means complete,

however Prony-based methods such as [66, 115] may be useful as long as the number

of sinusoidal components does not become too large. The advantage of methods such

as [117] as well as related “frequency zooming” work of Karjalainen et al. [58] and

Esquef et al. [37] is the use of spectral hierarchies to decompose the frequency/decay

estimation problem into a collection of smaller problems, each involving only a few

sinusoidal components.

Since input and output residuals as well as frequencies and decay trajectories

may be transformed, an almost limitless variety of resyntheses are possible using the

framework of Figure 2.14. We briefly discuss a few options relating to canonical

analysis-synthesis tasks (e.g., time and pitch scaling, cross-synthesis), as well as in-

troduce several types of effects specific to this framework, which process each residual

by different means.

• Time scaling The identified frequency and decay trajectories are resampled via

bandlimited sinc interpolation6 [109]. Each decay trajectory is then multiplied

by the inverse of the stretch factor to achieve the magnitude time difference

scaling indicated by (2.15). Input and output residuals are time scaled accord-

ing to the method discussed in Section 2.2.4, keeping in mind that the transient

regions for each residual are considerably shorter than the transient region for

the original signal. Alternatively, an ad hoc residual processing method follow-

ing [116] may be used; this method works especially well for quasi-harmonic

sources. This method defines the excitation region as the first M samples after

the onset, where M is chosen so that, averaging across all residuals, a certain

fraction of the overall residual energy is captured within the excitation region.

6If these trajectories are constant, they are extended to cover the new signal duration.
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The excitation region remains unmodified, paralleling the “region locking” ap-

proach of Section 2.2.4, while the remainder of the residual is processed by

some adaptive pitch-synchronous overlap-add technique. In [116], the authors

find that the WSOLA (wave-synchronous overlap-add) protocol of Verhelst and

Roelands [118] achieves excellent results.

• Pitch scaling Transposition pitch scaling may be implemented by time scaling

followed by sampling rate conversion. However, the present method allows direct

modification of the frequency trajectories. For transposition, each trajectory is

multiplied by the transposition factor while residuals and decay trajectories

are preserved. This leads to more general types of pitch scaling effects; e.g.,

inharmonic scaling, timbre superposition (reassigning frequency components to

those obtained from a different source), and time-varying scaling, even at audio

rates.

• Cross synthesis If the analysis is performed on several sounds, residuals and

models (meaning the frequency and decay trajectories) may be interchanged.

Hybrid cross-syntheses become possible where some residuals come from one

source, and the rest from another. Furthermore, residuals extracted using dif-

ferent source-filter analyses; e.g., linear predictive coding (LPC; see [6]) may

replace the input residuals.

• Residual modifications Each input residual or groups of such may be pro-

cessed by independent means. A simple approach is to feed each pair of in-phase

and quadrature residuals corresponding to a single oscillator through an inde-

pendent delay line. If different delay times are set, this results in a splitting of

the excitation among the various harmonics, as if each harmonic were “plucked”

by a different excitation. If the delay time varies directly or inversely with fre-

quency, a “strumming” sound may be achieved. Moreover, if the independent

delay lines become regenerative, polyrhythmic textures may be superimposed

upon or seem to emerge from the original sound, creating quite striking effects.



Chapter 3

The role of musical structure

3.1 Introduction

In Chapter 1, two primary objectives are introduced for the transient detection as

applied to musical audio signals:

• First, the identification of abrupt changes in spectral content. These often arise

from a performer’s action, associating with musical onsets.

• Second, the identification of transient regions of nonzero width. Throughout

these regions, the signal fails to be “well modeled” by representations indicating

constant or slowly changing spectral content1. Transient regions are often found

near onset boundaries, for instance, during attack portions of note events.

Satisfying these objectives goes a long way towards obtaining high-quality, low-

storage analysis-based sound transformations for recordings with significant transient

1Here as in the abrupt-change designation, we are assuming some parsimonious, meaningful sig-
nal representation, such as the superposition of a limited number of sinusoids with time-varying
parameters. It is these parameters, (i.e., amplitudes, frequencies, and phases), which we expect to
undergo abrupt change; during transient regions we say only that no such parsimonious represen-
tation may be found for which the parameters are constant or slowly varying. Of course, via the
discrete Fourier transform (DFT), one may represent any real-valued signal of finite length N with
dN + 1e/2 complex sinusoidal components of constant frequencies and amplitudes. However, this
representation lacks parsimony; it overfits noise elements; it is psychoacoustically and cognitively
irrelevant and thus perceived artifacts result from most analysis-based sound transformations. See
Chapter 2 for a more involved discussion of these artifacts.

51
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content. Of particular interest are time and pitch scaling transformations. In Chap-

ter 2, we discuss phase-vocoder and sinusoidal-modeling approaches as proposed by

Quatieri et al. [93], Levine and Smith [75], Duxbury et al. [35]; and the hybrid

sinusoidal/source-filter representation of the author and Leistikow [117, 116]. The

latter is discussed at length in Section 2.3. Common to all these methods is the use

of abrupt-change detection or region identification to reduce perceived artifacts under

transformation.

3.2 The role of musical structure

Unfortunately, it becomes difficult to identify transient regions and points of abrupt

change for complex, heterogeneous musical sounds. Even near-optimal statistical

methods monitoring spectral change via piecewise constant autoregressive models, for

instance the online approaches of Basseville and Benveniste’s divergence algorithm [8]

and Andre-Obrecht’s forward-backward method [5], the offline approach of Svendsen

and Soong [111], and the integrated online-offline approach of the author and Gouyon

[115], may experience difficulties when presented with sufficiently complex signals.

Irrespective of algorithm quality, theoretical limits (e.g., Cramer-Rao bound [26, 88,

78]) exist as to how well we can estimate signal characteristics given certain noise

levels, model complexities, and amounts of data.

To surpass these limits, we restrict the application to musical signals. Fortunately,

musical signals are highly structured, both at the signal level, in terms of the expected

timbral evolution of note events, and at higher levels, in terms of melodic and rhythmic

tendencies. These structures constrain relationships among signal parameters and

restrict their variation over time. For instance, musical signals contain many regions

exhibiting significant pitch content. Throughout these regions sinusoidal component

frequencies are close to integer multiples of some fundamental. Neglecting variations

due to inharmonicity, the frequency parameterization reduces from one parameter

per sinusoid (say, on the order of 20–60 parameters) to a single parameter encoding

fundamental frequency2. Now let us consider the general problem of estimating a

2Advantages in terms of the Cramer-Rao bound are discussed in [112].
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signal corrupted by noise. If we have a variety of nested model structures, all of

which are able to fit the signal in the absence of noise, it is well known [2] that the

model with fewest parameters exhibits the least variance in its estimation of the signal

in the presence of noise3.

As an example, we consider the estimation of a linear trend with a succession of

nested polynomial models. Let observations {Yt} , t ∈ 1:N be generated as follows:

Xt =
[

1 t
]

[

a

b

]

Yt ∼ N (Xt, 1) (3.1)

The objective is to estimate the “signal” Xt. The true model structure (3.1) is

unknown; hence, we postulate a variety of polynomial models for Xt:

Xp,t = Hp,tθp

Yt ∼ N
(

Xp,t, σ
2
)

(3.2)

where σ2 is known, and

Hp,t =
[

1 t t2 . . . tp−1
]

(3.3)

and θ ∈ Rp. Here p represents the number of free parameters, the degree of the

polynomial fit being p − 1.

We estimate Xt by substituting the maximum-likelihood estimate of θp into (3.2).

It becomes convenient to define the vector quantities X ∈ R
N ∆

= X1:N , Y ∈ R
N ∆

=

Y1:N , and Xp ∈ R
N ∆

= Xp,1:N , as well as the matrix Hp ∈ RN×p:

Hp
∆
=

[

HT
p,1 HT

p,2 . . . HT
p,N

]T

(3.4)

3This is essentially a restatement of Ockham’s razor: Pluralitas non est ponenda sine necessitate;
“Plurality should not be posited without necessity.”[121]
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Under the conditionally Gaussian model with known variance (3.2), the maximum-

likelihood estimate is nothing but the least squares estimate θ̂p:

θ̂p = (HT
p Hp)

−1HT
p Y (3.5)

Hence the estimate of X, denoted as X̂p, is PpY , where the projection matrix Pp is

defined:

Pp
∆
= HT

p (HT
p Hp)

−1HT
p (3.6)

Similarly, we define P⊥
p = IN −Pp and note that Pp is the projection matrix onto the

column space of Hp; P⊥
p is the projection matrix onto the orthogonal complement

of this space. The following, easily verified, properties become useful: PpPp = Pp;

TrPp = p; P⊥
p P⊥

p = P⊥
p ; TrP⊥

p = N − p; for p ≥ 2; PpX = X → P⊥
p X = 0N×1.

Consider now the expected fits: both to the observed data Yt, and to the signal

Xt, as a function of p ∈ 2 : N . The simplest model able to capture the linear trend

has p = 2; the most complex model has p = N . Let the quality of fit to tbe observed

data be measured by the squared error with regards to Yt, summed over all samples.

Taking expectation with respect to the “true model” (3.2) yields

E ‖ Y − X̂p ‖2 = TrE
(

Y − X̂p

)(

Y − X̂p

)T

= TrE
(

P⊥
p Y Y T P⊥

p

)

= TrP⊥
p

(

XXT + σ2IN

)

P⊥
p

= TrP⊥
p XXTP⊥

p + σ2TrP⊥
p

= σ2(N − p) (3.7)

The final step follows from P⊥
p X = 0 and TrP⊥

p = N − p.

Figure 3.1 on the left side illustrates fits of the observed data for p = 2 and for

p = N , where N = 7. With p = N , the fit is error free as predicted by (3.7). However,

the lack of error is clearly due to overfitting noise elements in the data. The fit of the

underlying trend Xt, as shown on the right side of Figure 3.1, seems better for the
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Figure 3.1: Linear vs. maximal degree polynomial fits for linear trend

p = 2 case. We can verify this analytically: the expected squared error for the fit of

Xt under p ≥ 2 is as follows:

E ‖ X − X̂p ‖2 = TrE
(

XXT − XXT
p − XpX

T + XpX
T
p

)

= Tr
(

XXT − XXT Pp + PpXXT + PpXXT Pp + σ2Pp

)

= σ2TrPp

= σ2p (3.8)

From (3.8), we see the expected error in fitting the underlying trend actually increases

with p. The best results are achieved when p = 2; this model has the fewest parame-

ters and is hence most constrained among all models able to fit the linear trend. In

other words, assuming nothing about the model structure when correct assumptions

can be made yields an overly complex model. The latter detracts from our ability to

extract meaningful information from noisy data.

We can see the analogy to the multiple sinusoids case: for perfectly harmonic
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signals, the “best” model recognizes that all component frequencies are integer mul-

tiples of some fundamental, using one parameter to encode all frequency values. Un-

fortunately, parameter constraints implied by real-world musical signals are seldom

representable by “hard” restrictions on the parameter space (i.e., stipulations that

parameters belong to certain subsets of the nominal space). For example, many

pitched acoustic signals, such as piano and marimba, contain significant amounts of

inharmonicity. The degrees and qualities of inharmonicity vary from instrument to

instrument. Consequently, we desire a model which encodes the general trend (that

the frequencies of sinusoidal components lie close to integer multiples of some funda-

mental), while maintaining robustness to uncertain, incompletely specified deviations

from this trend. In general, when proposing model structures for real-world signals,

we must plan for deviations and uncertainties in these structures, while controlling the

range of allowed variation. We later demonstrate that a Bayesian decision theoretic

framework proves most amenable to these considerations, especially in its capacity to

represent uncertain prior or structural knowledge.

3.3 Integrating context with signal information

In a broader sense, we recognize that musical structure creates context which is useful

in predicting attributes of interest; i.e., pitch content, the presence and location of

musical onsets, and the locations of transient regions. The main goal becomes to inte-

grate these contextual predictions with information from the signal to make optimal

decisions concerning these attributes. A schematic is shown in Figure 3.2.

What means an “optimal decision” takes on a necessarily probabilistic formula-

tion: in the simplest case, we aim to minimize the probability of decision error. More

generally, we aim to minimize expected costs (Bayes risks) arising from the various

types of hypotheses that are confused for one another.
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Figure 3.2: Integration of contextual predictions with signal information

3.3.1 Integrating a single predictive context

To illustrate the integration of a single predictive context with signal information in

decision frameworks, consider a hypothetical example of piano recording containing

one note. Suppose the recording is extremely noisy and the piano content barely

audible. The task is to decide whether the current note, represented by Nk, equals
′C4′ or ′C5′. No other possibilities are considered.

Context arises from the fact the previous note Nk−1, equals ′B4′; considering the

composer, it is nine times as likely the ′B4′ will step into ′C5′ than leap down to ′C4′4:

P (Nk = ′C5′|Nk−1 = ′B4′) = 0.9

P (Nk = ′C4′|Nk−1 = ′B4′) = 0.1 (3.9)

Signal information is summarized in the feature Yk, an estimate of the fundamental

pitch. Yk = 350 Hz is observed. From offline experiments, it is determined:

P (Yk|Nk) = N
(

toHz(Nk), 8000 Hz2
)

(3.10)

Here toHz(·) converts the symbolic note value into a corresponding Hz pitch value.

4Such a statement could be verified by taking all scores produced by this composer, counting the
number of ′B4′ → ′C5′ transitions, and dividing by the number of ′B4′ → ′C4′ plus ′B4′ → ′C5′

transitions.
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In particular, toHz(′C4′) = 262 Hz, and toHz(′C5′) = 523 Hz.

The interaction of contextual and signal information is shown via the directed

acyclic graph of Figure 3.3, representing the factorization of the joint distribution

P (Nk−1, Nk, Yk).

P (Nk−1, Nk, Yk) = P (Nk−1)P (Nk|Nk−1)P (Yk|Nk) (3.11)

While Yk alone seems to indicate that Nk = ′C4′, melodic context predicts Nk = ′C5′.

Nk YkNk-1

{{
MELODIC
CONTEXT

SIGNAL
INFORMATION

Figure 3.3: Integration of melodic context with signal information

Which tendency wins out? The objective becomes to minimize the probability of error,

P (N̂k 6= Nk), where N̂k is the estimate of the current note based on Nk−1 and Yt.

It is easily shown [13] that the error probability minimization is equivalent to the

maximization

N̂k = argmax
Nk

P (Nk|Nk−1, Yk) (3.12)

The posterior probability P (Nk|Nk−1, Yk), is computed via Bayes’ rule:

P (Nk|Nk−1, Yk) =
P (Nk|Nk−1)P (Yk|Nk)

∑

Nk
P (Nk|Nk−1)P (Yk|Nk)

(3.13)

Essentially, (3.13) states that the posterior is proportional to the product of the
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contextual and signal dependences5. As a result:

P (Nt = ′C5′|Nt−1, Yt) = 0.692

P (Nt = ′C4′|Nt−1, Yt) = 0.308 (3.14)

Hence ′C5′ is the correct decision. Although the signal provides evidence to the

contrary, the uncertainty in this evidence as represented by P (Yk|Nk) is so great that

it is overridden by the contextual dependence. The signal information does shift the

balance somewhat: while ′C5′ is a priori nine times as likely than ′C4′, after observing

the signal, ′C5′ is only 0.692/0.308 ≈ 2.25 times as likely.

3.3.2 Integrating information across time

Often, the context inherent in musical signals manifests not as a single source of prior

information, but in the consistency of a given attribute (e.g., pitch) over time. While

we may lack prior information concerning the attribute at a specific point in time,

the fact that attributes evolve consistently suggests that we may combine features

observed at different points in time, to improve the estimation of a given attribute at

any point in time.

Consider, for instance, a recording of one note of a vocal passage, where the

vocalist exhibits slight, uncertain fluctuations in pitch. The inherent pitch of the

vocalist is consistent over time, while not being exactly the same. Let the recording

be dissected into N frames of equal length; for each frame, a pitch estimate, Yt, is

extracted. The inherent pitch of the vocalist is represented by the trajectory S1:N .

We model Yt as a noisy version of St, via

P (Yt|St) ∼ N (St, λy) (3.15)

The noise variance, λy, may be determined via offline experiments.

For any given frame, nothing is known a priori about its pitch. This lack of

5The purpose of the denominator is to renormalize the product such that it sums to unity and is
hence a valid probability distribution.
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knowledge in the framework of Gaussian dependences, may be represented [57]:

P (St) ∼ N
(

0, ε−1
)

(3.16)

where ε > 0 is arbitrarily small.

The consistency of inherent pitch over time is represented by St+1 ≈ St. As a

Gaussian dependence, this is modeled:

P (St+1|St) ∼ N (St, λs) (3.17)

It can be shown that for any λs ≥ 0, if P (S1) is specified via (3.16), and ε ↓ 0, there

exists an equivalent representation for P (St):

P (St) ∼ N
(

0, ε−1
t (λs, ε)

)

(3.18)

where ε−1
t (λs, ε) ↓ 0.

A complete specification of the joint distribution satisfying (3.15 - 3.17) follows:

P (S1:N , Y1:N) = P (S1)P (Y1|S1)

N
∏

t=2

P (St|St−1) (3.19)

The factorization (3.19) is represented by the directed acyclic graph of Figure 3.4.

St-1 St St+1... ...

Yt-1 Yt Yt+1

Figure 3.4: Directed acyclic graph for pitch consistency model across time

Let S∗
t , t ∈ 1 : N be the maximized posterior for each frame, which serves as an
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estimated pitch trajectory:

S∗
t = argmax

St

P (St|Y1:N) ∀t ∈ 1 : N (3.20)

If the set of possibilities for St were countable, this choice of S∗
t would minimize the

expected number of frame errors. Since S1:N and Y1:N are jointly Gaussian, P (St|Y1:N)

is Gaussian and thus peaks at its mean; hence, S∗
t = E(St|Y1:N), also minimizes the

mean squared error, E|S∗
t −St|2. It is well known [57] that for linear Gaussian models,

the minimum mean squared error estimator becomes a weighted linear combination

of the observations; i.e.:

S∗
t =

N
∑

τ=1

wt,τYτ ∀t, τ ∈ 1:N (3.21)

Moreover, S∗
t via (3.20) depends only on the ratio ρ

∆
= λs/λy, irrespective of the

actual values of λs and λy. If ρ = 0, each St becomes an identical copy of the same

underlying parameter: in this case we expect S∗
t to be the unweighted average of Yt;

i.e.,

wt,τ = 1/N ∀t, τ ∈ 1:N. (3.22)

As ρ → ∞, the dependence among {St, Yt} across different values of t vanishes; we

expect that S∗
t depends only on the current observation Yt. For intermediate values

of ρ, we expect wt,τ to peak about τ = t, emphasizing observations in the immediate

neighborhood of t while discounting observations that are further away. As ρ becomes

small, we expect wt,τ to decay more gradually on both sides of t.

These assertions may be verified by obtaining a closed form expression for the pos-

terior P (St|Y1:N) in terms of Y1:N , λs, and λy. This posterior is computed recursively

over time in two passes: the filtering pass updates P (St+1|Y1:t+1) given P (St|Y1:t),

and the smoothing pass updates P (St|Y1:N) given P (St+1|Y1:N).

Using conditional independence relations implicit in the factorization (3.19), fil-

tering and smoothing recursions can be derived. The filtering recursion begins with
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the time update step, updating P (St|Y1:t) → P (St+1|Y1:t):

P (St+1|Y1:t) =

∫

P (St, St+1|Y1:t) dSt

=

∫

P (St|Y1:t)P (St+1|St, Y1:t) dSt

=

∫

P (St|Y1:t)P (St+1|St) dSt (3.23)

The measurement update follows, updating P (St+1|Y1:t) → P (St+1|Y1:t+1).

P (St+1|Y1:t+1) =
P (St+1, Yt+1|Y1:t)

∫

P (St+1, Yt+1|Y1:t) dSt+1

P (St+1, Yt+1|Y1:t) = P (St+1, Y1:t)P (Yt+1|St+1, Y1:t)

= P (St+1|Y1:t)P (Yt+1|St+1) (3.24)

The filtering recursion is initialized after the first time update step with P (S1), via

(3.18). The final stage of the filtering recursion obtains P (SN |Y1:N), which is used to

initialize the smoothing recursion. The smoothing recursion updates P (St+1|Y1:N) →
P (St|Y1:N):

P (St+1|Y1:t) =

∫

P (St, St+1|Y1:N) dSt+1

=

∫

P (St+1|Y1:N)P (St|St+1, Y1:N) dSt+1

=

∫

P (St+1|Y1:N)P (St|St+1, Y1:t) dSt+1

= P (St|Y1:t)

∫

P (St+1|Y1:N)

P (St+1|Y1:t)
P (St+1|St) dSt+1 (3.25)

where P (St|Y1:t) and P (St+1|Y1:t) are precomputed and stored in the filtering pass.

Since all of the intermediate computations in (3.15-3.17) involve multiplication,

conditioning, and marginalization operations on Gaussian distributions, all intermedi-

ate quantities encountered in the filtering and smoothing recursions remain Gaussian.

As such, these quantities are completely specified by mean and variance parameters

and we may write filtering and smoothing recursions in terms of these parameters. To
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this end, we use the “Gaussian potential” algebra introduced by Lauritzen [70] and

generalized to the multivariate case by Murphy [84]. Letting ε → 0 in (3.16) obtains

the standard Kalman filter and Rauch-Tung-Striebel smoother discussed in [84, 57]:

P1 = 1/λy

S
∗,(f)
1 = y1

Pt+1 =
λy (λs + Pt)

λy + λs + Pt

S
∗,(f)
t+1 = Pt+1

(

S
∗,(f)
t

λs + Pt

+
yt+1

λy

)

S∗
N = S

∗,(f)
N

S∗
t =

λs

λs + Pt

S
∗,(f)
t +

Pt

λs + Pt

S∗
t+1 (3.26)

where

S
∗,(f)
t

∆
= E(St|Y1:t)

Pt
∆
= V ar(St|Y1:t)

S∗
t

∆
= E(St|Y1:N) (3.27)

Defining P ′
t = λ−1

y Pt, (3.26) may be rewritten in terms of ρ
∆
= λs/λy:

P
′

1 = 1

S
∗,(f)
1 = y1

P
′

t+1 =
ρ + P

′

t

1 + ρ + P
′

t

S
∗,(f)
t+1 = P

′

t+1

(

S
∗,(f)
t

ρ + P
′

t

+ yt+1

)

S∗
N = S

∗,(f)
N

S∗
t =

ρ

ρ + P
′

t

S
∗,(f)
t +

P
′

t

ρ + P
′

t

S∗
t+1 (3.28)

By induction, it is easily shown that there exist weights w
(f)
t,τ and wt,τ satisfying
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S
∗,(f)
t =

∑N
t=1 w

(f)
t,τ Yτ and S

∗,(f)
t =

∑N
t=1 wt,τYτ . Substituting these expressions into

(3.28) and equalizing coefficients obtains:

P
′

1 = 1

w
(f)
1,τ = δ1,τ , τ ∈ 1 : N

P
′

t+1 =
ρ + P

′

t

1 + ρ + P
′

t

w
(f)
t+1,τ = P

′

t+1

(

w
(f)
t,τ

ρ + P
′

t

+ δt+1,τ

)

, ∀τ ∈ 1 : N

wN,τ = w
(f)
N,τ

S∗
t =

ρ

ρ + P
′

t

S
∗,(f)
t +

P
′

t

ρ + P
′

t

S∗
t+1 (3.29)

where δt,τ is the Kronecker delta function; i.e.,

δt,τ =

{

1, t = τ

0, otherwise
(3.30)

Figure 3.5 displays the behavior of wt,τ , as ρ ranges from 0 to ∞. If ρ = 0, the

weights appear uniform; this may be verified by simple substitution of ρ = 0 into

(3.29):

P
′

t = 1/t

w
(f)
t,τ =

{

1/t, τ ≤ t

0, τ > t

wt,τ = 1/t, ∀t, τ ∈ 1 : N (3.31)

Assuming λy > 0, ρ = 0 implies λs = 0; in other words, the trajectory S1:N is

constant. Here it makes sense to weight all observations equally since each Yt is a

conditionally independent noisy observation of the same underlying parameter.

Likewise, as ρ → ∞, it is readily shown that w
(f)
t,τ converges for each t, τ ∈ 1 : N
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Figure 3.5: Estimation weight profiles for different values of ρ

to δt,τ , and that wt,τ converges to w
(f)
t,τ . As a result:

wt,τ
ρ→∞→ δt,τ , ∀t, τ ∈ 1 : N (3.32)

If λy > 0 is finite, ρ → ∞ implies λs → ∞, meaning that the St become mutually

independent. The best estimate of St given all observations depends only on the

observation at time t.

Real-world scenarios require robustness to small drifts in pitch, while maintaining

consistency of pitch over time. Consequently, a good weight function emphasizes ob-

servations in the neighborhood of t and discounts observations that are further away.

Figure 3.5 shows that this type of weight function is guaranteed via the probabilistic

model (3.15 - 3.17; 3.19).
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3.3.3 Temporal integration and abrupt change detection

Now we consider an example where pitch is consistent, but punctuated by points

of abrupt change: the “legato” model shown in Figure 3.6. The change points are

pitchedpitched pitched pitched

on
se
t

on
se
t

on
se
t

on
se
t

Figure 3.6: “Legato” model for pitch consistency with points of abrupt change

interpreted as note onsets ; they occur at unknown times. Each pair of onsets bounds

a note event. Throughout note events, pitch information is salient and consistent;

this corresponds to legato playing. We note that the legato model may be considered

as a reduction of the nominally monophonic model introduced in Section 3.4. Adding

transient regions within note events and “null” regions, which represent gaps between

note events, extends the legato model to the nominally monophonic situation.

Given the segmentation (onset times), a heuristic may be devised in which all

observations within a note event are used to estimate the pitch trajectory for any

time along that event. The observations’ weighting would follow the profiles shown

in Figure 3.5; however, zero weight would be given to observations from other note

events. Unfortunately, this segmentation is unknown. If instead we had a good

estimate of the inherent pitch trajectory, we could monitor jumps in this trajectory

to determine onset times. However, at any fixed point in time, nothing is known a

priori about the inherent pitch. As a result, we have a classic “chicken/egg” dilemma

(Figure 3.7) characteristic of such segmentation problems [50].

To resolve this situation, we encode the unknown segmentation in a hidden binary

mode variable Mt ∈ {′O′, ′C′} which indicates whether or not frame t contains an

onset. If Mt = ′O′ (onset), an onset occurs in frame t, meaning that frames t−1

and t belong to different note events. In this case we do not expect St and St−1 to
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Figure 3.7: Canonical chicken-egg situation for segmentation applications

be related. Otherwise, Mt = ′C′ (continuation), indicating that frames t − 1 and t

belong to the same note event. In this case St ≈ St−1. The directed acyclic graph of

Figure 3.8 displays the complete factorization of the joint P (M1:N , S1:N , Y1:N):

P (M1:N , S1:N , Y1:N) = P (M1)P (S1|M1)P (Y1|S1)

×
N
∏

t=2

P (Mt|Mt−1)P (St|St−1, Mt)P (Yt|St) (3.33)

Here P (Mt+1|Mt) follows the stochastic grammar and state transition diagram

displayed in Figure 3.9. Here the main restriction is that onsets cannot occur in

adjacent frames. The ′C′ → ′O′ transition probability p, 0 < p � 1 models the
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St-1 St St+1... ...

Yt-1 Yt Yt+1

Mt-1 Mt Mt+1

Figure 3.8: Factorization of joint distribution for legato model

O

C

p

1-p

GRAMMAR

C
C C, O
O
(legato model)

ASSUMPTIONS:
-No onsets in adjacent frames
-New note events are infrequent

Figure 3.9: Stochastic grammar for mode variables, legato model

expectation that onsets are sparse6. P (Mt+1|Mt) obtains in closed form:

P (Mt+1|Mt) =























0, Mt = ′O′, Mt+1 = ′O′

1, Mt = ′O′, Mt+1 = ′C′

p, Mt = ′C′, Mt+1 = ′O′

1 − p, Mt = ′C′, Mt+1 = ′C′

(3.34)

Consistency of pitch is governed by P (St+1|St, Mt+1). If Mt+1 = ′C′, St+1 depends

6The actual value of p controls the mean note event length in the legato case. The latter is
approximately (slightly greater than) 1/p frames.
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on St in the manner of (3.17), encoding the consistency hypothesis St+1 ≈ St; oth-

erwise, if Mt+1 = ′O′, St+1 is statistically independent of St. Furthermore, the fact

that V ar(St+1|Mt+1 = ′C′) = ε−1 indicates that there lacks additional information

concerning St+1, which parallels the situation in (3.18). Hence, P (St+1|St, Mt+1) is

modeled as follows:

P (St+1|St, Mt+1 = ′C′) ∼ N (St, λs)

P (St+1|St, Mt+1 = ′O′) ∼ N
(

0, ε−1
)

(3.35)

The prior dependences are specified as noninformative: P (M1) uniform; P (S1|M1)

via (3.16). Finally, the observation dependence, P (Yt|St), is specified via (3.15).

The joint segmentation and pitch tracking amounts to estimating all values of the

hidden variables M1:N and S1:N , given observations Y1:N . We aim to preserve the

integrity of the entire mode sequence, M1:N , by minimizing the probability that any

such error in this sequence may occur:

M∗
1:N = argmin

M̂1:N

P (M̂1:N 6= M1:N ) (3.36)

Once again, following (3.12), the optimal sequence satisfying (3.36) maximizes the

joint posterior:

M∗
1:N = argmax

M1:N

P (M1:N |Y1:N) (3.37)

We note that the objective (3.36) comprises an “all or nothing” approach, penal-

izing estimates which differ from the true sequence M1:N in only one frame the same

as estimates which have nothing to do with M1:N . Furthermore, for sufficiently long

sequences and under sufficiently noisy conditions, P (M∗
1:N 6= M1:N ) may approach

unity. As such, it may be preferable to minimize the expected number of frame er-

rors, following the criterion used for S1:N (3.20) in the previous section. However,

a common source of error is when the true onset sample location lies infinitesimally
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close to a frame boundary, though just preceding it; here, considerable ambiguity ex-

ists concerning whether to assign the onset to the frame in which it actually occured,

or to the subsequent frame, for which the change in the spectral content regarding

the previous frame is most salient. If M̂1:N declares onsets in both frames, this incurs

at most one frame error; if a single onset is declared in the wrong frame, two frame

errors result. But detecting onsets in adjacent frames is disastrous for the segmen-

tation objective, especially if the results are to be used in transcription, because this

detection introduces an extra note event. By contrast, shifting the onset location by

one frame is far less objectionable. A more striking consideration is that the joint

posterior P (M1:N |Y1:N) vanishes over sequences containing onsets in adjacent frames

because P (Mt+1|Mt) assigns these instances zero probability (3.34). Any particular

decision M∗
1:N exhibiting adjacent onsets will be invalid with respect to the gener-

ative model, thus the global maximum a posteriori criterion, (3.36) guarantees the

validity of all detected mode sequences. As such, (3.37) is validated as the proper

segmentation criterion.

Regarding the estimated pitch trajectory, S∗
1:N , the objective remains to minimize

the expected number of frame errors, following (3.20). However, we require addi-

tionally that S∗
1:N synchronize with M∗

1:N . We cannot tolerate, for instance, a sudden

jump in S∗
t+1 from S∗

t if frames t and t+1 belong to the same note event. The solution

is to choose S∗
1:N minimizing expected frame error rate given M∗

1:N :

S∗
t = argmax

St

P (St|Y1:N , M∗
1:N) (3.38)

where M∗
1:N follows via (3.36).

3.4 Nominally monophonic signals and segmenta-

tion objectives

Unfortunately, real-world musical audio signals contain regions for which steady-

state pitch content is not salient. Such regions include transients, which associate

with note events, and null regions, or gaps, which separate note events. Ideally null
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regions would contain nothing but silence. More realistically, these regions consist

of recording noise, background instrumentation, reverberation tails from past events,

and so forth.

To this end, we extend the “legato model” introduced in Section 3.3.3 to incorpo-

rate transient and null regions. The result we denote as the nominally monophonic

model, represented by the cyclic succession (transient → pitched → null) depicted in

Figure 3.10. Here each note event comprises a transient region followed by a pitched,

transient

null

transient

null

note event note event

pitched pitched

{{

on
se
t

on
se
t

Figure 3.10: Region characterization for nominally monophonic signals

steady-state region. Null regions separate note events. The lengths of transient and

null regions may be zero, to encode a certain flexibility towards cases where these

regions may be absent: if both transient and null lengths are zero, the legato model

results. A new note event is instantiated upon crossing of the transient boundary :

either null → transient, pitched → transient, or null → pitched transitions trigger

onsets.

We note that the nominally monophonic model fails to allow multiple pitched

and transient regions within a single note event. This becomes problematic, for

instance, in overblown flute recordings, where multiple pitched regions may occur due

to the different oscillatory regimes, and where multiple transient regions may occur

due to chaotic behavior [99]. However, the lack of an explicit model for multiple

transient/pitched regions does not cause problems in practice. First, multiple-region

instances rarely occur when dealing with single acoustic sources. Second, when these
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instances do occur, the resultant segmentation using the nominally monophonic model

retains all information concerning the locations of abrupt-change events and transient

region boundaries, the only difference being that this model declares a new note

event upon the crossing of each transient boundary within the actual event. This

information may be aggregated in postprocessing, to form the actual note events (see

Figure 3.11):

transient transient

pitched

on
se
t

pitched pitched

transient

on
se
t

pitched
on
se
t

on
se
t

note event (aggregate)
true onset

null

Figure 3.11: Aggregation of note events

While the nominally monophonic model represents signals which may arise from

a monophonic “score”, the intent is to be robust to various types of polyphony; e.g.,

note overlaps due to legato playing, reverberation, or background instrumentation.

These instances occur in virtually all real-world recordings regardless of whether or not

the performance originates from a monophonic score. Such robustness considerations,

given limited computational resources, suggest the use of framewise short-time Fourier

transform (STFT) peaks as a feature set. This stands in opposition to time domain

approaches which do not attempt feature reduction, such as the methods summarized

in Chapter 1 [20, 51, 18], among possibly others. The latter methods deliver a global,

sample-accurate segmentation, but at considerable computational expense. Even in
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some offline applications such as interactive audio editing (Section 3.10.4), a sample-

accurate response may be desired.

To summarize, we obtain a robust segmentation and melody transcription for

nominally monophonic signals, defined in the sense of the transient → pitched →
null cyclic succession (Figure 3.10). The segmentation operates on a quite limited yet

psychoacoustically relevant feature set (framewise sequences of STFT peaks). The

result amounts to a transcription, but is more general: not only do we detect all note

onsets, values, and durations, we provide a sub-segmentation of each event indicating

the locations of transient regions as well as steady-state regions containing pitch con-

tent. While this method fails to provide a sample accurate segmentation, it facilitates

the latter in postprocessing, by isolating region boundaries to frame neighborhoods

and identifying possible pitch content before and after the true boundary sample lo-

cation. (Given the fact that a single abrupt-change event occurs, as well as signal

models before and after change, a simple offline likelihood maximization may be used

to estimate the changepoint location; see [61], chapter 11 for further details.)

3.5 Probabilistic model

3.5.1 Variable definitions

To encode the cyclic succession (Figure 3.10) as well as label onsets at the frame

level, we introduce the mode variable Mt for frames t ∈ 1:N . Mt takes on any of the

following values:

• ′OT′ – the beginning frame of a transient region, of which there can be at most

one per note event.

• ′OP′ – the beginning frame of a note event in which the first frame already

contains salient pitch content, of which there can be at most one per note

event.

• ′CT′ – the continuation of a transient region in the event the region occupies

more than one frame; must follow a previous ′CT′ or ′OT′.
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• ′CP′ – the continuation of a pitched region; must follow an ′OP′ or ′CP′.

• ′N′ – a null frame which occurs anytime after the last frame of a note event. A

null frame is followed by another null frame, or an onset (′OT′ or ′OP′).

Table 3.1 defines special groupings of modes with common characteristics. For

Symbol Definition Description
P {′OP′, ′CP′} Pitched modes
Q {′OT′, ′CT′, ′N′} Non-pitched modes
T {′OT′, ′CT′} Transient modes
O {′OT′, ′OP′} Onset modes
C {′CT′, ′CP′} Continuation modes

Table 3.1: Definitions of mode groupings

instance, we represent an onset by Mt ∈ O, regardless of whether this onset occurs

in a transient or pitched frame. Additionally, it becomes convenient to define M as

the set of all modes:

M ∆
= P ∪Q
= O ∪ C ∪ {′N′} (3.39)

We introduce the state variable, St, to represent inherent signal characteristics

known to be consistent during steady-state portions of note events (and changing

abruptly across event boundaries) as these characteristics are primarily informative

for the segmentation. In the legato example of Section 3.3.3, St represents the inherent

pitch of the tth frame. In real-world acoustic signals, amplitude, as well as pitch,

is expected to be consistent in pitched regions. Depending on the instrument, the

amplitude may exhibit a downward bias over time (e.g., percussive instruments such as

piano and marimba), or it may exhibit equal tendencies to become softer or louder at

any point in time (wind, brass, bowed string). Hence, for the nominally monophonic

model, we encode both pitch and amplitude characteristics in St.

The pitch encoding is split among two quantities: an integer note value, plus a

fractional tuning offset. There are two advantages: first, it becomes convenient for
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the transcription task to marginalize out all but the note value, as the latter is usually

what is notated in the score. Handling note values separately also facilitates the incor-

poration of melodic expectations, as Section 3.10.1 details. Moreover, characterizing

the tuning offset as the main source of pitch drift allows the exploitation of structural

tendencies which are difficult to model otherwise. Several factors contribute to pitch

drift: first, global factors, such as the mistuning of an instrument or the playback of

the recording at a different speed. These global factors are likely to exhibit a high

degree of consistency throughout the entire recording, and they are largely indepen-

dent of the audio source and hence the region boundaries as indicated by Mt. Second,

local drifts may occur which are inherent to the acoustic source, hence responding

to note event boundaries. Examples include the pitch bend in the attack portions of

tuned percussion sources (e.g., timpani), or expressive variations such as portamento

and vibrato, found in vocals, bowed strings, and other acoustic sources.

Individual state components of note value, tuning, and amplitude are encoded as

follows:

• Nt ∈ SN = {Nmin, Nmin + 1, . . . , Nmax}, where each element of SN is an integer

representing the MIDI note value (e.g., the note C4 corresponds to Nt = 60).

• Tt ∈ ST , where ST is a uniformly spaced set of tuning values in [−0.5, 0.5), with

the minimum value equal to −0.5.

• At ∈ SA, where SA is an exponentially spaced set of reference amplitude values

active when Mt ∈ P.

• AQ
t ∈ SAQ, where SAQ is an exponentially spaced set of reference amplitudes

active when Mt ∈ Q.

St denotes the collection of valid possibilities for these components:

St ∈ S = SN ⊗ ST ⊗ (SA ∪ SAQ) . (3.40)

which is to say, either St = {Nt, Tt, At} if Mt ∈ P or St = {Nt, Tt, A
Q
t }, if Mt ∈ Q.
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The STFT peak observations are represented by Yt, which consists of parallel lists

of peak frequencies and amplitudes. We represent Yt = {F, A}, where:

F
∆
= {F (1), F (2), . . . , F (No)}

A
∆
= {A(1), A(2), . . . , A(No)} (3.41)

where F (k) denotes the frequency of the kth lowest-frequency STFT peak, A(k) the

corresponding amplitude, and No the number of observed peaks. Peaks are chosen

from overlapping, Hamming windowed, zeropadded frames following the quadratic

interpolation methods described in [110, 1]; see Section 4.2.1 for further details.

The joint distribution over all variables of interest, P (M1:N , S1:N , Y1:N), factors

over the directed acyclic graph of Figure 3.12; i.e.:

P (M1:N , S1:N , Y1:N) = P (M1)P (S1|M1)P (Y1|S1)

×
N
∏

t=2

P (Mt|Mt−1)P (St|St−1, Mt−1, Mt)P (Yt|St) (3.42)

Mt-1 Mt

StSt-1

Yt-1 Yt

Mt+1

St+1

Yt+1

Figure 3.12: Directed acyclic graph for nominally monophonic signal model
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The essential difference between the factorization (3.42) and that of the legato

model (3.33) is the additional dependence on Mt−1 in P (St|St−1, Mt−1, Mt). The

necessity of this dependence is illustrated by the following example: if Mt = ′CP′,

either Mt−1 ∈ T or Mt−1 ∈ P. In this example t−1 and t belong to the same pitched

region of a note event; hence, we expect consistency of the corresponding pitch values:

St ≈ St−1. If Mt−1 ∈ T ⊂ Q, frame t− 1 belongs to a transient region, while frame t

belongs to a pitched region; in this case we do not expect the consistency St ≈ St−1 to

hold. We note that only the onset frame is explicitly encoded by Mt; in general, one

must examine the pair {Mt−1, Mt} to determine whether frame t crosses a particular

region boundary.

3.5.2 Inference and estimation goals

Again, recalling the legato model (Section 3.3.3), we pursue identical objectives in

terms of the segmentation. The optimal mode sequence is nothing but the global

maximum a posteriori trajectory, obtained following (3.36):

M∗
1:N = argmax

M1:N

P (M1:N |Y1:N) (3.43)

We recall that M∗
1:N chosen via (3.43) preserves the integrity of the entire mode

sequence, because it minimizes the probability that M∗
1:N differs anywhere from the

true M1:N , regardless of how many frames make up the difference.

Individual state components, i.e., N1:N , T1:N , and (A1:N or AQ
1:N) are chosen to

minimize the expected number of frame errors given M∗
1:N . That is, if Zt represents

a particular state component for the tth frame, we choose:

Z∗
t = argmax

Zt

P (Zt|Y1:N , M∗
1:N) (3.44)

The primary inference and estimation goals consist of the computation of M∗
1:N and

Z∗
1:N . Secondary goals include estimating free parameters in the distributional specifi-

cation, in particular those concerning the transition dependence P (St+1, Mt+1|St, Mt),

and postprocessing for purposes of transcription, meaning the transcription of desired
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note event and transient region boundaries from M∗
1:N and the assignment of pitch

information to each note via N∗
1:N . Figure 3.13 summarizes the overall transcription

process.

PREPROCESSING
(STFT, peak picking)

ESTIMATION OF
DISTRIBUTIONAL
(SIGNAL MODEL) 

PARAMETERS

PRIMARY
INFERENCE

P(St+1,Mt+1|St,Mt)
M*1:N N*1:N T*1:N, A*1:N,A(*Q)1:N

Y1:N (framewise STFT peaks)

POSTPROCESSING

Input signal

Onsets, durations, note 
values, transient regions

(peaks) (notes) (tunings, amps,
nullamps)

Figure 3.13: Block diagram of overall transcription process

The distributional specification is discussed below, in Section 3.6. Primary infer-

ence and parameter estimation methodologies are described in Section 3.8. However,

discussion of preprocessing stages (STFT; peak picking) is deferred to Section 4.2.1

because certain details regarding these stages relate to the modeling of peak frequency

and amplitude distributions, which is the central theme of that chapter.
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3.6 Distributional specifications

For the model in Figure 3.12, we must specify the priors P (M1), and P (S1|M1),

the transition dependence across frames: P (St+1, Mt+1|St, Mt), and the observation

likelihood P (Yt|St).

3.6.1 Prior

The role of the prior is to encode information about the first frame of the recording. If

it is known, for instance, that the recording begins with a note onset, we concentrate

P (M1) on O, the set of onset possibilities. In the most general case, however, such

knowledge is absent. Hence, we specify P (M1) as uniform and P (S1|M1) as factoring

independently among the components of S0:

P (S0|M0 ∈ P) = P (T0) P (N0) P (A0)

P (S0|M0 ∈ Q) = P (T0) P (N0) P (AQ
0 ) (3.45)

where P (T0), P (N0), P (A0), and P (AQ
0 ) are uniform.

3.6.2 Transition dependence

The transition dependence factors accordingly:

P (St+1, Mt+1|St, Mt) = P (Mt+1|Mt) P (St+1|Mt,Mt+1, St) (3.46)

It remains to specify mode and state dependences; respectively: P (Mt+1|Mt),

P (St+1|St, Mt, Mt+1).
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The mode transition dependence, P (Mt+1|Mt), is based around the following stan-

dard note evolution grammar encoding the cyclic succession depicted in Figure 3.10.

′OT′ → ′CT′, ′CP′

′OP′ → ′CP′, ′N′

′CT′ → ′CT′, ′CP′

′CP′ → ′CP′, ′N′, ′OT′, ′OP′

′N′ → ′OT′, ′OP′

(3.47)

The rationale behind this grammar is as follows. A primary governing princple

is that onsets, as they indicate the beginnings of note events, may not occur in

adjacent frames. In other words, an onset mode must be followed immediately by a

continuation or null mode:

P (Mt+1 ∈ C ∪N |Mt ∈ O) = 1 (3.48)

The latter ensures a well defined segmentation, especially when attack transients

occupy more than one frame. Additionally, each note event must have at least one

frame containing pitch content. The transition behavior adheres otherwise to the

cyclic succession (transient → pitched → null). where region lengths are modeled as

continuous valued random variables. Transient and null region lengths can be zero

whereas the pitched region length must be at least one frame. Since more than one

region may exist within a given frame, by convention we assign the mode Mt to be

the label of the rightmost region contained within that frame: see Figure 3.14.

The Markov transition diagram, displayed in Figure 3.15, encodes the standard

note evolution grammar, with additional tolerances for spurious incidents (e.g., an

attack transient followed immediately by silence). The latter may arise, for instance,

from the sudden “splicing” of recordings in the middle of note events. Solid lines

in Figure 3.15 represent transitions due to the standard note evolution grammar

while dotted lines represent transitions arising from spurious behaviors. The latter

transitions are assigned a small, fixed probability (on the order of 1 · 10−3).
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frame 1 frame 2 frame 3

pitchednull

transient

Figure 3.14: Schema for labeling frames according to the rightmost region assignment.
In this example, frame 2 is labeled ′OP′ even though the majority of this frame is
occupied by a null region, and this frame also contains a transient region

The free parameters of P (Mt+1|Mt) are the transition probabilities for the stan-

dard note evolution grammar. Define:

pk|j
∆
= P (Mt+1 = k|Mt = j) ∀j, k ∈ M (3.49)

Then, let for each j ∈ M, Sj ⊂ M denote the set of possibilities for k for which pk|j

represents a transition probability in the standard note evolution grammar. Define

the vector θM as the collection of free parameters of P (Mt+1|Mt):

θM
∆
= Vec





⋃

j∈M

⋃

k∈Sj

{

pk|j

}



 (3.50)

We estimate θM via the expectation-maximization (EM) algorithm [28]. Ideally,

θM is chosen to maximize the likelihood P (Y1:N |θM); however, the latter is generally

intractable due to the marginalization over the hidden trajectories M1:N , S1:N , of

which the number of possibilities grows exponentially with N . As such, the EM

algorithm encompasses iterations θ
(i)
M → θ

(i+1)
M for which

{

θ
(i)
M , i ≥ 0

}

converges to

a local maximum of this likelihood; algorithm details are supplied in Section 3.7.2,

with additional derivations in Appendix B. A favorable initialization ensures rapid

convergence to the global likelihood maximum; we denote the latter as θ∗M .



CHAPTER 3. THE ROLE OF MUSICAL STRUCTURE 82

OT CT

CPOP

N

Figure 3.15: Markov transition diagram for P (Mt+1|Mt) .

To initialize the EM algorithm, we introduce a heterogeneous Poisson process

model representing the cyclic succession of a transient region of expected length NT ,

followed by a pitched region of expected length NP , followed by a null region of

expected length NN . Individual lengths are modeled as independent, exponentially

distributed random variables. Given the “rightmost region” assignment (Figure 3.14),

one may determine any transition probability in the initial value θ
(0)
M , as represented

by the nonzero elements in Table 3.2. Here, each term p
(k)
j,k denotes the probability

that the beginning of the next frame lies in a region of type y of the mth subsequent

cycle given that the beginning of the current frame lies in a region of type j, where

j, k ∈ {T, P, N}, and where T corresponds to a transient, P corresponds to a pitched,

and N corresponds to a null region. For example, if the current frame corresponds to

a pitched region, the probability that no transition occurs in the next frame is p
(0)
P,P .

The probability that the boundary of the next frame lies within the pitched region

of the subsequent note is p
(1)
P,P . Lastly, the probability of spurious transition, denoted

as ps, is set to some small, nonzero value; for instance, ps = 0.001 for the results of
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Section 3.9

Mt+1 = ′OT′ Mt+1 = ′OP′ Mt+1 = ′CT′

Mt =
′OT′ 0 0 (1−ps)p

(0)
T,T

Mt =
′OP′ 0 0 0

Mt =
′CT′ ps ps (1−3ps)p

(0)
T,T

Mt =
′CP′ p

(0)
P,T p

(1)
P,P 0

Mt =
′N′ p

(0)
N,T p

(1)
N,P 0

Mt+1 = ′CP′ Mt+1 = ′N′

Mt =
′OT′ (1−ps)(1 − p

(1)
T,T ) ps

Mt =
′OP′ p

(0)
P,P 1 − p

(0)
P,P

Mt =
′CT′ (1−3ps)p

(1)
T,T ps

Mt =
′CP′ p

(0)
P,P p

(0)
P,N

Mt =
′N′ 0 p

(0)
N,N

Table 3.2: Generative Poisson model for the initialization of θM .

The state transition dependence, P (St+1|Mt, Mt+1, St), governs the expected con-

sistency between St and St+1 as a function of Mt and Mt+1. For instance, recalling

the legato model of Section 3.3.3, we expect pitch content (as represented by Nt and

Tt) to be highly consistent when frames t and t + 1 belong to pitched regions within

the same note event (Mt, Mt+1 ∈ P). In general, P (St+1|Mt, Mt+1, St) depends on Mt

at least through Mt ∈ P or Mt ∈ Q, as the relation between two temporally adjacent

pitched states is fundamentally different than the relation between a pitched state

following a non-pitched state7. No further dependence on Mt is assumed.

For fixed Mt, the variation of P (St+1|Mt, Mt+1, St) with respect to Mt+1 yields the

primary consideration for the detection of note region boundaries. Given Mt ∈ P,

Mt+1 = ′CP′ indicates that frames t and t + 1 belong to the same note event; hence

Nt+1, Tt+1, and At+1 are expected to be close to Nt, Tt, and At, respectively. On the

other hand, Mt+1 = ′OP′ signifies that frame t + 1 corresponds to the onset of a new

note event. Here, At+1 is independent of At, and Nt+1 depends only on Nt through

the probabilistic relation between the values of adjacent notes.

7This fact alone accounts for the diagonal links in Figure 3.12 which do not appear in the
corresponding graph (Figure 3.6) for the legato model, because in the latter every state is pitched.
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For fixed Mt, Mt+1 ∈ P, the transition behavior factors independently over the

components of St:

P (St+1|St, Mt+1 ∈ P, Mt ∈ P) = P (Tt+1|Tt, Mt+1, Mt ∈ P)

× P (Nt+1|Nt, Mt+1 ∈ P, Mt ∈ P) P (At+1|At, Mt+1 ∈ P, Mt ∈ P) (3.51)

Similar expressions result for Mt ∈ Q and Mt+1 ∈ Q, except in these cases At+1

is replaced by AQ
t+1, and At is replaced by AQ

t . We observe that the factoriza-

tion (3.51) assumes no a priori interdependence between state components when

Mt and Mt+1 are in evidence. In practice, such interdependence exists: for instance,

{Tt = 0.49̄, Nt = 60} and {Tt = 0.5, Nt = 61} refer to the same pitch hypothesis. The

latter ambiguity occurs upon portamento/legato transitions between notes as evi-

denced, for instance, in the violin recording analyzed in Section 3.9.1. Despite these

difficulties, the system correctly detects the onset of the second note in the transition,

and identifies the portamento pitch contour.

We discuss now the individual distributions on the r.h.s. of (3.51), considering

note, tuning, and amplitude, in that order. To begin, if Mt+1 = ′CP′, Mt ∈ P
with probability one; hence, frames t and t + 1 belong to the same note event, and

Nt+1 ≈ Nt. In these cases, we choose the conditional distribution of Nt+1 given Nt

to concentrate about Nt. To express this concentration, we define the double-sided

exponential distribution:

E2 (X1, α+, α−|X0) =















c, X1 = X0

cα
K(X1)−K(X0)
+ , X1 > X0

cα
K(X0)−K(X1)
− , X0 > X1

(3.52)

where c is chosen such that the distribution sums to unity, and K(X) = k means that

X is the kth smallest element in the finite set of values for X. For Nt+1 given Nt, the

dependence is symmetric:

P (Nt+1|Nt, Mt+1 = ′CP′, Mt ∈ P) ∼ E2 (Nt+1|Nt, αN , αN) (3.53)
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Ideally αN = 0, but we must allow some small deviation for robustness to the

case where the tuning offset approaches ±0.5, as here some ambiguity may result as

to the note value. Now, if Mt+1 ∈ Q, no information about the note is reflected in

the observations. Here we adopt the convention that Nt+1 refers to the value of the

most recent note event; upon transition to a new event, we will have memorized the

value of the previous event and can thus apply knowledge from melodic expectations

insofar as note-to-note dependences are concerned8. Hence

P (Nt+1|Nt, Mt+1 ∈ Q, Mt ∈ M) ∼ E2 (Nt+1|Nt, αN−, αN+) (3.54)

where αN+ = αN−
∆
= αN . Finally, we let Pnote trans(N1|N0) be the dependence where

N0 and N1 are the values of adjacent note events; if such information is absent, the

dependence is uniform over N1, independent of N0. If Mt+1 = ′OP′, the frame t + 1

is the first frame where the value of the new note event can be observed. Since Nt

memorizes the value of the previous note, the conditional distribution of Nt+1 must

follow Pnote trans(N1|N0):

P (Nt+1|Nt, Mt+1 = ′OP′, Mt ∈ M) ∼ Pnote trans (N1|N0) (3.55)

The remaining cases involve certain (Mt, Mt+1) combinations which occur with

zero probability due to the mode transition dependence (Table 3.2). These distribu-

tions do not affect the inference outcome, so we specify them to minimize computa-

tional effort (see Table 3.3).

The conditional distribution of the tuning reflects the assumption that tuning is

8Of course, the implied first-order Markov characterization of the prior melodic structure becomes
severely inadequate when considering the structural forms implied by most musics, specifically West-
ern tonal music. In the latter case, more sophisticated Markov models may be developed, such as
the model of Leistikow [71], which effectively augments Nt with past notes and intervals, as well
as higher-level contextual attributes such as key, harmony, meter, harmonic rhythm, and beat posi-
tion. Leistikow’s model translates melodic expectations derived from the music cognition research
of Narmour [85], Krumhansl [64], Schellenberg [101], Lerdahl [73] Larson and McAdams [69], and
others into variable first-order Markov dependences of the form Pnote trans(N1|N0), where N0, N1

are the augmented states corresponding to successive note events; see Section 3.10.1 for further
details. Whereas the simple note-to-note model is not very useful in practice, the key innovation in
the memorization of Nt in non-pitched states is to demonstrate how contextual predictions on the
level of syntax (i.e., melodic expectations) may inform detection capabilities at the signal level.
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expected to be constant, or vary only slightly throughout the recording, indepen-

dently of onsets, offsets and note events. Of course, this is not entirely true, as some

instruments exhibit a dynamic pitch envelope. Hence

P (Tt+1|Tt, Mt+1 ∈ M, Mt ∈ M) ∼ E2 (Tt+1|Tt, αT+, αT−) (3.56)

where αT+ = αT−
∆
= αT indicates symmetry of the expected tuning variation. If it is

known that the pitch will decay, such as in tuned percussion sources, we may adjust

αT+ < αT− to reflect this possibility.

Finally, we consider the conditional distribution of both pitched and null ampli-

tudes. The case (Mt+1 = ′CP′, Mt ∈ P) implies that At and At+1 belong to the same

note event, At+1 concentrating about At as follows:

P (At+1|At, Mt+1 = ′CP′, Mt ∈ P) ∼ E2 (At+1|At, αA+, αA−) (3.57)

where αA+ ≤ αA−. Setting αA+ < αA− indicates a decaying amplitude evolu-

tion throughout the note duration, best adapted to percussive tones like piano and

marimba. On the other hand, setting αA+ = αA− may be more appropriate for violin,

voice, and other sustained tones, or instruments with lengthy attack regions. In all

other cases, At+1 is independent of At (or AQ
t ). Where Mt+1 = ′OP′, At+1 corresponds

to the pitch amplitude of the onset of a note event. In these cases, At+1 resamples

from a distribution favoring higher amplitudes:

P (At+1|At, Mt+1 = ′OP′, Mt ∈ P) ∼ E1(At+1, βA,′OP′)

P (At+1|AQ
t , Mt+1 = ′OP′, Mt ∈ Q) ∼ E1(At+1, βA,′OP′) (3.58)

where, using the notation of (3.52),

E1(X, β) = cβK(X) (3.59)

The constant c is chosen such that for fixed β, E1(X, β) sums to unity over

values of X. Setting βA,OP > 1 means that the pitched onset amplitude concentrates
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about higher amplitudes. Where Mt+1 ∈ ′OT′ or Mt+1 ∈ ′CT′ (i.e., Mt+1 ∈ T ), the

distribution is similar, but it concerns AQ
t+1 instead of At+1:

P (AQ
t+1|At, Mt+1 ∈ T , Mt ∈ P) ∼ E1(AQ

t+1, βA,T )

P (AQ
t+1|AQ

t , Mt+1 ∈ T , Mt ∈ Q) ∼ E1(AQ
t+1, βA,T ) (3.60)

where βA,T > 1. Where Mt+1 = ′N′, the distribution of AQ
t+1 follows either line of

(3.60), depending on Mt ∈ P or Q, but with βA,′N ′ < 1 in place of βA,T , since the

null mode favors lower amplitudes. Table 3.3 summarizes the aforementioned state

transition behavior, filling in ”don’t-care” possibilities.

Mt+1 Mt ∈ Q
P (Nt+1|Nt) ∼ E2 (Nt+1|Nt, αN , αN )

′OT′ P (Tt+1|Tt) ∼ E2 (Tt+1|Tt, αT , αT )

P (AQ
t+1|A

Q
t ) ∼ E1(AQ

t+1, βA,T )

P (Nt+1|Nt) ∼ Pnote trans (Nt+1|Nt)
′OP′ P (Tt+1|Tt) ∼ E2 (Tt+1|Tt, αT , αT )

P (At+1|A
Q
t ) ∼ E1

`

At+1, βA,′OP′

´

P (Nt+1|Nt) ∼ E2 (Nt+1|Nt, αN , αN )
′CT′ P (Tt+1|Tt) ∼ E2 (Tt+1|Tt, αT , αT )

P (AQ
t+1|A

Q
t ) ∼ E1(AQ

t+1, βA,T )

P (Nt+1|Nt) ∼ Pnote trans (Nt+1|Nt)
′CP′ P (Tt+1|Tt) ∼ E2 (Tt+1|Tt, αT , αT )

P (At+1|A
Q
t ) ∼ E1(At+1, βA,′OP′)

P (Nt+1|Nt) ∼ E2 (Nt+1|Nt, αN , αN )
′N′ P (Tt+1|Tt) ∼ E2 (Tt+1|Tt, αT , αT )

P (AQ
t+1|A

Q
t ) ∼ E1(AQ

t+1, βA,′N′)

Mt+1 Mt ∈ P
P (Nt+1|Nt) ∼ E2 (Nt+1|Nt, αN , αN )

′OT′ P (Tt+1|Tt) ∼ E2 (Tt+1|Tt, αT , αT )

P (AQ
t+1|At) ∼ E1(AQ

t+1, βA,T )

P (Nt+1|Nt) ∼ Pnote trans (Nt+1|Nt)
′OP′ P (Tt+1|Tt) ∼ E2 (Tt+1|Tt, αT , αT )

P (At+1|At) ∼ E1
`

At+1, βA,′OP′

´

P (Nt+1|Nt) ∼ E2 (Nt+1|Nt, αN , αN )
′CT′ P (Tt+1|Tt) ∼ E2 (Tt+1|Tt, αT , αT )

P (AQ
t+1|At) ∼ E1(AQ

t+1, βA,T )

P (Nt+1|Nt) ∼ E2 (Nt+1|Nt, αN , αN )
′CP′ P (Tt+1|Tt) ∼ E2 (Tt+1|Tt, αT , αT )

P (At+1|At) ∼ E2 (At+1|At, αA+, αA−)
P (Nt+1|Nt) ∼ E2 (Nt+1|Nt, αN , αN )

′N′ P (Tt+1|Tt) ∼ E2 (Tt+1|Tt, αT , αT )

P (AQ
t+1|At) ∼ E1(AQ

t+1, βA,′N′)

Table 3.3: State transition table for component distributions of P (St+1|St, Mt+1, Mt)
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3.6.3 Frame likelihood

We wish to evaluate the likelihoods for frames with pitch content: P (Yt|Nt, Tt, At, Mt ∈
P), and for frames without: P (Yt|AQ

t , Mt ∈ Q). For frames with pitch content,

P (Yt|Nt, Tt, At, Mt ∈ P) is computed by a modification of the method developed

in Chapter 4, to which we henceforth refer as the canonical evaluation. The latter

evaluates P (Yt|f0,t, A0,t) where f0,t is the radian fundamental frequency and A0,t the

reference amplitude for the tth frame, and Yt consists of the joint collection of peak

frequencies and amplitudes; i.e., Yt = {F, A}, where

F
∆
= {F (1), F (2), . . . , F (No)}

A
∆
= {A(1), A(2), . . . , A(No)} (3.61)

Here F (k) denotes the frequency of the kth lowest-frequency STFT peak and A(k)

the corresponding amplitude. We henceforth denote the canonical evaluation as

Pcan(Yt|f0,t, A0,t) to distinguish it from the subsequent modification.

The canonical evaluation proves robust to real-world phenomena such as inhar-

monicity, undetected peaks, and spurious peaks due to noise and other interfer-

ence phenomena, as indicated by the results shown in Section 4.4; see Further-

more, straightforward extensions exist for the polyphonic case; as implemented in

the Bayesian chord recognizer of Leistikow et al. [72]. However, care must be taken

in the association of the hypotheses (f0,t, A0,t) with those of the state (Nt, Tt and

At). While f0,t is uniquely determined by Nt and Tt, the relation between the ref-

erence amplitude, A0,t, and At becomes more involved. In the canonical evaluation,

the reference amplitude is estimated as the maximum amplitude over all peaks in

the frame, denoted as Amax,t. The latter yields favorable psychoacoustic properties

in the context of many real-world signals which are assumed to be monophonic, but

are actually polyphonic. For instance, consider a recording of the introductory mo-

tive of Bach’s Invention 2 in C minor (BWV 773) by Glenn Gould. Here the pianist

hums two octaves below the piano melody. The humming can barely be heard in

most frames; nevertheless, the likelihood evaluation sometimes favors the voice’s fun-

damental rather than that of the piano, especially when these fundamentals are in
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an exact harmonic relationship. While this result may be technically correct in the

absence of explicit timbral models, it fails to represent what is heard as salient. Now,

one may argue that the perceived salience of the piano melody arises from the con-

sistency of pitch and amplitude information across long segments of frames, as the

voice tends to fade in and out over these regions. We find, nevertheless, from in-

formal listening tests, that the perceived salience of the piano tone persists even in

the absence of contextual cues; for instance, when a single frame is extracted and

repeated for any given duration. A plausible explanation is that in the absence of

other contextual cues, we focus on the loudest of multiple pitch components, hence

the choice A0,t = Amax,t.

Unfortunately, use of Pcan(Yt|f0,t, A0,t) with A0,t = Amax,t ignores the state variable

At, thus preventing the conditional distribution of At from being influenced by the

signal, except indirectly via Mt. This in turn diminishes the capacity of jumps in

the signal’s amplitude envelope to inform the segmentation, which can be a critical

issue when detecting onsets of repeated notes. Our solution is to take A0,t = At

while introducing Amax,t as an independent noisy observation9 of At, as shown in

Figure 3.16. By so doing, we blend the strategy which derives A0,t from the state

(A0,t = At) with the strategy incorporating psychoacoustic salience (A0,t = Amax,t).

The conditional distribution for the observation layer becomes

P (Yt, Amax,t|Nt, Tt, At) = P (Yt|Nt, Tt, At) P (Amax,t|At) (3.62)

Here, P (Yt|Nt, Tt, At) is modeled by the canonical evaluation with A0,t = At and

f0,t the fundamental frequency corresponding to the pitch hypothesis indicated by Nt

and Tt, and Amax,t is modeled as At plus Gaussian noise:

P (Yt|Nt, Tt, At) = Pcan (Yt|f0(Nt, Tt), A0,t = At)

P (Amax,t|At) = N
(

At, σ
2
A

)

(3.63)

9It may seem counterintuitive to model Amax,t and Yt as conditionally independent of At since,
unconditionally speaking, Amax,t is a deterministic function of Yt. However, we wish not to introduce
bias by assuming specific dependences between the noise on Amax,t and the amplitude/frequency
noises on other peaks of Yt.
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Nt, Tt, At

Yt Amax,t

Figure 3.16: Observation layer dependence with Amax,t

We may interpolate between the rigid cases (A0,t = Amax,t vs. A0,t = At) by

varying σ2
A between 0 and ∞. Assuming At ∈ R

+, as σ2
A → 0, the pitch in-

ference P (Nt, Tt|Yt, Amax,t), becomes identical to the inference P ′ (Nt, Tt|Yt) where

P ′ (Yt|Nt, Tt, At) equals the canonical evaluation, P ∗ (Yt|f0(Nt, Tt), A0,t = At), with

A0,t = Amax,t. On the other hand, as σ2
A → ∞, the pitch inference P (Nt, Tt|Yt, Amax,t)

converges to P (Nt, Tt|Yt), which is the canonical evaluation using A0,t = At, Amax,t

being ignored.

To show, we first consider σ2
A → ∞; here the dependence on At vanishes:

P (Amax,t|At) → P (Amax,t). As a result, Amax,t and the collection {Yt, Nt, Tt, At}
become mutually independent. Then P (Nt, Tt|Yt, Amax,t) → P (Nt, Tt|Yt), as was to

be shown.

Next we consider σ2
A → 0; to begin, we note that in this case, P (Amax,t|At)

becomes impulsively concentrated about At; i.e.:

P (Amax,t|At) ∼ δ (Amax,t, At) (3.64)

It suffices to show that, given (3.64), P (Nt, Tt|Yt, Amax,t) becomes identical to the

inference P ′(Nt, Tt|Yt) where

P ′(Yt|Nt, Tt, At) = Pcan (Yt|f0(Nt, Tt), A0,t = Amax,t) (3.65)
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Expanding P (Nt, Tt|Yt, Amax,t) according to Bayes’ rule yields the following:

P (Nt, Tt|Yt, Amax,t) =

∑

ν,τ

∫

At
π (At, ν, τ, Yt, Amax,t) dAt

∫

At
π (At, Nt, Tt, Yt, Amax,t) dAt

∀ Nt, Tt (3.66)

where

π (At,Nt,Tt,Yt,Amax,t)
∆
= P (At,Nt,Tt,Yt,Amax,t) (3.67)

and

P (At, Nt, Tt, Yt, Amax,t) = P (At)P (Nt, Tt|At)

× Pcan (Yt|f0(Nt, Tt), A0,t = At) δ (Amax,t, At) (3.68)

Substituting (3.68) into (3.66) results in integral expressions with impulsive terms.

These expressions, and hence (3.66), simplify to

∫

At

P (At, Nt, Tt, Yt, Amax,t) dAt = P (Nt, Tt|At = Amax,t)

× Pcan (Yt|f0(Nt, Tt), A0,t = Amax,t) (3.69)

Now, since At and {Nt, Tt} are a priori independent, (3.69) simplifies further:

∫

At

P (At, Nt, Tt, Yt, Amax,t) dAt = P (Nt, Tt)

× Pcan (Yt|f0(Nt, Tt), A0,t = Amax,t) (3.70)

It follows that the substitution of (3.70) into (3.66) obtains the same relation as

the expansion of (3.65) via Bayes’ rule, in parallel fashion to (3.66). Hence

P (Nt, Tt|Yt, Amax,t) = P ′ (Nt, Tt|Yt, Amax,t) (3.71)

as was to be shown.

In the preceding development, the space of At was assumed to be R
+ which is an

uncountably infinite space. In actuality the domain of At is limited and the space
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discretized to a finite set of possibilities. Nevertheless, provided the domain’s extent

is sufficiently large, and σ2
A considerably exceeds the square of the largest spacing

between At values, the results realized “in practice” become virtually identical to the

analyzed situation where At ∈ R
+.

As a final note, some frames may lack pitch content altogether; these correspond to

purely transient effects (e.g., percussion), background noise, or silence. In these cases

Mt ∈ Q. Since we still wish to model a general amplitude characteristic associated

with these frames, in order to distinguish transients from silence, for instance, we

model the frame via Pcan(Yt|f0(Nt, Tt), A
Q
t ) under the restriction that all peaks are

spurious.

3.7 Inference methodology

3.7.1 Primary inference

The primary inference goals for the joint onset detection, transient region identifica-

tion, and melody transcription, as discussed in Section 3.5.2, are the determination

of the maximum a posteriori mode sequence M∗
1:N ; i.e.,

M∗
1:N = argmax

M1:N

P (M1:N |Y1:N) (3.72)

and the computation of the smoothed state posterior given M∗
1:N ; denoted as σ∗

1:N ;

i.e.,

σ∗(St) = P (St|M∗
1:N , Y1:N), ∀t ∈ 1 : N (3.73)

If, for any t ∈ 1 : N − 1, Yt+1 is conditionally independent of Y1:t and M1:t given

Mt+1, the Viterbi algorithm [94] may be used to identify M̂∗
1:N . Unfortunately, the

implicit marginalization of S1:N in P (M1:N |Y1:N) precludes this possibility. As the

complexity of the Viterbi approach is linear in the number of frames and quadratic
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in the number of modes, we seek an approximate Viterbi inference with similar com-

putational cost. To this end, we approximate:

P (Yt+1|M1:t+1, Yt) ≈ P (Yt+1|M∗
1:t−1(Mt), Mt, Mt+1, Y1:t) (3.74)

where

M∗
1:t−1(Mt) ≈ argmax

M1:t−1

P (M1:t−1|Mt, Y1:t) (3.75)

We refer to M∗
1:t−1(Mt) as the (approximate) Mt-optimal mode sequence, and define

M∗
a:b(Mt) as the restriction of this sequence to frames a through b, and adopt the

shorthand M∗
a

∆
= M∗

a:a. This approximation, similar to that used by Pavlovic et al.

[87] for the learning of switching linear models of human motion, treats the history

of the mode sequence up to time t− 1 collectively as a nuisance parameter, replacing

its value with the corresponding maximum a posteriori estimate given Mt and Y1:t.

The inference proceeds in two passes, a forward, filtering pass, followed by a

backward, smoothing pass. Table 3.4 summarizes the quantities propagated in these

passes, as well as the necessary input distributions (the conditional dependences on

the r.h.s. of the factorization (3.42)). The designation (≈) means the referenced

quantity is approximate.

Symbol Quantity Description
τ∗(Mt, St) P (St|M∗

1:t−1(Mt), Mt, Y1:t−1) Predicted posterior given
Mt-optimal mode sequence

µ∗(Mt, St) P (St|M∗
1:t−1(Mt), Mt, Y1:t) Smoothed posterior given

Mt-optimal mode sequence
J(Mt) maxM1:t−1

P (M1:t|Y1:t) (≈) Objective at time t

M∗
t−1(Mt) argmaxMt−1

maxM1:t−2
P (M1:t|Y1:t) (≈) Backpointer

M∗
t argmaxMt

maxM1:t−1,Mt+1:N
P (M1:N |Y1:N ) (≈) MAP mode at time t

σ∗
t (St) P (St|M∗

1:N , Y1:N ) Smoothed posterior
µ0(Mt, St, Mt+1) P (St+1, Yt+1|M∗

1:t−1(Mt), Mt, Mt+1, Y1:t) Intermediate

τ(Mt, St, Mt+1) P (St+1|M∗
1:t−1(Mt), Mt, Mt+1, Y1:t) Intermediate

µ(Mt, St, Mt+1) P (St+1|M∗
1:t−1(Mt), Mt, Mt+1, Y1:t+1) Intermediate

Σ0(Mt, Mt+1) P (Yt+1|M∗
1:t−1(Mt), Mt+1, Y1:t+1) Intermediate

J0(Mt, Mt+1) maxM1:t−1
P (M1:t+1|Y1:t+1) (≈) Intermediate

Table 3.4: Approximate Viterbi inference inputs and propagated quantities

The computation of M∗
1:N and {σ∗(St)}N

t=1 via Table 3.4 satisfies (3.72) and (3.73),

as desired.
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To begin, the filtering pass is initialized as follows.

µ∗(S1, M1) = P (M1, S1|Y1)

=
P (S1|M1)P (Y1|S1)

∑

S1
P (S1|M1)P (Y1|S1)

J(M1) = P (M1|Y1)

=
P (M1)

∑

S1
P (S1|M1)P (Y1|S1)

∑

M1
P (M1)

∑

S1
P (S1|M1)P (Y1|S1)

(3.76)

Then, for t ∈ 1 : N − 1, the filtering recursions proceed:

τ (Mt, St, Mt+1) =
∑

St

µ∗ (Mt, St) P (St+1|Mt, Mt+1, St)

µ0 (Mt, St, Mt+1) = P (Yt+1|St+1) τ (Mt, St, Mt+1)

Σ0 (Mt, Mt+1) =
∑

St+1

µ0 (Mt, St, Mt+1)

J0 (Mt, Mt+1) = J (Mt)P (Mt+1|Mt) Σ0 (Mt, Mt+1)

µ (Mt, St, Mt+1) =
µ0 (Mt, St, Mt+1)

Σ0 (Mt, Mt+1)

M∗
t (Mt+1) = argmax

Mt

J0 (Mt, Mt+1)

J (Mt+1) =
J0 (Mt, Mt+1)

P (Yt+1|Yt)

µ∗ (St, Mt) = µ (St+1, M
∗
t (Mt+1) , Mt+1)

τ ∗ (St, Mt) = τ (St+1, M
∗
t (Mt+1) , Mt+1) (3.77)

For t ≥ 1, µ∗(Mt, St) and M∗
t (Mt+1) are stored as well as τ ∗(Mt, St) for t ≥ 2, and

J(MN). These quantities are necessary for efficient computation of the smoothing

pass. The latter is initialized as follows.

M∗
N = argmax

MN

J (MN )

σ∗(SN ) = µ∗(SN , M∗
N) (3.78)
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Smoothing recursions proceed as t decreases from N − 1 down to 1, as follows:

M∗
t = M∗

t (M∗
t+1)

σ∗(St) = µ∗(St, M
∗
t )
∑

St+1

σ∗(St+1)P (St+1|St, M
∗
t , M∗

t+1)

τ ∗(St+1, M∗
t+1)

(3.79)

Recursions (3.76 - 3.78) are derived in Appendix A.

Finally, we still need to compute the smoothed posteriors for the individual com-

ponents of St as required by (3.44). These are given by marginalizing out the other

components of St according to the definitions (3.40). There are two cases: M∗
t ∈ P,

or M∗
t ∈ Q:

P (Nt|M∗
1:N , Y1:N) =

∑

Tt,At

P (St|M∗
1:N , Y1:N), M∗

t ∈ P

P (Nt|M∗
1:N , Y1:N) =

∑

Tt,A
Q
t

P (St|M∗
1:N , Y1:N), M∗

t ∈ Q (3.80)

P (Tt|M∗
1:N , Y1:N) =

∑

Nt,At

P (St|M∗
1:N , Y1:N), M∗

t ∈ P

P (Tt|M∗
1:N , Y1:N) =

∑

Nt,A
Q
t

P (St|M∗
1:N , Y1:N), M∗

t ∈ Q (3.81)

P (At|M∗
1:N , Y1:N) =

∑

Tt,Nt

P (St|M∗
1:N , Y1:N), M∗

t ∈ P

P (AQ
t |M∗

1:N , Y1:N) =
∑

Tt,Nt

P (St|M∗
1:N , Y1:N), M∗

t ∈ Q (3.82)
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3.7.2 Estimation of free parameters in the mode transition

dependence

Recall from Section 3.6.2 that the free parameters of the mode transition dependence

P (Mt+1|Mt), may be encoded in the vector θM :

θM
∆
= Vec





⋃

j∈M

⋃

k∈Sj

{

pk|j

}



 (3.83)

where Sj ⊂ M denotes the set of possibilities for k for which pk|j
∆
= P (Mt+1 = k|Mt = j)

represents a transition probability in the standard note evolution grammar (3.47).

The EM algorithm for estimating θM , introduced in Section 3.6.2, begins with

an initial guess, i.e., θ
(0)
M , and proceeds over iterations i, updating the estimate θ

(i)
M .

Iterations repeat until convergence. Each iteration updating θ
(i)
M → θ

(i+1)
M consists of

two steps:

• E-step: Compute as follows:

σ(2)(Mt, Mt+1) = P (Mt, Mt+1|Y1:N , θ
(i)
M ) (3.84)

for all t ∈ 1 : N − 1 and Mt, Mt+1 ∈ M.

• M-step: Update for each j ∈ M, k ∈ Sj :

p
(i+1)
k|j =

∑N−1
t=1 σ(2)(Mt = j, Mt+1 = k)

∑

k∈M

∑N−1
t=1 σ(2)(Mt = j, Mt+1 = k)

(3.85)

A complete derivation of the EM algorithm steps is provided in Appendix B, Section

B.1 while the computation of the pairwise smoothed posterior P (Mt, Mt+1|Y1:N , θ
(i)
M )

is addressed in Section B.2.
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3.8 Postprocessing

The goal of postprocessing is to take the maximum a posteriori mode sequence,

M∗
1:N , (3.43) and the smoothed note posterior P (Nt|M∗

1:N , Y1:N), and produce a string

of distinct note events. These events can be stored in a MIDI file. With additional

metrical information, one may further process the note event stream to produce a

score-based representation. However, doing so properly depends on the ability to

model uncertainties in metrical structure, and to integrate such models with signal

information, which lies beyond the scope of the current work. By augmenting the

state Nt with past note values and intervals, as well as higher-level information such

as key, harmony, meter, harmonic rhythm, and beat position, the transition distri-

bution Pnote trans(N1|N0) may represent such uncertainties. Since this distribution is

activated upon transition into the first pitched frame of a new note event, following

(3.55), it serves thus to integrate both signal-level and symbolic-level dependences.

Forthcoming work by Leistikow [71] makes explicit, among other things, the use of

the augmented Nt representation in the modeling of metrical structure (i.e., deter-

mination of bar lines) and hence the production of scores from MIDI files. The bar

line determination problem is well studied; see [3, 21, 30, 113] among others. Other

issues which aid the MIDI → score conversion, such as pitch spelling determination,

are addressed in [22, 23] and the listed references therein, among other sources.

In the present (MIDI file) output, each event consists of an onset time, note

value, and duration. Additionally, we provide a sub-segmentation into transient and

pitched regions. Since the nominally monophonic model (Figure 3.10) is restricted

to having for each note event, at most one transient region followed by a pitched

region, it suffices for the sub-segmentation to specify the duration of the transient

region. Table 3.5 summarizes the symbols defined to represent these quantities; here,

all symbols refer to the kth note event.

Now let Z be a collection of distinct integers, and let min(Z) be the minimum

integer in the collection if Z is nonempty. Define:

+

min(Z)
∆
=

{

∞, Z = ∅
min(Z) otherwise

(3.86)
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Symbol Description

o(k) Onset frame for note event

p(k) First pitched frame in note event

d(k) Note event duration

e
(k)
+ One frame beyond end of note event

N∗(k) MIDI note value

Table 3.5: Transcription output quantities

The postprocessing algorithm iterates over note events k, stopping only when either

the onset frame, pitch boundary, or the advanced end point (o(k), p(k), or e
(k)
+ ), are

infinite. This stopping condition indicates that there is not enough signal to determine

information about the current or subsequent note events.

The onset frame for the first event is initialized as follows.

o(1) =
+

min {t ≥ 1 : M∗
t ∈ O} (3.87)

This search for an explicit onset automatically discards tail portions of note events

which are truncated by the beginning of the signal.

In general, the recursions used to extract note events information are as follows:

o(k) =
+

min
{

t ≥ e
(k−1)
+ : M∗

t ∈ O
}

p(k) =
+

min
{

t ≥ o(k) : M∗
t ∈ P

}

e
(k)
+ =

+

min
{

t ≥ p(k) : M∗
t /∈ C

}

(3.88)

If k = 1, the initialization (3.87) is used in place of (3.88) in case of o(k). As indicated,

e
(k)
+ lies one frame beyond the last frame of the note event. The duration of note k

is just the simple difference between e
(k)
+ and o(k), unless e

(k)
+ has been truncated by

the end of the signal. In the latter case, the duration is that of the truncated part:

N − o(k) + 1.

d(k) = min(e
(k)
+ , N + 1) − o(k) (3.89)
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To obtain the MIDI note value, we extract:

N∗(k) = argmax
n

P (Np(1)+c = n|Y1:N) (3.90)

where

c = min(c0, e
(k)
+ − p(1) − 1). (3.91)

Here c is a margin variable ensuring that the maximum a posteriori pitch value

assigned to the entire event is sampled from a frame which is some distance away

from the end of the transient region. The canonical value of c, ignoring truncation

effects, is c0; c0 = 3 is used to generate the examples of Section 3.9.

We note that the the algorithm seems relatively insensitive to c0 due to consistency

of Nt during pitch regions.. Clearly, the greater the a priori consistency, the more

consistent the maximum a posteriori estimates: signal information is weighted more

uniformly during pitched regions to estimate Nt along any point in the region; as

apparent in the observation weightings for the legato model example of Figure 3.5.

Recalling (3.53), the consistency of Nt during pitched regions is captured by the

following distribution:

P (Nt+1|Nt, Mt+1 = ′CP′, Mt ∈ P) ∼ E2 (Nt+1|Nt, αN , αN) (3.92)

where the double-sided exponential, E2, is defined by (3.52). The amount of consis-

tency is governed by αN in the sense that αN ↓ 0 indicates that all note values must

be identical during the entire pitched region.

In practice, it is virtually unheard of for the maxmized note posterior to fail to be

identical during the pitched portions of note events, as even extreme vibrato effects

may be absorbed by tuning offset variations. Hence, there is no loss of generality in

setting αN = 0, implying that the actual value of c0 specified in (3.90) is immaterial,

as long as c0 > 0.
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3.9 Results

The system for joint onset detection, transient region identification, and melody tran-

scription developed in the preceding sections has been applied to a variety of piano

and violin recordings. While each recording arises from a monophonic score, in ac-

tuality they contain instances of polyphony due to reverberation, note overlaps from

legato playing, and background instrumentation. Furthermore, expressive pitch vari-

ations such as portamento and vibrato occur in the violin passages. The goal of this

section is to provide a detailed analysis of the system’s performance for one repre-

sentative example of each type: a piano recording in which the performer also sings

in the background, and a violin recording exhibiting significant reverberation, legato

playing and expressive pitch variation.

The piano recording consists of the introductory motive of Bach’s Invention II in

C minor (BWV 773), performed by Glenn Gould. The top section of Figure 3.17

displays the time domain waveform. While this recording lacks significant reverber-

ation, the legato playing style nevertheless causes many notes to overlap. A further

complication is that the performer (Gould) accompanies himself with low-amplitude

vocalizations, with fundamentals approximately two octaves below those of the pi-

ano10. Nevertheless, onsets are clearly visible and may be determined by standard

heuristic time domain approaches which monitor jumps in the amplitude envelope;

see, for instance, the algorithm of Schloss [102] used in the automatic transcription of

percussive music. The purpose of this example is mainly to show robustness to low

levels of background instrumentation.

The violin recording is an excerpt from the third movement of Bach’s solo violin

Sonata No. 1 in G minor (BWV 1001), performed by Nathan Milstein. The top

section of Figure 3.18 displays the time domain waveform. This recording is awash

in reverberation, which makes it difficult to detect onsets visually or by monitoring

the amplitude envelope. Furthermore, excessive reverberation combined with legato

playing induces significant polyphony due to overlapping notes. Expressive pitch

variations, particularly portamento, create ambiguities concerning onset locations. A

10This idiosyncrasy of Gould has been well documented; see Malone [80] for an interesting study
of counterpoint with regards to the piano material as appearing in Gould’s vocalizations.
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significant “slide” (legato/portamento transition), for instance, exists between the

third and fourth notes.

3.9.1 Primary inference

Primary inference concerns the determination of the maximum a posteriori mode se-

quence M∗
1:N and the and the computation of the smoothed posteriors for note, tuning

offset, and pitched/non-pitched reference amplitude (3.80 - 3.82). Figure 3.17 displays

results for the piano example. The time domain waveform is displayed at the top of

Figure 3.17. Vertical lines designate frame boundaries. In the section labeled “On-

set”, a black rectangle is displayed for each frame t for which M∗
t ∈ O. The section

labeled “Modes” displays for each M ∈ M, a black rectangle for each frame in which

M∗
t = M . The remaining sections, entitled “Notes”, “Tunings”, “Amps”, and “Nul-

lAmps”, display rectangles with sizes depending on the value of the posterior for each

quantity and frame. (e.g., the “Tunings” section displays P (Tt|M∗
1:N , Y1:N)). Rect-

angle sizes vary logarithmically according to posterior probability, with the smallest

visible rectangle corresponding to a probability of 0.03, and the largest, 1.0.

In this example, since visual inspection of the amplitude envelope essentially indi-

cates the proper segmentation, it is easy to check that the sequence M∗
1:N and hence

the onset determination are valid. The note posteriors, P (Nt|M∗
1:N , Y1:N) concentrate

almost perfectly about the correct note values during pitched portion of note events,

despite the occasional presence of the performer’s voice, and the overlapping decays

(significant overlaps are observed between the second and third notes, as well as be-

tween the third and fourth). The concentration of the note posterior extends beyond

the ends of these regions, encompassing null and transient regions until the beginning

of the pitched region for the following event. The latter observation is consistent with

the reuse of Nt during non-pitched regions to “memorize” the previous note value,

as discussed in Section 3.6.2. The tuning posterior, P (Tt|M∗
1:N , Y1:N), seems remark-

ably consistent and only slightly influenced by note boundaries (the maximum of this

posterior deviates ±10 cents for the third and fifth notes). The (pitched) amplitude

posterior, P (At|M∗
1:N , Y1:N), indicates decaying envelopes as expected for piano.
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Figure 3.17: Piano example: Introductory motive of Bach’s Invention 2 in C minor
(BWV 773), performed by Glenn Gould
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Corresponding results for the violin example are displayed in Figure 3.18. Since

onsets are not directly visible by eye, checking the validity of the segmentation in the

violin example becomes a painstaking process in which one must repeatedly splice

and listen to various extracts, each time shifting the possible note boundaries. This

process may take several minutes for each second of music. Further complications

arise thanks the to shortness of the segments and the significant polyphony induced

by reverberation and legato playing. Nevertheless, it seems difficult to improve on

the resultant segmentation as indicated by M∗
1:N .

Through maximizing the note posterior, P (Nt|M∗
1:N , Y1:N), all notes are correctly

detected except for the initial “grace note” comprising the first three frames11. For

these frames, the detected pitch is one octave below the notated pitch. The tuning

posterior is less consistent than in the piano example, primarily due to portamento.

We see that the overt slide between the third and fourth notes manifests in the drift

of the maximized tuning posterior about the onset of the fourth note.

3.9.2 Estimation of mode transition dependence

The convergence of the EM iterations for estimating P (Mt+1|Mt) is displayed in

Figure 3.19 for the Poisson initialization and in Figure 3.20 for a uniform initialization.

The latter is provided for purposes of comparison. These figures refer to the piano

example generating the primary inference results of Figure 3.17. States labeled on the

horizontal axis correspond to Mt+1; the vertical axis, Mt. Black rectangles are used

to display the transition probabilities P (Mt+1|Mt); the size of each rectangle varies

logarithmically with the probability value according to the schema of the previous

section (Figures 3.17 and 3.18). That is, the smallest visible rectangle corresponds to

a transition probability of 0.03 while the largest corresponds to a probability of 1.0.

Recall that the Poisson initialization encodes knowledge of the “cyclic succession”

schema (Figure 3.10), where a transient region of expected length NT is followed by

a pitched region of expected length NP , followed by a null region of expected length

NN , and repeating until the end of the signal. Individual region lengths are modeled

11The note in question is not an actual grace note, but an artifact due to truncation of all but
three frames from the previous note event.
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Figure 3.18: Primary inference results on an excerpt from the third movement of
Bach’s solo violin Sonata No. 1 in G minor (BWV 1001), performed by Nathan
Milstein
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Figure 3.19: EM convergence results beginning from Poisson initialization

as independent, exponentially distributed random variables. We choose mean lengths

of NT = 23 ms, NP = 580 ms, and NN = 348 ms 12. The EM convergence, however,

appears relatively insensitive to modest variations in mean lengths.

The uniform initialization attempts to remove all prior knowledge from the speci-

fication of θ
(0)
M , distributing transition probabilities in a conditionally uniform manner

given Sj ∈ M for each j ∈ M after accounting for spurious transitions. To represent

the latter, let Sspur
j denote for each j ∈ M, the collection of k ∈ M for which the

j → k transition is spurious, meaning that it appears as a dotted line in Figure 3.15.

Then, according to (3.83), we may represent θ
(0)
M as follows:

θ
(0)
M

∆
= Vec





⋃

j∈M

⋃

k∈Sj

{

p
(0)
k|j

}



 (3.93)

12With 44100 Hz sampling rate and 1024-sample frames, these settings are achieved with NT = 1
frame, NP = 25 frames, and NN = 15 frames.
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Figure 3.20: EM convergence results beginning from uniform initialization

where p
(0)
k|j is the initial value of P (Mt+1 = k|Mt = j) and Sj represents for each j ∈

M, the collection of k ∈ M for which p
(0)
k|j corresponds to the standard note evolution

grammar as represented by solid lines in Figure 3.15. Clearly Sj ∩Sspur
j = ∅ ∀j ∈ M.

Hence, for each j ∈ M, the probability accorded to Sj is one minus the probability

accorded to Sspur
j . The latter is distributed uniformly among the elements of Sj:

p
(0)
k|j =

1 − #(Sspur
j ) · ε

#(Sj)
∀j ∈ M, k ∈ Sj (3.94)

As Figures (3.19 - 3.20) indicate, the EM under uniform initialization takes at

least five iterations to converge, while the Poisson initialization converges after only

two iterations. This underscores the usefulness of the Poisson specification of θ
(0)
M

even though the latter differs substantially from the maximum likelihood fit to the

data as approximated by θ
(i)
M after convergence.
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3.10 Conclusions and future work

As demonstrated in the previous section, the proposed method is able to accurately

segment and extract melodies from framewise STFT peak data obtained from nom-

inally monophonic recordings. The method not only identifies note boundaries, it

yields a sub-segmentation of each note into transient and steady-state regions. The

latter proves useful for the analysis-synthesis tasks of Chapter 2, for instance the time

and pitch scaling discussed in Section 2.2, and the transient-specific processing intro-

duced in Section 2.3. Additionally, the sub-segmentation finds application in adaptive

window switching for audio transform coding [36]. Since transient regions generally

contain broadband, rapidly time-varying spectral content, it is advantageous to use

short windows to analyze these regions, because short windows sacrifice frequency

resolution for increased time resolution. Shorter windows are used for transients and

longer windows for the steady-state parts.

The proposed method proves robust to noise, interference, expressive pitch vari-

ations resulting from portamento and vibrato, and instances of polyphony resulting

from background instrumentation, note overlaps due to legato playing, and rever-

beration. Robustness is aided by the temporal integration caused by modeling prior

structural information at the signal level as captured by the “standard note evolution”

grammar (3.47) as well as the expectation that pitch and amplitude characteristics

will be consistent throughout pitched regions of note events. As a result, all frames

within each pitched region are used to estimate signal characteristics (pitches and

amplitudes) during any point in the region.

Furthermore, the proposed method facilitates the modeling of higher-level struc-

tural attributes via melodic expectations, and the integration of such attributes

with the signal-level information. Melodic expectations are presently modeled via

Pnote trans(N1|N0), the note-to-note transition distribution introduced in Section 3.6.2.

Unfortunately, this first-order Markov dependence may not capture the majority of

expectations which arise in practice, particularly in the context of Western tonal

music [69]. Forthcoming work by Leistikow [71] considers the augmentation of the

Nt-encoding to include past notes and intervals, as well as higher-level context (e.g.,
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key, harmony, meter, harmonic rhythm, and beat position) so that these expecta-

tions may be represented using a first-order Markov dependence, which may be in-

corporated into the present method. Section 3.10.1 summarizes key features of this

approach.

In addition to melody, another important high-level structural attribute is rhythm.

Rhythm manifests in quasi-regular patterns of onset times (and other region boundary

times) about which listeners develop temporal expectations. The latter take the form

of a hazard rate influencing the distribution P (Mt+1|Mt). Temporal expectations

involving rhythmic structure may be modeled via probabilistic phase locking networks,

as introduced in Section 3.10.1.

Subsequent work should also address several limitations of the proposed method.

First, the method currently lacks the ability to encode actual instances of polyphony,

so it cannot be used to transcribe recordings generated from polyphonic scores. In Sec-

tion 3.10.3, a straightforward polyphonic extension is proposed. Second, the method’s

temporal resolution for determining segment boundaries is restricted by the frame rate

(equivalent to the STFT hop size). For instance, the results of Figures 3.17 and 3.18

use a frame rate of 512 samples at 44.1 kHz (11.6 ms), which may not suffice for

either analysis-synthesis or transform coding applications. Nevertheless, the frame-

resolution output yields significant information about the location of onsets and other

transient boundaries, as well as signal models before and after change. As discussed in

Section 3.10.4, this information may be useful in subsequent sample accurate process-

ing. In this section, we propose additional applications in interactive audio editing.

For instance, given a nominally monophonic recording with overlapping notes, one

may select all note events of a given type (such as the stable notes with respect to the

current harmony), demix them from the recording, process them individually, and

mix the processed versions in with the rest of the recording.

3.10.1 Modeling melodic expectations

Currently, one may integrate melodic expectations into the present system in the

form of a stationary, first-order Markov dependence, Pnote trans(N1|N0), where N1
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represents the current note and N0 the previous. However, this dependence proves

insufficient to model even the simplest melodic expectations which arise in most

musics, for instance Western tonal music.

Much recent work in the music cognition literature (cf. Krumhansl [64], Narmour

[85], Schellenberg [101], and Larson and McAdams [69]) addresses the fundamental

melodic expectations which arise in Western tonal music. Unfortunately, these ex-

pectations are given in rule based, instead of probabilistic, form. To be of use in the

present system, these models must admit a stationary first-order Markov probabilis-

tic representation with respect to some encoding which advances on a note-by-note

basis. In forthcoming work, Leistikow [71] solves this issue by expanding the note

representation to include additional state information which makes the Markov rep-

resentation possible. Leistikow’s representation augments the current note value with

past notes and intervals, as well as higher-level contextual attirbutes, for instance,

key, harmony, meter, harmonic rhythm, and beat position.

We may summarize Leistikow’s representation as follows. Let Xk denote the

augmented note representation, where k is the note index. The goal is to encode the

melodic expectations as described in the aforementioned music cognition work in the

form of P (X1|X0) (which by assumed stationarity equals P (Xk|Xk−1) for any k). A

common feature of the aforementioned music cognition work is that, given particular

values of Xk−1, certain values of Xk (or subsets of such values) are expected to

occur more frequently than others. This expectation does not determine P (Xk|Xk−1),

inasmuch as it constrains it; the form of such constraints are clearly convex over the

product space of simplices representing possibilities for P (Xk|Xk−1). For example,

consider the “musical force” expectations introduced by Larson and McAdams [69],

namely inertia, magnetism, and gravity.

• Inertia says that if a melody makes at least two stepwise transitions in a given

direction (up or down), the following note will be more likely to continue that

direction than reverse course.

• Magnetism involves the current key, which generates a collection of stable note

values corresponding to the tonic major triad (i.e., if the key is ′C Major′, the
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′C′, ′E′, and ′G′ notes constitute the stable notes for each octave). Magnetism

says that if the choice is between a stepwise transition towards or away from the

nearest stable note, the transition towards that note will be more likely; i.e., in

the ′C Major′ example, the transition ′F′ → ′E′ is more likely than ′F′ → ′G′.

• Similarly, gravity says that unstable notes are more likely to descend then ascend

along stepwise transitions.

Now, consider

Xk
∆
=

{

N
(0)
k , I

(1)
k , I

(2)
k , Kk

}

(3.95)

where N
(0)
k is the current (kth) note value, I

(1)
k ∈ I is a type designation for the

interval leading up to N
(0)
k , I

(2)
k is the preceding interval designation, and Kk is the

key. The set I consists of five interval types:

I = {′R′, ′SU′, ′SD′, ′LU′, ′LD′} (3.96)

where

• ′R′ means repeat ; the current and previous notes are identical

• ′SU′ means step up; the current note is one or two semitones above the previous

• ′SD′ means step down; the current note is one or two semitones below the

previous

• ′LU′ means leap up; the current note is at least three semitones above the

previous

• ′LD′ means leap down; the current note is at least three semitones below the

previous

Since many elements of the pair {Xk−1, Xk} are redundant (e.g., I
(2)
k = I

(1)
k−1) P (Xk|Xk−1)

factors into P (Kk|Kk−1), P (N
(0)
k |N (0)

k−1, I
(1)
k−1, I

(2)
k−1, Kk), and a number of degenerate
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(deterministic) distributions:

P (Xk|Xk−1) = P (Kk|Kk−1)P (N
(0)
k |N (0)

k−1, I
(1)
k−1, I

(2)
k−1, Kk)

× P (I
(1)
k |N (0)

k−1)P (I
(2)
k |I(1)

k−1) (3.97)

Assuming P (Kk|Kk−1) is predetermined (the key may be considered constant for this

example), the specification of P (Xk|Xk−1) reduces to the specification of

P (N
(0)
k |N (0)

k−1, I
(1)
k−1, I

(2)
k−1, Kk). The latter models the expectation for the current note

given the previous note, key, and preceding interval types.

Each of Larson and McAdams’ tendencies (inertia, gravity, magnetism) may be

represented as a linear constraint on a simplex representing possible values of N
(0)
k ,

for some fixed value of N
(0)
k−1, I

(1)
k−1, I

(2)
k−1, and Kk. Generally there exist many possible

distributions satisfying these constraints. The distribution proposed by Leistikow

[71] is that which effectively maximizes the number of pieces which are in some sense

“close” to those generated by P (Xk|Xk−1), namely the distribution which maximizes

the entropy rate of the note process {N (0)
1 , N

(0)
2 , . . .} (considering P (Kk|Kk−1) as

fixed). Let π(N
(0)
k−1, I

(1)
k−1, I

(2)
k−1, Kk) represent a certain prior distribution; define the

functional J(P, π) as follows:

J(P, π) = E
π(N

(0)
k−1,I

(1)
k−1,I

(2)
k−1,Kk)

[

log P (N
(0)
k |N (0)

k−1, I
(1)
k−1, I

(2)
k−1, Kk)

]

(3.98)

For fixed π(N
(0)
k−1, I

(1)
k−1, I

(2)
k−1, Kk), it is easily shown that J(P, π) is concave on the prod-

uct of simplices representing free parameters in P (N
(0)
k |N (0)

k−1, I
(1)
k−1, I

(2)
k−1, Kk). Since

the Larson-McAdams constraints are convex on this space, the determination of P

maximizing J(P, π) is a convex problem, and can be solved by one of the many

available software packages, for instance PDCO (primal-dual method for convex ob-

jectives) [100].

The entropy rate of the note process equals constant terms plus J(P, µ), where

µ(N
(0)
k−1, I

(1)
k−1, I

(2)
k−1, Kk) is the corresponding component of the stationary distribution

for P (Xk|Xk−1), this of course assuming the constraints allow this stationary distri-

bution to exist. Unfortunately, P (Xk|Xk−1) depends on P (N
(0)
k |N (0)

k−1, I
(1)
k−1, I

(2)
k−1, Kk);
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this implicit circularity fails to guarantee convexity for the entropy rate maximization.

Preliminary studies, however, show excellent results in practice using an iterative ap-

proach: First π(N
(0)
k−1, I

(1)
k−1, I

(2)
k−1, Kk) is initialized as uniform. Then

P (N
(0)
k |N (0)

k−1, I
(1)
k−1, I

(2)
k−1, Kk) is chosen to maximize J(P, π) as in (3.98). Subsequently

a new π is chosen by solving for the stationary distribution of P (Xk|Xk−1) given

P (N
(0)
k |N (0)

k−1, I
(1)
k−1, I

(2)
k−1, Kk). The latter two steps repeat until convergence.

So far, stationary first-order Markov models of musical expectations have been

developed in [71] by translating rule-based constructs from the music cognition lit-

erature into probability distributions via entropy-rate maximization. The latter is

solvable as a sequence of convex optimization problems. A remaining task is to incor-

porate higher-level constructs involving meter and beat position, as metrical accents

greatly influence melodic expectations [73, 45, 12] , Another primary task is to in-

tegrate these melodic expectation models with the present signal-level models for

melody extraction and segmentation, and test the result on a representative corpus.

3.10.2 Modeling temporal expectations from rhythm via prob-

abilistic phase locking networks

The presence of rhythm in most musics guarantees some regularity as to the loca-

tions of segment boundaries, especially note onsets. Such regularity allows one to

accurately predict where the next boundary will occur. We call the associated pre-

dictive distributions temporal expectations, analogously to the melodic expectations

discussed above. Temporal expectations may be combined with subsequent signal

observations to improve the segment boundary detection. The end result is a fully

integrated Bayesian framework for joint tempo tracking and onset detection which

operates directly on signal observations. Presently, recent literature on audio-based

tempo tracking [49, 51, 18, 65] seems to consider onset detection separately from the

tempo induction, as the latter uses already detected onsets as observations. Such

decoupled approaches make it difficult for temporal expectations associated with the

tempo hypothesis to inform the onset detection, as is possible with an integrated

Bayesian approach.
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The simplest possible scenario concerns an unknown quasi-periodic structure,

which can be thought of as a jittery metronome with additional, smooth tempo

drift. To illustrate how temporal expectations are encoded by this structure, we

may consider once again the legato model of Section 3.3.3, where Mt ∈ {′O′, ′C′}; ′O′

indicating onset (abrupt change), and ′C′ indicating continuation of the underlying

state quantity St, for which Yt constitutes a noisy observation. Two additional hid-

den variables interact with the Mt-layer: Tt, the unknown tempo (representing the

inverse of the number of frames between onsets), and τt, the elapsed duration since

the last onset. To allow for quasi-perodicity rather than strict periodicity, Tt may

vary smoothly across frames; we expect the actual onset interarrival times to have

additional jitter.

While the elapsed duration is a function of the onset incidence, and the onset in-

cidence is influenced by the elapsed duration, this circularity does not cause problems

in practice. As such, the dependences among the aforementioned variables may be

encoded in a directed acyclic graph, as shown in Figure 3.21. We call the proposed

structure a probabilistic phase locking network.

We address each dependence not already discussed in Section 3.3.3 as follows.

• P (Tt+1|Tt) models tempo drift. Following [21], log Tt+1 equals log Tt plus Gaus-

sian noise.

• P (τt+1|τt, Mt+1) models the elapsed duration since the previous onset. This

distribution is deterministic, modeling a counter which resets upon Mt+1 = ′O′.

Onset locations are considered quantized to the beginning of the frame; more

precisely, the event Mt = ′O′ corresponds to the event that an onset occurs in

[t−1/2, t+1/2) where t is measured in frames. Elapsed durations (as a matter

of definition) are measured from the end of the frame. Hence, P (τt+1|τt, Mt+1 =
′O′) concentrates on τt+1 = 1 (reset); P (τt+1|τt, Mt+1 = ′C′) concentrates on

τt+1 = τt + 1 (increment).

• The temporal expectation P (Mt+1|τt, Tt+1, Mt) models the probability that an

onset is assigned to frame t+1 given elapsed duration and tempo; for this simple

example Mt may be dropped from the conditioning if we allow onsets to occur
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Tt Tt+1

Mt Mt+1

St St+1

τt τt+1

Yt Yt+1

Figure 3.21: Probabilistic phase locking network for modeling quasi-periodic stream of
abrupt-change events

in adjacent frames. Now, let Z represent the random interarrival time between

successive onsets. Given Tt+1, we expect log Z to equal the logarithm of the

tempo period, which is log 1/Tt+1, plus Gaussian noise. The pdf of O is hence

completely specified given Tt+1 and we represent it as such: pZ(z|Tt+1).

Given additionally τt, the probability that Mt+1 = ′O′ is equal to the event that

Z < τt + 1/2. Since τt is observed we know that Z ≥ τt − 1/2, so P (Mt+1 =
′O′|τt, Tt+1, Mt) is equal to the hazard rate, or P (Z < τt + 1/2|O ≥ τt − 1/2):

P (Mt+1 = ′O′|τt, Tt+1, Mt) =

∫ τt+1/2

τt−1/2
pZ(z|Tt+1)dz

1 −
∫ τt−1/2

0
pZ(z|Tt+1)dz

(3.99)

In standard, nominally monophonic musical examples, the expected note durations

are not constant. They still relate to each other through the tempo period via notated

durations; e.g., quarter notes, eighth notes, triplets etc. We represent this situation

by introducing two additional variables. The anticipated duration between onsets
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Figure 3.22: Probabilistic phase-locking network for nominally monophonic temporal
expectation model

is measured by 1/Dt in units of frames, while Xt represents the current notated

duration; Xt is permitted to change only upon the onset of a new note, Mt = ′O′.

One may compute Dt by knowing the frame rate, Tt, and Xt−1.

Figure 3.22 represents the nominally monophonic temporal expectation model.

Additional dependences represented in this figure which have not been previously

introduced are as follows.

• P (Mt+1 = ′O′|τt, Dt+1, Mt) is evaluated using (3.99) with Dt+1 in place of Tt+1.

• P (Dt|Tt, Xt) is deterministic. If the tempo is such that 1/Tt represents the

expected onset interarrival time in frames between quarter notes, the period

1/Dt may be adjusted according to the notated duration represented by Xt.
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• P (Xt+1|Xt, Mt+1 = ′C′) concentrates on Xt because the notated duration can-

not change until a new onset appears and we move on to the next note. Then

P (Xt+1|Xt, Mt+1 = ′O′) describes the anticipated distribution of notated du-

rations for the next note. Of course, it is difficult to model this distribution

without augmenting Xt to include metrical information (meter and beat posi-

tion); in the meantime we choose a uniform distribution among the available

possibilities for Xt+1 until an improved solution may be found. Alternatively,

P (Xt+1|Xt, Mt+1 = ′O′) may be adapted to a representative corpus using EM.

The proposed modeling of temporal expectations seems promising for two reasons:

first, it enables the joint tracking of tempo and note onsets directly from audio

signal observations, rather than tracking tempo from onset information alone, as

is done in recent literature [49, 51, 18, 65]; moreover, the probabilistic modeling

of temporal expectations may be of interest in music cognition research, because

these expectations explicitly encode the anticipation that an event is about to occur.

For instance, we may investigate how to create expectations which are continually

deferred, to build up tension.

A major challenge which has not been so far addressed is the adaptation of the

temporal expectation models in Figures 3.21 and 3.22 to account for transient infor-

mation. By so doing, Mt can take on the full set of possibilities in M, which enables

the temporal expectation models to be integrated into the current melody extraction

and segmentation method to further improve our abilities to detect all types of region

boundaries, not just onsets. A further task is to expand the encoding of Xt to include

metrical information as the latter also influences melodic expectations (i.e., given a

particular harmony, it is more likely for stable notes with respect to this harmony

to occur on downbeats than other beat positions [73]). Hence, we may assess the

interaction between melodic and rhythmic tendencies through different types of ac-

centual patterns involving the meter. This in turn will allow the tracking of melodic

patterns to improve our abilities to track rhythmic patterns and vice versa, as both

are influenced by metrical information.
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3.10.3 Polyphonic extensions

The extension to polyphony is conceptually straightforward. Unfortunately, the in-

ference methods of Section 3.7 encounter computational difficulties due to the combi-

natorial explosion in the number of aggregate mode possibilities. To see this, let the

range of note values N = Nmin :Nmax, and for each N ∈ N , assign hidden variables

M
(N)
t and S

(N)
t to model the mode and state information for that particular note13.

The number of possibilities for the aggregate mode variable, M
(Nmin:Nmax)
t , grows ex-

ponentially with N . Both the primary inference, discussed in Section 3.7.1, and the

EM algorithm for estimating free parameters in the mode transition dependence (Sec-

tion 3.7.2) yield computational costs which are quadratic in the number of possibilities

for Mt. This quadratic cost arises from various quantities propagated in primary in-

ference and EM recursions which involve both Mt and Mt+1; i.e., τ (Mt, St, Mt+1) and

µ (Mt, St, Mt+1) in (3.77), and σ(2)(Mt, Mt+1) in (3.84) and (3.85).

Further difficulties arise in the modeling of P (Yt|S(Nmin:Nmax)
t ), as the methods

discussed in Chapter 4 concern only single-pitch hypotheses. These methods must

be extended to the case of multiple pitches. Such an extension has already been

developed by Leistikow et al. and successfully applied in the context of Bayesian

chord recognition from single-frame STFT data [72]. Hence, the primary difficulty in

the polyphonic extension remains the computability of the inference. We believe this

difficulty may be resolved by sequential Monte Carlo (SMC) techniques, in particular

adaptations of the particle filter [38, 32].

To assess the applicability of SMC, we consider the expected concentration of the

posterior quantities which are actually propagated in the inference. These quantities

consist of various marginalizations of filtered or smoothed posteriors evaluated over

adjacent pairs of states; i.e.:

P
(

M
(Nmin:Nmax)
t , S

(Nmin:Nmax)
t , M

(Nmin:Nmax)
t+1 , S

(Nmin:Nmax)
t+1 |Y1:t

)

P
(

M
(Nmin :Nmax)
t , S

(Nmin:Nmax)
t , M

(Nmin:Nmax)
t+1 , S

(Nmin:Nmax)
t+1 |Y1:N

)

13Here the state information can be reduced because the Nt-component of S
(N)
t equals N .
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While the nominal space of joint possibilities for M
(Nmin :Nmax)
t , S

(Nmin:Nmax)
t ,

M
(Nmin:Nmax)
t+1 , and S

(Nmin:Nmax)
t+1 remains exponentially large in the size of the note

range, the vast majority of such possibilities, given adequate signal observations, are

expected to have negligible probability. For instance, usually we can expect only a

limited number of notes to be sounding at any given time, which means for most

N ∈ N , M
(N)
t concentrates on ′N′. Furthermore, rhythmic structure indicates that

onsets and the locations of transient regions will be highly synchronized, and har-

monic structure indicates that all but a few note combinations are likely to occur

simultaneously. As such, it is plausible that these posterior distributions may be

well-represented14 by a reasonably-sized collection of weighted particles, each particle

corresponding one of the joint possibilities with non-negligible posterior probabil-

ity. A byproduct is that since there is effectively no limit on the nominal size of

the space for S
(Nmin:Nmax)
t , we may forego the discretization of the remaining state

quantities (amplitudes, tuning offsets) altogether, since these quantities are naturally

continuous-valued. Rather than treating amplitudes and tuning offsets as nuisance

parameters, as is done formally in the postprocessing stage, we can extract more

meaningful information from the posteriors P (A
(Nmin:Nmax)
t |M (Nmin:Nmax)

1:N , Y1:N) and

P (T
(Nmin:Nmax)
t |M (Nmin:Nmax)

1:N , Y1:N) in order to track expressive pitch and amplitude

variations, following the interpretation of Figure 3.18 given in Section 3.9.1.

The proposed approximate inference strategies using SMC are presently under

development. This development proceeds in three stages: first, we replicate the

present nominally monophonic model in order to test the SMC approximation; second,

we eliminate the discretization of tuning offsets and amplitudes in the monophonic

case; third, we complete the polyphonic extension.

3.10.4 Interactive audio editing

In recording applications, it is common that individual instruments or small groups

of instruments are recorded on separate tracks. The majority of tracks hence satisfy

14The idea of “well-representation” means at the very least that, as the number of particles
becomes sufficiently large, the weighted sample average converges to the posterior mean; see, e.g.
[27] for more rigorous definitions and convergence properties.
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the nominally monophonic assumption. Often, prior to mixing, individual tracks are

edited to correct timing or intonation15 or to generate other, creative transformations

of the sound material. Using the standard “waveform only” visual representation, the

editing process may become quite time consuming, as sections of the recording must

be spliced by hand and repeatedly listened to in order to discern note boundaries and

regions containing pitch information.

To this end, the present method generates a map of detected onsets, transient

and pitched regions, and note values, as well as approximate trajectories for tuning

offset and amplitude envelope information for each individual track16, as long as the

latter satisfies the nominally monophonic assumption. This map may be displayed in

conjunction with, or overlaid on top of, the waveform representation. We expect that

the combined representation will facilitate the editing process, as the time consuming

detection problems become automated. Furthermore, making the map editable opens

up new creative possibilities: one can slide note regions around with the mouse,

modifying time and pitch information; one can also select certain types of notes

or note regions and apply specific processing to just these regions. For instance,

dynamic range modifications (e.g., compression or expansion) may be applied to just

transient regions in order to sharpen attacks and increase the track’s presence in

the mix without changing its volume. Another example concerns the “correction” of

a violinist’s intonation, taking care that the end result does not destroy expressive

qualities. If the current harmony is known, one may correct the intonation of just the

stable pitches while leaving other notes unprocessed. This might make the performer

sound more “in tune” with the rest of the ensemble while preserving more nuanced

performance characteristics which prove otherwise difficult to model [4].

Of course, to implement such region-dependent changes, due to the possibility

of overlapping notes it becomes necessary to demix these notes, extract them in-

dividually, apply transformations as desired, then reconstitute the results. Unfortu-

nately, the segmentation’s temporal resolution is limited to the frame rate; subsequent

sample-accurate segmentation may be required. Fortunately, the present, frame-based

15Time and pitch corrections are especially common in vocal recordings.
16Imagine the posterior plot shown in Figure 3.18, but with segment boundaries and note regions

clearly delineated according to the postprocessing discussed in Section 3.8.
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Figure 3.23: Schematics for sample accurate segmentation and demixing of overlap-
ping audio sources

method greatly facilitates subsequent sample-accurate processing: it restricts bound-

aries to frame neighborhoods as well as yields approximate information about possible

signal models immediately before and after these boundaries.

Given appropriate signal models, both sample-accurate segmentation and demix-

ing may be performed by maximum-likelihood estimation as described in [61]. Fig-

ure 3.23 displays schematics for both the standard segmentation problem and the

demixing problem. This figure represents the situation where it is known that ex-

actly one segment boundary occurs at t = τ , where τ ∈ t0 : t1 and t, τ are measured

in samples. The joint distribution of these samples, yt0:t1 , may be modeled:

P (yt0:t1 |θ1, θ2, τ) =
τ−1
∏

t=t0

P (yt|y1:t−1, θ1)
t1
∏

t=τ

P (yt|y1:t−1, θ1, θ2), (3.100)

Here
∏τ−1

t=t0
P (yt|y1:t−1, θ1) represents the signal model before the segment boundary

parameterized by θ1. This parameter may encode pitch and amplitude characteristics,

as well as the type of model (transient, pitched, and so forth). The signal model for

the region after the segment boundary is given by P (yt|y1:t−1, θ1, θ2); where θ2 encodes

the new information present at time τ . The estimated segment boundary location, τ̂ ,
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is the maximum-likelihood estimate:

τ̂ = argmax
τ∈t0:t1

P (yt0:t1 |θ1, θ2, τ) (3.101)

Usually, these signal models may be represented as stationary Markov processes; in

many cases (e.g., autoregressive models, or the linear Gaussian state space models for

sinusoidal parameter estimation used by Cemgil et. al. [20, 18] for sample accurate

processing), each likelihood update as τ increments can be performed in constant

time, making the overall computational complexity of the likelihood maximization

linear in the region length. It is hoped that the identified frame neighborhood regions

are short enough to make such complexity issues irrelevant.



Chapter 4

Evaluating pitch content

hypotheses

4.1 Introduction

We begin by summarizing briefly several goals stated in Chapter 3 concerning the

evaluation of pitch content hypotheses with respect to STFT peak observations. Let

Yt denote the collection of peaks for the tth frame; we may represent Yt = {F, A},
where:

F
∆
= {F (1), F (2), . . . , F (No)}

A
∆
= {A(1), A(2), . . . , A(No)} (4.1)

where F (k) denotes the frequency of the kth lowest-frequency STFT peak, A(k) the

corresponding amplitude, and No the number of observed peaks. The primary goal

consists of evaluating the likelihood of Yt with respect to both pitch and non-pitch

hypotheses, as there is no guarantee that the underlying signal contains significant

pitch content, for instance during transient regions. The pitch hypothesis likelihood

is denoted as P (Yt|Nt, Tt, At), where

• Nt is an integer representing the note semitone value; i.e., Nt = 60 corresponds

to the note ′C4′.

122
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• Tt ∈ [0.5, 0.5) is a fractional tuning offset, representing the deviation from Nt

in semitones.

• At is a reference amplitude, in the sense that amplification of the input signal

by some constant causes a proportionate change in At.

The non-pitch hypothesis likelihood is denoted as P (Yt|AQ
t ), where AQ

t is a reference

amplitude for the overall signal level1.

The proposed model for pitch hypotheses actually subsumes the model for non-

pitch hypotheses, because the former explicitly accounts for spurious peaks which

arise from signal content unrelated to the pitch hypothesis, for instance noise, in-

terference, and other non-pitched signals. Hence, the evaluation of P (Yt|AQ
t ) may

proceed using the evaluation for pitch hypotheses under the constraint that all peaks

are spurious.

4.2 The proposed model

The proposed model makes use of a harmonic template to govern the distribution

of spectral peak frequencies, inspired by the approach of Goldstein [47]. However,

many cases exist where there is prior information concerning timbre, resulting from

full or partial knowledge of the instruments used in the recording. Consequently, the

proposed template involves spectral peak amplitudes as well as frequencies to exploit

knowledge of timbre in the disambiguation of pitch determinations. For instance, if it

is known a priori that a certain instrument’s timbre emphasizes even harmonics, it will

be considerably less likely that the second harmonic is mistaken for the fundamental

in assigning pitch values to recordings using that instrument.

Another deviation from Goldstein’s template-based model is the explicit account-

ing for spurious peaks. The latter are peaks observed in the STFT which do not arise

1Currently, there are no efforts to model signal characteristics for non-pitch hypotheses beyond the
reference amplitude. Subsequent revisions may focus on characterizing the spectral envelope in terms
of psychoacoustically relevant features, for instance mel frequency cepstral coefficients (MFCC’s).
The latter have been demonstrated quite useful in the perceptual discrimination of timbre [114],
as well as a variety of musical information retrieval tasks which exploit timbral characteristics of
non-pitched sounds [24, 43].
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from sinusoidal components indicated in the template. Spurious peaks arise primarily

from noise or background instrumentation. Under low noise conditions, sidelobes may

cause spurious detections, although the latter behavior is rare due to the thresholding

used in preprocessing stages.

Furthermore, the proposed model accounts for missing or undetected peaks. These

peaks exist in the template, but are not observed in the STFT. Three common causes

of missing peaks are as follows: the designated sinusoidal component may fall below

the preprocessing threshold; it may be of such low amplitude as to dissappear below

the noise floor, or be absent entirely from the input signal (e.g., clarinet sounds are

generally missing even harmonics); it may collide with neighboring peaks and hence

fail to be resolved.

4.2.1 Preprocessing

Issues surrounding spurious and missing peaks are clarified by considering the algo-

rithm’s preprocessing stages. The goal of preprocessing is to take a signal frame and

extract from it a peaklist Yt. Figure 4.1 shows the preprocessing stage for a frame

hopped every T/2 samples.

INPUT
SIGNAL

HAMMING 
WINDOW

(8x zeropad)

D
F
T

cthresh

EXTRACT
LOCAL

MAXIMA
PRUNE

CANDIDATES

SPECTRAL ANALYSIS PEAK PICKING

PARABOLIC 
INTERP.

F A

Figure 4.1: Preprocessing steps for pitch likelihood evaluation

In the spectral analysis stage, a section of length T is extracted and multiplied

by a Hamming window of the same length, then zeropadded by a factor of eight. A

discrete Fourier transform (DFT) of length 8T is taken. All local maxima of the DFT

magnitude are first considered as candidate peaks; accepted candidates must satisfy

the following:



CHAPTER 4. EVALUATING PITCH CONTENT HYPOTHESES 125

• The local maximum’s magnitude must exceed all DFT magnitudes up to eight

bins to the right and left of the maximum’s bin position. The eight-bin distance

represents half of the Hamming window’s mainlobe width under the specified

zeropadding factor.

• The maximum’s magnitude must be no greater than cthresh times that of the

global maximum. Usually cthresh ∈ [0.01, 0.1].

Let Xt[k] denote the DFT evaluated at bin k. Suppose at bin k∗, an accepted candi-

date is found. The log magnitudes of DFT bins Xt[k
∗ − 1], Xt[k

∗], and Xt[k
∗ + 1] are

presented to a parabolic interpolation algorithm following the PARSHL approach of

Smith and Serra [110].

The fitted parabola approximates the log magnitude discrete time Fourier trans-

form (DTFT) of the input frame about the peak position; i.e., if Xt(ω) represents the

DTFT of the windowed frame:

log |Xt(ω)| ≈ A − B(ω − C)2 (4.2)

where the approximation is valid for ω ≈ 2πk∗/T (the latter is the radian frequency

corresponding to bin k∗). From (4.2), the peak frequency is estimated as C, and the

amplitude is estimated as eA.

4.2.2 The harmonic template

In the ideal case, in the absence of noise and other uncertainties, the harmonic tem-

plate describes peaks with frequencies in a harmonic series out to the Nyquist limit.

If Ni denotes the number of template peaks, and f0 the hypothesized fundamental

pitch, ideally Ni = dπ/f0e. Since most acoustic instruments have decreasing spec-

tral energies of their harmonic portions beyond some critical frequency, in practice

the number of template peaks is chosen between three and seven, unless doing so

generates template peak frequencies beyond the Nyquist limit.

The ideal frequency of the kth template peak is kf0; the ideal amplitude follows

the timbral hypothesis A0 · T (k), the latter arising from knowledge of the instrument.
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Here the role of A0 as a reference amplitude becomes apparent: if the input signal is

multiplied by a fixed constant, A0 will be multiplied by this constant. In practice, A0

is chosen such that argmaxk∈1:Ni
T (k) = 1. One may interpret A0 as the maximum

template peak amplitude in the absence of noise.

Of course, the ideal template as stated represents only deterministic effects. To be

robust to the variety of real-world signals perceived as pitched, we must account for

variations in the anticipated signal characteristics due to different source instruments,

recording conditions, interference, and the suboptimality of preprocessing stages. In-

terference from spurious events may perturb both peak frequencies and amplitudes;

additional deviations may result from the imperfect nature of the finite zeropadding

and quadratic DFT interpolation used in preprocessing, though we expect the lat-

ter to be insignificant2. There may also exist uncertainty concerning the harmonic

structure. Many sounds with perceptible pitch content contain significant amounts

of inharmonicity, such as piano and marimba. As the instrument may be unknown

a priori, it becomes important to account for some acceptable range of variation in

the harmonic structure. Likewise, the amplitudes of various harmonics may deviate

from the timbral hypothesis T (k). Even if the instrument is known, recording cir-

cumstances (equalization, distortion, etc.) may cause significant deviations from the

anticipated spectral envelope.

Hence, the harmonic template is represented probabilistically, as a set of joint

distributions over frequencies and amplitudes, one joint distribution for each tem-

plate peak. That is, if F (j) and A(j) constitute, respectively, the frequency and

amplitude of the jth observed STFT peak, the latter corresponding to the kth tem-

plate peak, the variation of F (j) and A(j) is encoded by the conditional distribution

Pk(F (j), A(j)|f0, A0).

2We define the “perfect” preprocessing stage as that which for a single sinusoid with frequency
ω embedded in additive white Gaussian noise, estimates ω with zero bias and minimum variance. It
is well known [97] that the maximum-likelihood frequency estimate is the frequency of the DTFT
magnitude peak. The latter becomes asymptotically unbiased and minimum variance as the number
of samples tends to infinity, achieving the Cramer-Rao lower variance bound. The preprocessing and
peak extraction (Figure 4.1) closely approximates the maximum-likelihood estimate, as discussed in
Section 4.3.3.
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The harmonic template, then, represents the collection of such distributions:

TEMPLATE = {Pk (F (j), A(j)|f0, A0)}Ni

k=1 (4.3)

The precise formulation of template distributions is discussed in Section 4.3.3. Tem-

plate indices are sorted in terms of increasing frequency mean; i.e.:

Ek+1 (F (i)|f0, A0) ≥ Ek (F (j)|f0, A0) ∀k ∈ 1:Ni (4.4)

where Ek denotes the expectation under Pk, F (i) is the frequency of the observed peak

originating from template peak k + 1, and F (j) is the observed frequency originating

from template peak k.

An additional consideration is the peak non-interaction hypothesis. In the ab-

sence of spurious or missing peaks; i.e., if every observed peak corresponds to ex-

actly one template peak, non-interaction stipulates that the observed peak likelihood,

P (F, A|f0, A0), factors as a product distribution over individual template distribu-

tions:

P (F, A|f0, A0) =

No
∏

k=1

Pk(F (k), A(k)|f0, A0) (4.5)

The non-interaction hypothesis says, effectively, that neighboring template peaks ex-

ert no influence on an observed peak, given its correspondent. This hypothesis merits

criticism in the following sense: if template peaks are sufficiently close in frequency

that they approach the STFT’s resolution limit, neighboring components will clearly

bias observed frequencies and amplitudes corresponding to the given component.

Nevertheless, as tolerance for such interferences is already encoded in the distribu-

tion Pk(F (k), A(k)|f0, A0), the avoidance of an explicit encoding of peak interactions

seems not to cause problems in practice.
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4.2.3 Representing the linkage between template and ob-

served peaks

Real-world signals generally lead to spurious detections (observed peaks which have

no correspondent in the template) and missing peaks (template peaks which are

unobserved). Without knowing which observed peaks map to which template peaks,

it becomes difficult to evaluate the overall peak likelihood via template distributions.

Additionally we encode the distribution for the possibility that the observed peak

with frequency F (k) and amplitude A(k) is spurious, as P′S′(F (j), A(j)|f0, A0).

The correspondence between observed and template peaks (plus the spurious pos-

sibility) is encoded via the linkmap L : Jo → Ji where Jo
∆
= 1 : No denotes the set

of observed peak indices, Ji
∆
= 1 : Ni ∪ ′S′ denotes the set of template peak indices

plus ′S′, which is the spurious possibility. In other words, if j is the index of an

observed peak; L(j) returns the index of the corresponding input peak, except when

L(j) = ′S′, which means the jth observed peak is spurious. Figure 4.2 illustrates an

example linkmap where L(1) = 1, L(2) = 2, L(3) = ′S′, L(4) = ′S′, and L(5) = 4.

In the figure, template peaks are shown as circles and observed peaks as “X’s”. Fre-

TEMPLATE
PEAKS

OBSERVED
PEAKS

Figure 4.2: Example linkmap

quencies (or mean frequencies in the case of template peaks) are represented by the

horizontal position of each peak symbol; amplitudes (mean amplitudes in the case of

template peaks) by the peak symbol’s relative size.
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Given linkmap L, the STFT peaks’ likelihood factors as a product distribution

over individual template distributions:

P (F, A|L, f0, A0) =

No
∏

j=1

PL(j)(F (j), A(j)|f0, A0) (4.6)

Since L is unknown, we marginalize with respect to a prior P (L):

P (F, A|f0, A0) =
∑

L∈L

P (L)P (F, A|L, f0, A0)

=
∑

L∈L

P (L)

No
∏

j=1

PL(j)(F (j), A(j)|f0, A0) (4.7)

where L denotes the set of valid linkmaps.

A linkmap is valid if and only if the map is one-to-one and the links as repre-

sented by segments conjoining peak symbol centers do not intersect in the graphical

representation (Figure 4.2), Formally, this means for any j(0) and j(1) in Jo, any of

the following statements are true:

• V1 if L(j(0)) ∈ 1:Ni and L(j(1)) ∈ 1:Ni, then j(1) > j(0) ↔ L(j(1)) > L(j(0)).

• V2 L(j(0)) = ′S′

• V3 L(j(1)) = ′S′

4.3 Distributional specifications

To evaluate the likelihood of the pitch hypothesis, P (F, A|f0, A0) using (4.7), we must

specify the following distributions:

• The linkmap prior P (L)

• The collection of template distributions {Pk (F (j), A(j)|f0, A0)}Ni

k=1

• The spurious distribution P′S′ (F (j), A(j)|f0, A0)



CHAPTER 4. EVALUATING PITCH CONTENT HYPOTHESES 130

Recall that the symbolic linkmap representation, L, is asymmetric in that it de-

scribes the assignment from observed to template peaks. With such a representation,

it becomes easy to evaluate both template and spurious distributions. However, the

evaluation of the prior concerns matters such as which template peaks are unobserved

in the STFT. In this case, it becomes convenient to access a dual representation of the

linkmap, which describes the reverse assignment, from template to observed peaks.

The following section gives an algorithm for obtaining the dual linkmap representa-

tion for any valid linkmap (and vice versa), establishing the inherent equivalency of

both representations.

4.3.1 Dual linkmap representation

Given a linkmap L ∈ L, define the dual linkmap M : Ki → Ko, where Ki
∆
= 1 :

Ni, Ko
∆
= 1 : No ∪ ′M′, where ′M′ designates the possibility of a missing peak. In

other words, for the kth template peak; M(k) returns the index of the corresponding

observed peak, except when M(j) = ′M′, meaning the kth template peak is unobserved

in the STFT. We derive M as follows.

M(k)
∆
=

{

j ∈ 1:No, L(j) = k
′M′, L(j) 6= k ∀j ∈ 1:No

(4.8)

For instance, in the example of Figure 4.2, M(1) = 1, M(2) = 2, M(3) = ′M′,

M(4) = ′M′, and M(5) = 4.

For M : Ki → Ko to be a valid functional mapping, we must show additionally

that each j ∈ 1 : No for which M(k) = j is unique. Assume to the contrary there

exists j(0), j(1) ∈ 1:No and k ∈ 1:Ni for which L(j(0)) = k, L(j(1)) = k, but j(0) 6= j(1).

Either j(0) > j(1) or j(0) < j(1). If j(0) > j(1), by L ∈ L and validity condition V1,

L(j(0)) > L(j(1)) implies k > k which is a contradiction. Similarly, j(0) < j(1) implies

k < k. Hence M belongs to the set of functional mappings M∗ : Ki → Ko.

By the same reasoning, we may show that M is unique given L ∈ L. Assume

to the contrary there exists M, M ′ ∈ M∗, both satisfying (4.8), for which M 6= M ′.

Then there must exist some k ∈ Ki for which either:



CHAPTER 4. EVALUATING PITCH CONTENT HYPOTHESES 131

• (a) M(k) = j(0) ∈ 1:No, M ′(k) = j(1) ∈ 1:No, and j(0) 6= j(1)

• (b) M(k) = j(0) ∈ 1:No and M
′

(k) = ′M′

• (c) M(k) = ′M′ and M
′

(k) = j(1) ∈ 1:No

The latter two cases are similar, so only (b) will be addressed. If (a) holds, then

L(j(0)) = L(j(1)) with j(0) 6= j(1), but by preceding arguments, L 6= L, which is a

contradiction. If (b) holds, we have simultaneously L(j(0)) = k, L(j(1)) 6= k. Hence

M = M
′

, so that M is unique.

By uniqueness of the correspondence L → M , we may query the range of this

correspondence, if indeed it is as large as M∗. However, if L ∈ L, it is readily shown

M ∈ M, where M constitutes the set of all mappings Ki → Ko for which any of the

following validity conditions apply:

• V1M if M(k(0))∈1:No, M(k(1))∈1:No, then k(1) >k(0) ↔ M(k(1))>M(k(0)).

• V2M M(j(0)) = ′M′

• V3M M(j(1)) = ′M′.

To show, suppose L ∈ L, yet none of the conditions V1M–V3M hold. Defining

j(0) = M(k(0)), j(1) = M(k(1)), then there exists j(0), j(1) ∈ Jo, j(0) ≥ j(1) but

L(j(0)) < L(j(1)), which contradicts L ∈ L. Clearly V1M–V3M are symmetric to

V1–V3.

Finally, for all M ∈ M, we may define the reverse correspondence M → L, where

L(j)
∆
=

{

k ∈ 1:No, M(k) = j
′S′, M(k) 6= j ∀k ∈ 1:Ni

(4.9)

By symmetry of the definitions (4.8) and (4.9), it follows that L defined as such is

a unique member of L. Hence, the valid representation spaces L and M exist in

one-to-one correspondence, with each L ∈ L mapping to a unique M ∈ M and vice

versa. We conclude that L, M are equivalent (i.e., dual) representations for the same

underlying structure.
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4.3.2 Prior specification

When specifying the prior, P (L), it becomes convenient to consider L paired with its

dual representation: {L, M}, where M is defined by (4.8) in the preceding section.

We first model the process which accounts for missing peaks in the STFT, then

we account for the incidence of spurious peaks. The information concerning missing

peaks may be encoded in the vector 1M , defined as follows.

1M(k)
∆
= 1{M(k)=′M′}, ∀k = 1:Ni (4.10)

In other words, 1M(k) = 0 means that the kth template peak is observed; 1M(k) = 1

means that it is missing.

Similarly, the generation of spurious peaks may be encoded in the vector 1S:

1S(j)
∆
= 1{L(k)=′S′}, ∀l = 1:No (4.11)

The spurious peaks’ generation is modeled as statistically independent of the pro-

cess responsible for missing peaks. In reality, these processes are interdependent. For

instance, a prominent sinusoidal component from an interference event for which the

frequency matches the mean frequency of one of the template peaks may appear in

the STFT as a spurious peak, also annihilating the corresponding template peak. In

practice, acceptable results are achieved using the independence assumption, espe-

cially since the majority of spurious peaks’ frequencies are seen to differ substantially

from any template peak’s mean frequency. Hence:

P (L) ∝ P (1M)P (1S) (4.12)

where 1M and 1S are derived from L and 1M from M . The proportionality in (4.12)

ensures that the resultant distribution sums to unity. The process modeled by P (1S)

produces in general a variable number of spurious peaks, but the number of missing

peaks (via 1M) and the given number of observed peaks necessarily fixes the number

of spurious peaks. Hence, the model (4.12) actually describes the restriction of a more

general process to a fixed number of observed peaks. The proportionality effectively
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enforces the conditioning implied by this restriction.

The template peak survival is modeled according to the assumption that higher-

frequency peaks are less likely to survive, due to their lower expected amplitude. We

further assume the peak non-interaction hypothesis: the survival of any given peak is

not predicated upon the survival of other peaks. As such the distribution of 1M factors

as a product distribution over each 1M(k); the latter is modeled with geometrically

decaying survival probability:

P (1M) =

Ni
∏

k=1

φk(1−1M (k))
surv (1 − φk

surv)
1M (k) (4.13)

Then the spurious peak generation is modeled as a Poisson process, which indicates

a Poisson-distributed number of spurious peaks:

P (1S) = e−λspur
λ

N′S′
spur

(N′S′)!
(4.14)

where λspur denotes the expected number of spurious peaks in the frequency interval

[0, π) and N′S′ denotes the actual number of spurious peaks:

N′S′ =
No
∑

j=1

1S(k) (4.15)

4.3.3 Template distribution specification

We now consider the modeling of the template distributions in (4.7). Frequency and

amplitude observations are modeled as statistically independent, each depending only

on their respective (fundamental frequency; reference amplitude) hypotheses:

Pk(F (j), A(j)|f0, A0) = Pk(F (j)|f0)Pk(A(j)|A0) (4.16)



CHAPTER 4. EVALUATING PITCH CONTENT HYPOTHESES 134

The frequency observation is modeled as Gaussian, following the model of Goldstein

[47]:

Pk(F (j)|f0) ∼ N (F (j)|µf,k, σf,k) (4.17)

Absent knowledge of harmonic structure, mean frequencies are modeled as integer

multiples of f0. Uncertainties due to additive noise and inharmonicity are absorbed

in the variance term σf,k. Hence:

µf,k = kf0 (4.18)

Regarding the specification of σf,k, we find that variances due to the most common

sources of uncertainty admit the form of a multivariate polynomial relation with

respect to fundamental and harmonic number; i.e.:

σ2
f,k =

nmax
∑

n=0

mmax
∑

m=0

Cm,nf
n
0 km (4.19)

We consider in turn, uncertainties due to additive white Gaussian noise, fourth-order

stiffness behavior (a common form of inharmonicity found in acoustic instruments

such as piano and marimba), and the psychoacoustic considerations addressed by

Goldstein’s model.

The case of additive noise in light of our peak extraction method (Figure 4.1)

is discussed briefly in Section 4.2.2. To review the argument, our peak extraction

approaches the DTFT magnitude estimator of Rife and Boorstyn [97], which the

authors derive as a maximum-likelihood estimator (MLE). Suppose y1:T is a single

complex sinusoid with true amplitude A, frequency ω, and phase φ. Suppose further

that A, ω, and φ are unknown, and that the signal is embedded in additive Gaussian

white noise with variance σ2
n. Let ω̂MLE be the estimate of ω corresponding to the



CHAPTER 4. EVALUATING PITCH CONTENT HYPOTHESES 135

joint MLE. Then:

ω̂ = argmax
ω

∣

∣

∣

∣

∣

T
∑

t=1

e−jωtyt

∣

∣

∣

∣

∣

(4.20)

where j
∆
=

√
−1.

It follows that ω̂, being a MLE, is asymptotically unbiased, achieving the Cramer-

Rao lower variance bound[97]. In other words, for sufficiently large frame length

T :

V ar(ω̂) ≈ 12σ2
n

A2T (T 2 − 1)
(4.21)

The key differences between the proposed peak extraction method, discussed in

Section 4.2.1, and the MLE approach of Rife and Boorstyn are as follows. First,

the proposed method is encumbered by the finite resolution and imperfect interpola-

tion in the frequency domain. The eight-times-zeropadded DFT produces a sampling

of the DTFT at frequencies which are integer multiples of π/(4T ). The exact fre-

quency value maximizing the DTFT magnitude usually occurs between these values.

Quadratic interpolation of the log magnitude about zeropadded-DFT maxima recov-

ers substantial accuracy, but is only exact in the case of an infinite Gaussian window:

it cannot be exact for all analysis window shapes. Second (4.20) implies a rectangular

window, while the proposed method uses a tapered (Hamming) window. The rea-

son, which constitutes yet another primary difference, is that most signals of interest

contain multiple component frequencies. The DTFT peak caused by one compo-

nent frequency may interfere with either sidelobes or mainlobes caused by the other

components.

Figure 4.3 shows an example DTFT containing sidelobe interference. To gener-

ate this example, the input consists of a target sinusoid corrupted by an interfering

sinusoid at higher frequency and three times the magnitude of the target. The upper

graph displays DTFT magnitudes individually for each sinusoid (target = solid line;

interference = dotted line); the lower displays the DTFT magnitude of the target
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(dotted line) vs. the DTFT magnitude of the actually observed mixture (solid line).

Use of a tapered window suppresses sidelobe interference at the expense of widening

the mainlobe (see Figure 4.4); if two mainlobes interact (guaranteed for the Hamming

window if the distance between any two component frequencies is less than 4π/T : see

Figure 4.5), the estimated frequency may shift or the peak may disappear altogether.
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Figure 4.3: Sidelobe interference for rectangular window

Under an eight-fold zeropadding factor, quadratic interpolation frequency biases

appear negligible in light of high-noise operating conditions (0 to -20 dB noise with

frame lengths from 256 to 16384 samples). A zeropadding factor of two or four

usually suffices; i.e., the factor of eight is chosen to exist comfortably beyond the

point of diminishing returns3. Mainlobe interference remains a problem; however, if

template peaks’ mean frequencies are spaced far enough apart that the underlying

components are resolved in the DTFT, it becomes more likely that a linked peak is

replaced by a spurious peak caused by the interference. The latter is already handled

3See [1] for a recent study on frequency biases due to quadratic interpolation.



CHAPTER 4. EVALUATING PITCH CONTENT HYPOTHESES 137

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

Frequency

D
T

F
T

 M
ag

ni
tu

de

Sidelobe Interference, Hamming Window

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

DTFT of Sum of Sinusoids vs. Original

Frequency

D
T

F
T

 M
ag

ni
tu

de

Figure 4.4: Sidelobe interference for Hamming window

by the linkmap encoding. As such, gross frequency estimation errors are usually not

observed.

Hence, the form of the uncertainty due to additive Gaussian white noise via the

proposed preprocessing and peak extraction method seems adequately represented by

the Gaussian uncertainty of the MLE (4.21) under similar conditions. In practice,

the realized variance of the frequency estimate is two to three times greater than

that predicted by the Cramer-Rao bound, depending on the number of data samples.

This “Cramer-Rao” uncertainty appears independent of fundamental frequency and

harmonic number, accounting for the m = n = 0 term in (4.19).

Next, we consider a common source of uncertainty in harmonic structure, which

arises from an unknown fourth-order dispersion coefficient representing the inherent

stiffness of the wave propagation medium. Bar instruments such as marimba, vibra-

phone, and xylophone contain significant dispersion as well as instruments with thick

metallic strings such as piano.
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Mainlobe Interference, Hamming Window
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Figure 4.5: Mainlobe interference for Hamming window

Consider the general linear second-order-time wave equation [11]:

∂2y

∂t2
+ 2

M
∑

k=0

qk
∂2k+1y

∂x2k∂t
+

N
∑

k=1

rk
∂2ky

∂x2k
= 0 (4.22)

where t denotes (continuous) time, y displacement, and x the spatial position. Odd-

order (spatial) terms (the qk-terms) contribute primarily frequency-dependent losses;

even-order terms influence primarily harmonic structure. A simplification of (4.22)

up to fourth-order spatial terms is as follows [11]:

∂2y

∂t2
= c2 ∂2y

∂x2
− κ2 ∂4y

∂x4
− 2b1

∂y

∂t
+ 2b2

∂3y

∂x2∂t
(4.23)

Let us consider fixed boundary conditions; i.e., the displacements and second spatial
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derivatives are zero at x = 0 and x = L. Then, with small loss terms b1, b2 � 1 [42]:

fk ≈ kf0

∣

∣1 + k2B
∣

∣

1/2
(4.24)

where fk is the frequency of the kth partial, and [11]:

f0 =
cπ

L

B =
k2f 2

0

c4
(4.25)

Physically B > 0; we consider B to be exponentially distributed with mean λB. The

latter reflects the desired level of inharmonicity to which we expect to be robust.

As the actual level is unknown, we absorb the expected total squared error in the

variance term; i.e., σf,k = E(fk − kf0)
2. From (4.24) and (4.25), we obtain:

σ2
f,k = k4f 2

0 λB (4.26)

Hence, variance scaling due to uncertainty about harmonic structure accounting for

fourth-order dispersive effects corresponds to the n = 2, m = 4 term in (4.19).

Finally, we recall the variance scaling used in Goldstein’s harmonic template

method [47], which is motivated by psychoacoustic considerations:

σ2
f,k = K2k2f 2

0 (4.27)

This scaling may be derived from a supposed logarithmic tolerance for frequency

deviations. In other words, let:

fk = exp(Xk)

Xk
∆
= log(kf0) + ε

ε ∼ N
(

0, σ2
ε

)

(4.28)
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Then the moment generating function of Xk, M(α)
∆
= E(eαXk), is as follows:

E(eαXk) = (kf0)
αeα2λ/2 (4.29)

From (4.29) the mean and variance terms for fk may be derived.

E(fk) = kf0e
λ/2

V ar(fk) = k2f 2
0

(

e2λ − eλ
)

(4.30)

For λ small, E(fk) ∼ kf0, and the variance remains proportional to k2f 2
0 as in Gold-

stein’s variance scaling (4.27).

We note that the latter variance expressions, (4.26, 4.27), conform to a simplified

version of the general term in (4.19):

σ2
f,k ∝ (kf0)

2kp (4.31)

where p = 0 for the Goldstein model and p = 2 for the inharmonicity model. Only

the additive noise term fails to conform to (4.31). Thus, in practice, we consider only

two terms: a constant term accounting for additive noise, and a term accounting for

timbral variation via (4.31).

σ2
f,k = σ2

F + Charm(kf0)
2kp (4.32)

Empirical testing on a limited number of examples (mostly piano and violin) favors

p between 0 and 1. This lies between the variance scaling proposed by Goldstein, (p =

0), and our proposed scaling due to unknown stiffness (p = 2), although somewhat

closer to the Goldstein model.

We now consider the amplitude distribution Pk(A(j)|A0). Ideally, as previously

discussed in (Section 4.2.2) A(j) ∼ T (k), where T (k) is a timbral hypothesis describing

the spectral envelope4 as a function of harmonic number k. T (k) models a very

4For most acoustic instruments, timbre varies with fundamental frequency. The timbre of the
lowest note on the piano is much brighter, for instance, than that of the highest note. However,
since the exact manner of variation is difficult to generalize across different instruments, we do not
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coarse envelope, similar to the spectral envelopes derived from linear predictive coding

(LPC) or cepstral methods using very few coefficients. This modeling disregards

the fact that some template harmonics are missing or undetectable in the source.

For instance, clarinet timbres generally lack even harmonics, yet the proposed T (k)

decaying smoothly as a function of k. No problems arise, however, as the linkmap

already encodes the instance of missing harmonics. Any prior expectation concerning

missing harmonics may just as easily be addressed by the linkmap prior, rather than

explicitly via T (k).

In practice T (k) is unknown: we lack prior knowledge of the instrument(s) used

in the recording. Another source of uncertainty comes from additive noise. Suppose

that the input consists of a sinusoid corrupted by additive Gaussian white noise, and

the STFT peak amplitude in the absence of noise is T (k). If a rectangular window

is used in preprocessing, the distribution of an appropriately normalized version of

the squared peak amplitude can be modeled by a χ2 distribution with two degrees of

freedom [63, 54]:

Pk

(

A2(j)/σ2
A

∣

∣A0, T (k)
)

∼ χ2
2,A2

0T 2(k)/σ2
A

(4.33)

where σ2
A is the variance of the additive noise in the frequency domain, and χ2

p,q

denotes the χ2 distribution with p degrees of freedom and noncentrality parameter q.

To address the unknown T (k), we assume a geometrically decaying envelope for the

noncentrality, absorbing the remaining uncertainty as excess variance in (4.33). As a

result:

Pk

(

A2(j)/σ2
A

)

∼ χ2

2,A2
0c

2(k−1)
A

/σ2
A

(4.34)

Here cA represents the rolloff of upper harmonic amplitudes. This rolloff remains a

nuisance parameter; ideally, cA would be marginalized respect to some noninformative

prior; however, this step remains unexplored due to tractability issues. However, the

implied relation, T (k) = ck−1
A , does reduce the number of unknown parameters from

Ni (the number of template peaks) down to one.

model it at present.
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4.3.4 Spurious distribution specification

Finally, we consider the distributional modeling for spurious peaks. Paralleling the

situation for template peaks (4.16), frequency and amplitude observations for spurious

peaks are modeled as statistically independent:

P′S′(F (j), A(j)|f0, A0) = P′S′(F (j))P′S′(A(j)) (4.35)

We note that the spurious distribution does not actually depend on f0 or A0.

The frequency distribution follows a generative Poisson model, discussed in Section

4.3.2. Since the linkmap fixes the number of spurious peaks, each frequency is modeled

as conditionally uniform:

P′S′(F (j)) ∼ U(0, π) (4.36)

The amplitude distribution is modeled as the result of pure Gaussian noise in

the time domain. From (4.33) and the preceding section’s discussion, the squared

amplitude normalized by the noise variance admits a central χ2 distribution with two

degrees of freedom, the deterministic component in (4.33) being absent. As such,

P′S′

(

A2(j)/σ2
A,spur

)

∼ χ2
2,0 (4.37)

In the event we are not modeling a pitch hypothesis, but a transient or noise

hypothesis for which all peaks are spurious, we take σ2
A,spur =

(

AQ
)2

, where AQ

represents the overall signal level as defined in Section 4.1.

4.4 Results for exact enumeration

Recall (4.7) that the exact likelihood evaluation proceeds as a summation over all valid

linkmaps L ∈ L, where the latter is described according to the validity conditions

V1-V3 introduced in Section 4.2.3.

To describe an exact enumeration of L, we partition L according to the number
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of template linkages; i.e., the number of output peaks which map to template peaks.

The minimum such number is zero, and the maximum is min(No, Ni). Now let m

represent this number of template linkages, and let Lm denote the corresponding

partition of L. For each m ∈ {0 : min(No, Ni}, we form a linkmap by choosing

a subset of So,m ⊂ 1 : No containing m output peaks and mapping it to a subset

Si,m ⊂ 1 : Ni containing m template peaks. That is, if So,m and Si,m consist of the

index sets:

So,m = {so,m(1), so,m(2), . . . , so,m(m)}
Si,m = {si,m(1), si,m(2), . . . , si,m(m)} (4.38)

the linkmap is defined by

L(so,m(k)) = si,m(k), ∀k = 1 : m

L(j) = ′S′, j /∈ So,m (4.39)

Now, there is no loss of generality if we fix the ordering of So,m; e.g., such that the

corresponding output peaks are sorted by increasing frequency:

F (so,m(k)) < F (so,m(l)), ∀1 ≤ k < l ≤ m (4.40)

But (4.39) and validity condition V1 of Section 4.2.3 require that Si,m be sorted in

the same way; i.e,

F (si,m(k)) < F (si,m(l)), ∀1 ≤ k < l ≤ m (4.41)

Hence, exactly one valid linkmap L ∈ Lm exists for each pair of subsets So,m,Si,m. It

follows that the enumeration of each Lm consists of an inner loop enumerating the
(

No

m

)

distinct subsets of 1 :No with m elements enclosed in an outer loop enumerating

the
(

No

m

)

distinct subsets of 1 :Ni with m elements. As such, the total number of valid



CHAPTER 4. EVALUATING PITCH CONTENT HYPOTHESES 144

linkmaps may be expressed:

# {L} =

min(No,Ni)
∑

m=0

(

No

m

)(

Ni

m

)

(4.42)

If No = Ni = N , (4.42) simplifies accordingly:

# {L} =
N
∑

m=0

(

N

m

)2

=

N
∑

m=0

(

N

m

)(

N

N − m

)

=

(

2N

N

)

(4.43)

The final step of (4.43) is justified by the following argument. Consider a collection

of 2N objects partitioned into two groups of N objects each. Choosing N from these

2N objects is the same as choosing m from the first group and N−m from the second

group. How the objects are chosen within each group is arbitrary, so there are
(

N
m

)

times
(

N
N−m

)

possibilities for each m. Finally, we must sum over m: between 0 and

N objects may be chosen from the first group.

From Stirling’s approximation, the following asymptotic behavior is derived [62]:

(

2N

N

)

=
4N

√
πN

[

1 −O
(

1

N

)]

(4.44)

Hence for the exact enumeration, the number of valid linkmaps (hence terms in

the likelihood summation) grows exponentially with the problem size as measured

by N = max(No, Ni). For large problems, computations may be reduced by pre-

computing the No(Ni + 1) = O(N2) individual peak likelihood terms of the form

PL(j)(F (j), A(j)|f0, A0) in (4.7). Nevertheless, one still must form an exponential

number of products and sum over an exponential number of terms. Although this

complexity may seem distressing, we find that in all of the examples investigated,

most of the likelihood concentrates in very few linkmaps, as long as the input signal
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contains salient pitch content. That observation motivates the stochastic approxima-

tion pursued in Section 4.5. The latter adaptively pursues just those linkmaps which,

collectively, contain virtually all of the likelihood. The stochastic approximation sums

over these, neglecting the remainder of the summation.

We now investigate results for a typical case. Here the input consists of a single

227 ms frame of an ′A4′ piano tone (nominally 440 Hz). The piano tone is recorded

at 44.1 kHz with -14 dB additive Gaussian white noise. The analysis is artificially

truncated to the first seven observed and template peaks to facilitate a tractable

computation. Of the seven observed peaks, at least two appear spurious, and two of

the seven template peaks appear missing. Here, L contains 3432 linkmaps.

Table 4.1 summarizes the model parameter settings used to generate this example.

Parameter Type Description In Equation Value
φsurv Linkmap prior Survival exponent (4.13) 0.55
λspur Linkmap prior Spurious peak rate per [0, π) (4.14) 10.0
σ2

F
Template frequency Frequency variance (additive noise) (4.32) 0 (not used)

Charm Template frequency Degree of harmonic uncertainty (4.32) 0.05
p Template frequency Frequency variance scaling exponent (4.32) 0

cA Template amplitude Expected timbral decay (4.34) 0.35
σ2

A
Template amplitude Timbral uncertainty/amplitude noise level (4.34) (0.5A0)2

σ2
A,spur

Spurious amplitude Spurious level (synonymous w/
`

AQ
´2

) (4.37) (0.05A0)2

Table 4.1: Model parameter settings for exact enumeration example

Figure 4.6 displays the resultant likelihood P (F, A|f0, A0) raised to the 0.05 power

versus candidate frequency f0. Here the reference amplitude A0 is treated as an

unknown nuisance parameter. We estimate A0 as the maximum peak amplitude:

A0 = max
k=1:No

A(k) (4.45)

The reason that the 0.05 likelihood power is taken in Figure 4.6, is that interesting

secondary features, such as the local maxima of the likelihood surface near subhar-

monics of f0, may not be visible otherwise. We observe that the global likelihood

maximum occurs at f0 = 0.0628 radians per sample. At a sampling rate of 44.1 kHz,

this corresponds to a 441 Hz fundamental, which is virtually indistinguishable from

the nominal frequency of 440 Hz. Other local maxima correspond to subharmonics.
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Brute−Force Enumeration Results
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Figure 4.6: Likelihood evaluation results for exact enumeration, piano example

The likelihood ratio between the global maximum and any other local maximum is

at least 1.93 · 1010, indicating marked suppression of subharmonic ambiguity.

Now we consider the necessity of enumerating all linkmaps in L, as opposed to

a few linkmaps which contribute most to the likelihood evaluation. Via (4.7), the

contribution of each individual linkmap as a function of hypotheses f0 and A0, which

we designate as π0(L|f0, A0), may be expressed:

π0(L|f0, A0) = P (L)P (F, A|L, f0, A0) (4.46)

This means that via (4.7, 4.46),

P (F, A|f0, A0) =
∑

L∈L

π0(L|f0, A0) (4.47)
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Now, define the likelihood concentration, ρconc (l|f0, A0) as follows:

ρconc (l|f0, A0)
∆
= sup

S⊂L:#(S)=l

∑

L∈S π0(L|f0, A0)
∑

L∈L π0(L|f0, A0)
(4.48)

In other words, ρconc (l|f0, A0) represents the fraction of the overall likelihood con-

tributed by the l linkmaps with the greatest contributions π0(L|f0, A0). Figure 4.7

displays ρconc (l|f0, A0) vs. f0 for the piano example for l ∈ 1:3; Table 4.2 displays the

concentration averaged over f0 and the percentage of f0 for which the concentration

exceeds 99%.
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Figure 4.7: Likelihood concentration for 1-3 top descriptors

For the typical piano example, virtually all of the likelihood concentrates in just

three linkmaps. If we knew in advance which linkmaps these were, we could just

evaluate π0(L|f0, A0) with respect to these and neglect the rest of the summation

(4.46).
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#Linkmaps Average Likelihood Fraction Exceed 99% Fraction
1 .9581 .8312
2 .9970 .9610
3 .9997 .9870

Table 4.2: Likelihood concentration for 1-3 top descriptors

4.5 MCMC approximate likelihood evaluation

As discussed in the previous section, we are interested in identifying a small subset

of linkmaps which contribute virtually all of the likelihood to the summation (4.46),

so that we can sum over this subset and neglect the rest of the terms, resulting in

tremendous computational savings. To this end, we construct a Markovian random

walk on L, described by initial value L0 and transition distribution P (Li+1|Li), for

which the stationary distribution, π(L), is proportional to the likelihood contribution

π0(L|f0, A0) raised to some power κ > 1:

π(L) ∝ πκ(L|f0, A0) (4.49)

As κ → ∞, the stationary distribution concentrates on the set of linkmaps achiev-

ing the maximum contribution. (Under normal operating conditions, we expect with

probability one that there is just one linkmap in this set.) For the piano example, Ta-

ble 4.2 shows that the linkmap with the maximum likelihood contribution contributes

on average 95.8% of the likelihood, which is inadequate for most purposes. Selecting

κ ∈ [1.5, 5.0] seems to achieve desirable concentration levels when all the linkmaps

visited by the random walk are taken into account. As the random walk is likely to

revisit linkmaps, we hash likelihood computations for each linkmap.

Given π(L), we construct P (Li+1|Li) via the Metropolis-Hastings algorithm [40] as

follows. First, given Li, a candidate L
′

i is chosen according to the sampling distribution

q(L
′

i|Li). Second, we decide either to accept L
′

i, upon which Li+1 = L
′

i, or we reject
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it, taking Li+1 = Li. Acceptance occurs with probability min(1, r(Li, L
′

i)), where

r(Li, L
′

i) =
π(L

′

i)q(Li|L′

i)

π(Li)q(L
′

i|Li)
(4.50)

If P (L
′

i|Li) is irreducible, meaning that starting from any initial L0, any L ∈ L
can be reached in a finite number of steps with positive probability, and aperiodic,

meaning that for each L ∈ L, the greatest common divisor of the set {n : pn
L > 0}

is unity where pn
L denotes the probability that the chain beginning in state L will

return to L in n steps, the convergence of the chain to π(L) is guaranteed [40]. If

π(L) > 0 for all L ∈ L, the irreducibility and aperiodicity of P (L
′

i|Li) follows from

the irreducibility of q(L
′

i|Li). To ensure rapid convergence, we adhere to the following

principles concerning initialization and sampling strategies:

• Favorable initialization The initial linkmap, L0, should be chosen such that

π(L0) is as large as possible.

• Sampling via adjacency The sampling distribution, q(L
′

i|Li), should concen-

trate on those L
′

i which are close to Li under π(·), meaning that the difference
∣

∣π(L
′

i) − π(Li)
∣

∣ is minimized.

Favorable initialization is approached by taking L0 as the output of some heuristic

peak matching algorithm. Here we adopt a method of McAulay and Quatieri [81],

termed MQ-initialization5. For the piano example, the average likelihood concentra-

tion of the linkmap derived from MQ-initialization is 0.1149 (Table 4.3), while the

maximum achievable concentration for a single linkmap is 0.9581 (Table 4.2). Hence,

it seems there is significant room for improvement in the initialization strategy; in-

deed, alternative peak matching strategies such as [110] merit further investigation.

Nonetheless, the MQ-initialization followed by MCMC iterations adhering to the pro-

posed sampling strategy achieves excellent results (Table 4.3).

We now discuss our proposed sampling strategy which is irreducible and which

exploits some notion of adjacency in L. Candidate L
′

i, is derived from Li via one of

5The peak matching strategy in [81] was originally designed to connect sinusoidal peak trajectories
across frames, rather than match peaks to a template. Nevertheless, the aims are similar.
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the following categories of moves:

• Q1 Remove a link We choose an index j ∈ 1:No for which L(j) ∈ 1:Ni and set

L(j) = ′S′.

• Q2 Add a non-intersecting link We choose j ∈ 1 :Ni for which L(j) = ′S′ and

k ∈ 1 : No for which no pair {l ∈ 1:No, m ∈ 1:Ni} exists with L(l) = m and

either of the following intersection conditions:

– l < k, m ≥ j

– l > k, m ≤ j

• Q3 Switch a link to adjacent template peak We choose j ∈ 1 : No for which

L(j) = k ∈ 1 :Ni and specify either L(j) = k − 1 or L(j) = k + 1. The target

value must remain in the range 1 :Ni and the resultant link must not intersect

any other. For instance, if L(j) = k + 1, we must have k ∈ 1 : Ni − 1 and no

pair {l ∈ 1:No, m ∈ 1:Ni} exists with L(l) = m, and either

– l < k + 1, m ≥ j

– l > k + 1, m ≤ j

The case L(j) = k − 1 is symmetric.

• Q4 Switch a link to adjacent observed peak We choose j ∈ 1 : No for which

L(j) = k ∈ 1 : Ni and either j − 1 for which L(j − 1) = ′S′ and j ∈ 2 : No,

or j + 1 for which L(j + 1) = ′S′ and j ∈ 1 : No−1, and assign L(j − 1) = k

(or L(j + 1) = k). The resultant link must not intersect any other. That

means additionally, for the j +1 case, no pair {l ∈ 1:No, m ∈ 1:Ni} exists with

L(l) = m, and either

– l < k, m ≥ j

– l > k, m ≤ j

The j − 1 case is symmetric.
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REMOVE A LINK ADD A NONINTER-
SECTING LINK

ORIGINAL

MOVE ADJ.
TEMPLATE POSITION

MOVE ADJ.
OUTPUT POSITION

Figure 4.8: Move possibilities for MCMC sampling strategy

Example moves are displayed in Figure 4.8.

Given Li, the set of move possibilities for each category is computed. A category

is selected equiprobably over the categories with at least one possibility, then a move

is selected equiprobably among the possibilities for that category.

Note that we may reach any linkmap from any other by removing then adding

links one by one. This guarantees the irreducibility of q(L
′

i|Li) because each re-

move/add possibility has positive probability, and the maximum number of links is

finite. Because q(L
′

i|Li) is irreducible the entire chain is irreducible and aperiodic,

thus guaranteeing convergence to π(L). The role of the latter “switching” categories

is to speed convergence. A common source of ambiguity arises when two observed

peaks are closely spaced in frequency about the mean frequency of a template peak:

either observation may link to the template peak. Without the ability to switch links

among adjacent observed peaks, we are forced to traverse the unlikely possibility for
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which both observed peaks are considered spurious. The switching categories thereby

provide valuable “shortcuts” towards convergence.

Under identical conditions generating Figures 4.6 and 4.7, Figure 4.9 compares

the MCMC likelihood approximation averaged over 1000 trials and the likelihood

from MQ-initialization alone with the exact likelihood evaluation. Each trial involves

200 MCMC iterations. We vary parameter κ, defined via (4.49), according to the

annealing schedule

κ0 = 0.05 (4.51)

κi = min(1.03κi−1, 5.0) (4.52)

Figure 4.9 displays likelihood surfaces for exact evaluation, MCMC approxima-

tion, and the MQ-initialization alone. Here the exact and MCMC-approximate results

MCMC and MQ Enumeration Results
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Figure 4.9: Likelihood evaluation results for exact enumeration, MCMC approxima-
tion, and MQ-initialization for piano example

are plotted via solid lines; the MQ-initialization result appears via dotted line. Exact
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and MCMC-approximate results appear indistinguishable, while the MQ-initialization

likelihood approaches the exact likelihood only about the correct frequency and sub-

harmonics; elsewhere, almost none of the likelihood is captured via initialization.

Likelihood concentration results are summarized in Table 4.3. On average (for

Method Average Likelihood Fraction Exceed 99% Fraction
MQ-Initialization Only .1991 .1948

MCMC 1 − 3.1819 · 10−13 1

Table 4.3: Likelihood concentrations of MCMC vs. MQ-initialization

1000 trials covering all f0-candidates), all but 3.1819 · 10−13 of the exact likelihood

is captured by the MCMC evaluation. Despite virtually identical results, the latter

obtains significant computational savings. Over 200 iterations the MCMC evaluation

visits on average 22.38 unique linkmaps per candidate f0, while the exact method

requires 3432 linkmaps. Hence the MCMC approximation yields over a hundredfold

reduction in computational effort. Due to the exponential complexity of the exact

evaluation (4.44), the computational savings are expected to be even greater as the

number of template or observed peaks increases.

Situations arise, however, where the accuracy of the MCMC approximation may

be unnecessary, for instance when pitch content is salient. If in addition we must

evaluate a large number of pitch hypotheses, it is important to have an alternative

approximation strategy, which may sacrifice some of the accuracy of the MCMC

approximation in favor of increased computational savings. For instance, the Bayesian

segmentation framework of Chapter 3 requires one evaluation per hypothesized note

value, tuning offset, and reference amplitude for each signal frame. There the total

number of hypotheses per frame may be in the hundreds of thousands or greater.
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4.6 Deterministic approximate likelihood evalua-

tion

In this section, we develop a deterministic approximate likelihood evaluation which

may save computations at the expense of accuracy when compared to the MCMC

method. While the resultant likelihood surface may not match the exact result, pri-

mary salient features are nevertheless retained. Moreover, the approximation has

been successfully incorporated into Bayesian contexts, for instance the joint segmen-

tation and melody retrieval engine discussed in Chapter 3. Here the method is seen

to yield acceptable results even though the input signal contains significant noise and

reverberation.

The deterministic approximation is motivated by the form of the exact evaluation,

recalling (4.7):

P (F, A|f0, A0) =
∑

L∈L

P (L)

No
∏

j=1

PL(j)(F (j), A(j)|f0, A0) (4.53)

If P (L) is uniform and L forms a Cartesian product space over the individual elements

L(j), we may exchange sums and products in (4.53) to obtain an expression requiring

only O(NoNi) template distribution evaluations of the form PL(j)(F (j), A(j)|f0, A0).

With No = Ni = N , the proposed approximation is quadratic in N , as opposed to

the exact method which is O(4N/
√

N) (4.44).

4.6.1 Uniform linkmap prior approximation

Unfortunately, it becomes difficult to approximate P (L) as uniform. In theory, the

variation of P (L) over L may be quite significant. Via (4.12 - 4.15), we determine the

range of P (L) as a function of the survival exponent φsurv, the spurious rate λspur,
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and the number of template and observed peaks (Ni, No):

Pmin(L)
∆
= min

L∈L
P (L)

=

[

min
j=1:No

e−λspur
λj

spur

j!

] N
∏

k=1

min
(

φk
surv, 1 − φk

surv

)

Pmax(L)
∆
= max

L∈L
P (L)

=

[

max
j=1:No

e−λspur
λj

spur

j!

] N
∏

k=1

max
(

φk
surv, 1 − φk

surv

)

(4.54)

Under typical conditions (φsurv = 0.95, λspur = 3.0), Figure 4.10 tracks the evolution

of Pmin(L) and Pmax(L) for Ni = No = N , N ∈ 1:10.
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Figure 4.10: Range of P (L) given φsurv = 0.95, λspur = 3.0 for No = Ni ∈ 1:10

Of course, this worst-case analysis somewhat exaggerates the effect of the P (L)-

variation on the overall likelihood evaluation. Recalling the primary motivation be-

hind the MCMC approximation, virtually all of the likelihood concentrates in just a
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few linkmaps: i.e., given ε > 0, there exists S ⊂ L, #(S) � #L, for which:

∑

L∈L

P (L)P (F, A|L, f0, A0) −
∑

L∈S

P (L)P (F, A|L, f0, A0) < ε (4.55)

That is, we may discard the summation over L\S: we are only concerned with the

variation of P (L) over S. The latter is connected by the adjacency moves Q1–Q4 as

shown in Figure 4.8: each move modifies at most one link in the linkmap L. If S is

sufficiently small, each L ∈ S may be reached from some other L
′ ∈ S by modifying

a small number of links. We expect, therefore, the effective variation of P (L), which

is the variation inside S, to be significantly smaller than the variation over the entire

space.

In the Bayesian segmentation context, the overall deterministic approximation,

which may be considered a further reduction of the uniform-P (L) approximation,

seems to yield acceptable results as presented in Section 3.9. For instance, the violin

example of Figure (3.18) contains significant regions of overlapping pitch content due

to reverberation and legato playing. Nevertheless, the values of all notes of significant

length are correctly determined, the initial grace note notwithstanding. Of course,

these results are aided by the integration of contextual information across frames.

Nonetheless, it is significant that the system as a whole is able to glean enough

pitch content to detect note events, correctly identify their values, and determine

expressive pitch fluctuations surrounding these events, which in some sense justifies

the applicability of the uniform linkmap prior approximation.

Perhaps a deeper explanation for the success of the uniform approximation in

Bayesian contexts comes via maximum entropy arguments [55]. The uniform linkmap

prior maximizes entropy over all choices of this prior, absent constraints [25]. In other

words, the uniform prior models probabilistically the largest class of linkmaps, hence

retaining the ability to generalize to the greatest variety of situations where nothing

else is known.
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4.6.2 Product linkmap space

The remainder of the deterministic approximation begins aacording to the uniform-

P (L) approximation:

P (F, A|f0, A0) ≈ 1

#L
∑

L∈L

No
∏

j=1

PL(j)(F (j), A(j)|f0, A0) (4.56)

Now, suppose L, the set of valid linkmaps, is replaced by L∗, defined as the set of

all such maps Jo → Ji, where (recalling the definitions in Section 4.2.3) Jo
∆
= 1:No,

Ji
∆
= 1:Ni ∪S, regardless of validity. We may write L∗ as a Cartesian product space:

L∗ = l∗1 ⊗ l∗2 ⊗ . . . ⊗ l∗No
(4.57)

where l∗j denotes the set of possible maps from the index j to Ji. Each map j → Ji

corresponds to a possibility for L(j) in (4.56). Extending the summation over L∗

recasts (4.56) as

P (F, A|f0, A0) ≈ 1

#L
∑

L∈L∗

No
∏

j=1

PL(j)(F (j), A(j)|f0, A0)

=
1

#L
∑

L(1)∈Ji

∑

L(2)∈Ji

. . .
∑

L(No)∈Ji

No
∏

j=1

PL(j)(F (j), A(j)|f0, A0) (4.58)

Interchanging sums and products yields the final form of the approximation:

P (F, A|f0, A0) ≈ 1

#L
No
∏

j=1

∑

L(j)∈Ji

PL(j)(F (j), A(j)|f0, A0) (4.59)

The challenge, of course, is to assess the degree by which summation over in-

valid linkmaps, meaning linkmaps in L∗ which are not in L, affects the quality of the
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approximation. Let L̄ ∆
= L∗\L and define η(F, A|f0, A0) as the latter-stage approxi-

mation error:

η(F, A|f0, A0) ≈ 1

#L
∑

L∈L̄

No
∏

j=1

PL(j)(F (j), A(j)|f0, A0) (4.60)

We obtain that each product term on the r.h.s. of (4.60), and hence η(F, A|f0, A0)

becomes negligible under the following conditions:

• The pitch content is salient, meaning that for L(j) ∈ 1 : Ni, the standard

deviation of each template distribution PL(j)(F (j), A(j)|f0, A0) with respect to

F (j) is negligible with respect to the difference in means among neighboring

distributions6.

• The observed peaks are well separated in frequency. In particular:

min
j∈2:No

(F (j) − F (j − 1)) � max
k∈1:Ni

σ
(F )
k (4.61)

where σ
(F )
k denotes the standard deviation of F (j) under Pk(F (j), A(j)|f0, A0).

According to the validity conditions V1 – V3 defined in Section 4.2.3, each L ∈ L
has the property that there exists j(0), j(1) ∈ 1 : Ni, for which one of the following

“invalidity” conditions hold7:

• IV1 Links intersect j(1) > j(0); L(j(1)) < L(j(0))

• IV2 Multiple links per template peak j(1) > j(0); L(j(1)) = L(j(0))

• IV3 Multiple links per observed peak j(1) = j(0); L(j(1)) < L(j(0))

Suppose that PL(j(0))(F (j(0)), A(j(0))|f0, A0) is negligibly small. Then, since this

term is one of the product terms (4.60), the entire product corresponding to L

is annihilated. Otherwise, by the pitch salience hypothesis, F (j(0)) must be close

6By “neighboring distributions” we mean PL(j)−1(F (j), A(j)|f0, A0) and
PL(j)+1(F (j), A(j)|f0, A0), where applicable.

7The implicit assumption that j(1) ≥ j(0) is without loss of generality.
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to the frequency mean of the template distribution corresponding to L(j(0)). Let

us now consider each condition, IV1–IV3. By the peak separation hypothesis,

j(1) > j(0) implies that F (j(1)) exceeds F (j(0)) by a non-negligible amount. Either

condition (IV1 or IV2) requires L(j(1)) ≤ L(j(0)). By implication, F (j(1)) signifi-

cantly exceeds the frequency mean of the template distribution under L(j(1)); con-

sequently, PL(j(1))(F (j(1)), A(j(1))|f0, A0) becomes negligible, annihilating the prod-

uct corresponding to L in (4.60). For the remaining condition, IV3, j(1) = j(0),

but L(j(1)) < L(j(0)). By the pitch salience hypothesis, the frequency mean of the

template distribution under L(j(1)) will be significantly less than the mean under

L(j(0)) when compared with the frequency standard deviation under L(j(1)). Hence

PL(j(1)(F (j(1)), A(j(1)|f0, A0) = PL(j(1)(F (j(0)), A(j(1)|f0, A0) becomes negligible, anni-

hilating the product corresponding to L in (4.60). Since the error contribution for

each term L ∈ L̄ becomes negligible, and there are a finite number of such terms,

η(F, A|f0, A0) hence becomes negligible.

4.6.3 Computational considerations

The computational cost of the deterministic approxmation, via (4.59), is O(NiNo).

Under Ni = No = N this becomes O(N2), as opposed to O(4N/
√

N) (4.44) for the

exact method.

In theory, either the MCMC or the deterministic approximation may be faster

for a given application; in practice, the deterministic method seems to take 10-50%

of the time of the MCMC method for the Bayesian segmentation examples reviewed

in Section 3.9. Unfortunately, it becomes difficult to draw more general conclusions.

First, it becomes uncertain how these results generalize to the almost limitless variety

of instruments, recording conditions, and background noises manifest in typical sound

examples. Second, thanks to the algorithmic complexity of both approaches, it is dif-

ficult to verify that both algorithms have been implemented in an equally efficient (let

alone optimally efficient) manner. The reason the MCMC method may theoretically

require less computations is that the set of linkmaps spanned by the traversal may

not involve the exhaustive set of template distribution evaluations computed by the
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deterministic approach8. However, the latter lacks many sources of overhead inherent

to the MCMC approach; e.g., the linkmap prior evaluation, the Metropolis-Hastings

acceptance-rejection strategy, and the maintenance of numerous hashtables. Both

Metropolis-Hastings and hashtable maintenance incur costs once per MCMC itera-

tion as opposed to once per unique linkmap visited, or once per template distribution

evaluation.

Ultimately, the user is encouraged to implement both deterministic and MCMC

approximations, assessing computational costs in terms of how well each method

achieves the desired performance goals. However, the results of Section 3.9 seem

quite encouraging as regards the deterministic approximation.

8One would expect this to be the case for “clean” data, meaning signals for which most of the
likelihood concentrates in one or two linkmaps.



Appendix A

Approximate Viterbi inference

recursions

This appendix derives the filtering and smoothing recursions given in Section 3.7.1.

Recall that the goals are to compute:

M∗
1:N = argmax

M1:N

P (M1:N |Y1:N) (A.1)

σ∗(St) = P (St|M∗
1:N , Y1:N), ∀t ∈ 1:N (A.2)

from the distributions given in the factorization of P (M1:N , S1:N , Y1:N) (3.42):

P (M1:N , S1:N , Y1:N) = P (M1)P (S1|M1)P (Y1|S1)

×
N
∏

t=2

P (Mt|Mt−1)P (St|St−1, Mt−1, Mt)P (Yt|St) (A.3)

The factorization (A.3) is represented by the directed acyclic graph of Figure A.1.

Quantities propagated in filtering and smoothing recursions as well as the neces-

sary input distributions given on the r.h.s. of (A.3) are summarized in Table A.1,

161
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Mt-1 Mt

StSt-1

Yt-1 Yt

Mt+1

St+1

Yt+1

Figure A.1: Directed acyclic graph for the factorization of P (M1:N , S1:N , Y1:N)

where the following notation is used:

M∗
1:t−1(Mt) ≈ argmax

M1:t−1

P (M1:t−1|Mt, Y1:t) (A.4)

In general, we refer to M∗
1:t−1(Mt) as the Mt-optimal mode sequence; we define

M∗
a:b(Mt) as the corresponding subsequence for frames between a and b, a ≤ b as-

sumed, and adopt the shorthand M∗
a (Mt)

∆
= M∗

a:a(Mt).

These recursions depend on the approximation:

P (Yt+1|M1:t+1, Yt) ≈ P (Yt+1|M∗
1:t−1(Mt), Mt, Mt+1, Y1:t) (A.5)

The meaning and applicability of (A.5) are described in Section 3.7.1. With the

distributional terms on the r.h.s. of (A.3) serving as inputs, the outputs of the

recursions are taken as M∗
1:N and σ∗(S1:N), which satisfy (A.1) and (A.2) as desired.
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Symbol Quantity Description
π (M1, S1) P (M1, S1) Prior

P (Mt+1|Mt) Mode transition dependence
P (St+1|St, Mt, Mt+1) State transition dependence
P (Yt|St) Observation likelihood

τ∗(Mt, St) P (St|M∗
1:t−1(Mt), Mt, Y1:t−1) Predicted posterior given

Mt-optimal mode sequence
µ∗(Mt, St) P (St|M∗

1:t−1(Mt), Mt, Y1:t) Smoothed posterior given
Mt-optimal mode sequence

J(Mt) maxM1:t−1
P (M1:t|Y1:t) (≈) Objective at time t

M∗
t−1(Mt) argmaxMt−1

maxM1:t−2
P (M1:t|Y1:t) (≈) Backpointer

M∗
t argmaxMt

maxM1:t−1,Mt+1:N
P (M1:N |Y1:N ) (≈) Maximum a posteriori mode

at time t
σ∗

t P (St|M∗

1:N , Y1:N ) Smoothed posterior
µ0(Mt, St+1, Mt+1) P (St+1, Yt+1|M∗

1:t−1(Mt), Mt, Mt+1, Y1:t) Intermediate

τ(Mt, St+1, Mt+1) P (St+1|M∗
1:t−1(Mt), Mt, Mt+1, Y1:t) Intermediate

µ(Mt, St+1, Mt+1) P (St+1|M∗
1:t−1(Mt), Mt, Mt+1, Y1:t+1) Intermediate

Σ0(Mt, Mt+1) P (Yt+1|M∗
1:t−1(Mt), Mt+1, Y1:t+1) Intermediate

J0(Mt, Mt+1) maxM1:t−1
P (M1:t+1|Y1:t+1) (≈) Intermediate

Table A.1: Quantities propagated in approximate Viterbi inference

The filtering recursions update the following quantities:

J(Mt) ≈ max
M1:t−1

P (M1:t|Y1:t)

M∗
1:t−1(Mt) ≈ argmax

M1:t−1

P (M1:t|Y1:t)

τ ∗(Mt, St) ≈ P (St|M∗
1:t−1(Mt), Mt, Y1:t−1)

µ∗(Mt, St) ≈ P (St|M∗
1:t−1(Mt), Mt, Y1:t) (A.6)

For purposes of interpretation, we assume that the approximations in (A.6) are exact.

In this case, the value of Mt maximizing J(Mt) retrieves the maximum a posteriori

mode trajectory given Y1:t; i.e., M∗
1:t. Thanks to the nesting property:

M∗
1:t−2 (Mt) = M∗

1:t−2

(

M∗
t−1 (Mt)

)

(A.7)

it is necessary only to store M∗
t−1(Mt), as the remainder of the past trajectory can be

unraveled by recursive application of (A.7), i.e.

M∗
s = M∗

s (M∗
s+1) ∀s ∈ 1 : t − 1 (A.8)

Assuming that the quantities of (A.6) have already been computed for frame t
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over all Mt and St, we update J(Mt+1):

J (Mt+1) = max
M1:t

P (M1:t, Mt+1|Y1:t+1)

= max
M1:t

P (M1:t, Mt+1, Yt+1|Yt)

P (Yt+1|Yt)

=
1

P (Yt+1|Yt)
max
Mt

max
M1:t−1

[P (M1:t|Y1:t) P (Mt+1|M1:t, Y1:t)

× P (Yt+1|M1:t+1, Y1:t) ] (A.9)

The conditional independence relations of (A.3) yield the simplification:

P (Mt+1|M1:t, Y1:t) = P (Mt+1|Mt) (A.10)

Unfortunately, there lacks a corresponding simplification for P (Yt+1|M1:t+1, Y1:t); this

is addressed by the approximation (A.5). As a result, (A.5) may be expanded by

marginalizing over St+1:

P (Yt+1|M∗
1:t−1(Mt), Mt, Mt+1, Y1:t) =

∑

St+1

P (Yt+1, St+1|M∗
1:t−1(Mt), Mt+1, Mt+1, Y1:t)

=
∑

St+1

P (Yt+1|St+1)τ(Mt, St+1, Mt+1) (A.11)

where τ(Mt, St+1, Mt+1), the precursor to the t+1-frame predicted posterior, is defined

as follows.

τ(Mt, St+1, Mt+1)
∆
= P (St+1|M∗

1:t−1(Mt), Mt, Mt+1, Y1:t) (A.12)
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This precursor is updated from the previously stored posterior, µ∗(Mt, St), accord-

ingly:

τ(Mt, St+1, Mt+1) = P
(

St+1|M∗
1:t−1(Mt), Mt, Mt+1, Y1:t

)

=
∑

St

P
(

St, St+1|M∗
1:t−1(Mt), Mt, Mt+1, Y1:t

)

=
∑

St

P
(

St|M∗
1:t−1 (Mt) , Mt, Y1:t

)

P (St+1|Mt, Mt+1, St)

=
∑

St

µ∗ (Mt, St)P (St+1|Mt, Mt+1, St) (A.13)

The third step follows from the conditional independence relations indicated by the

factorization (A.3).

Now, defining the precursor to the t + 1-frame filtered posterior:

µ(Mt, St+1, Mt+1)
∆
= P (St+1|M∗

1:t−1(Mt), Mt, Mt+1, Y1:t+1)

(A.14)

it is easily verified:

µ(Mt, St+1, Mt+1) =
µ0(Mt, St+1, Mt+1)

P (Yt+1|M∗
1:t+1(Mt), Mt, Mt+1, Y1:t)

P (Yt+1|M∗
1:t−1(Mt), Mt, Mt+1, Y1:t) =

∑

St+1

µ0(Mt, St+1, Mt+1) (A.15)

where

µ0(Mt, St+1, Mt+1)
∆
= P (St+1, Yt+1|M∗

1:t−1(Mt), Mt, Mt+1, Y1:t)

= P (Yt+1|St+1)τ(Mt, St+1, Mt+1) (A.16)

By substituting (A.14) into the approximation (A.5), and then the result into
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(A.9), the update of J(Mt+1) simplifies as follows.

J(Mt+1) ≈ 1

P (Yt+1|Yt)
max
Mt

max
M1:t−1

P (M1:t|Y1:t)P (Mt+1|Mt)
∑

St+1

µ0(Mt, St+1, Mt+1)

=
1

P (Yt+1|Yt)
max
Mt

J(Mt)P (Mt+1|Mt)
∑

St+1

µ0(Mt, St+1, Mt+1) (A.17)

Then for each Mt+1, the value of Mt achieving the maximum on the r.h.s. of (A.17)

is stored as M∗
t (Mt+1). Finally, the filtered and smoothed posteriors may be updated

from the respective precursors:

τ ∗(Mt+1, St+1) = τ(M∗
t (Mt+1), St+1, Mt+1)

µ∗(Mt+1, St+1) = µ(M∗
t (Mt+1), St+1, Mt+1) (A.18)

Hence, the filtering updates for J(Mt+1), M∗
t (Mt+1), τ ∗(Mt+1, St+1), and

µ∗ (Mt+1, St+1) are now expressed in terms of the component distributions on the r.h.s.

of (A.3), as desired. Strictly speaking, it is not necessary to propagate τ ∗(Mt, St);

however, storing the latter for t ≥ 2 may reduce computations in the smoothing pass.

To initialize the filtering pass, it becomes necessary to supply µ∗(S1, M1) and

J(M1), as follows.

µ∗(S1, M1) = P (M1, S1|Y1)

=
P (S1|M1)P (Y1|S1)

∑

S1
P (S1|M1)P (Y1|S1)

J(M1) = P (M1|Y1)

=
P (M1)

∑

S1
P (S1|M1)P (Y1|S1)

∑

M1
P (M1)

∑

S1
P (S1|M1)P (Y1|S1)

(A.19)
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The filtering recursions, as derived via (A.9 – A.18) may be summarized:

τ (Mt, St+1, Mt+1) =
∑

St

µ∗ (Mt, St)P (St+1|Mt, Mt+1, St)

µ0 (Mt, St+1, Mt+1) = P (Yt+1|St+1) τ (Mt, St+1, Mt+1)

Σ0 (Mt, Mt+1) =
∑

St+1

µ0 (Mt, St+1, Mt+1)

J0 (Mt, Mt+1) = J (Mt)P (Mt+1|Mt) Σ0 (Mt, Mt+1)

µ (Mt, St+1, Mt+1) =
µ0 (Mt, St+1, Mt+1)

Σ0 (Mt, Mt+1)

M∗
t (Mt+1) = argmax

Mt

J0 (Mt, Mt+1)

J (Mt+1) =
J0 (Mt, Mt+1)

P (Yt+1|Yt)

µ∗ (Mt+1, St+1) = µ (M∗
t (Mt+1), St+1, Mt+1)

τ ∗ (Mt+1, St+1) = τ (M∗
t (Mt+1), St+1, Mt+1) (A.20)

The initialization (A.19) and filtering recursions (A.20) verify the corresponding re-

lations in Section 3.7.1 (3.76, 3.77), as was to be shown.

The goal of the smoothing pass is to supply the optimal mode trajectory M∗
1:N and

the smoothed posterior σ∗(S1:N) according to (A.1) and (A.2). As such, we initialize

this pass by taking M∗
N as the maximum a posteriori choice, from the definitions in

Table A.1:

M∗
N = argmax

MN

J(MN ) (A.21)

Then, via the nesting relation (A.8), past values obey the recursion:

M∗
t = M∗

t (M∗
t+1) ∀t ∈ 1 : N − 1 (A.22)
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At the time that M∗
t is known, σ∗(St) may be updated from σ∗(St+1) and the poste-

riors computed in the filtering pass, µ∗(Mt, St) and τ ∗(Mt, St):

σ∗(St) = P (St|M∗
1:N , Y1:N)

=
∑

St+1

P (St+1|M∗
1:N , Y1:N)P (St|St+1, M

∗
1:N , Y1:N)

=
∑

St+1

P (St+1|M∗
1:N , Y1:N)P (St|St+1, M

∗
1:t+1, Y1:t)

= P (St|M∗
1:t, Y1:t)

∑

St+1

P (St+1|M∗
1:N , Y1:N)

P (St+1|M∗
1:t+1, Y1:t)

P (St+1|St, M
∗
t , M∗

t+1)

= µ∗(St, M
∗
t )
∑

St+1

σ∗(St+1)P (St+1|St, M
∗
t , M∗

t+1)

τ ∗(St+1, M
∗
t+1)

(A.23)

Finally, the smoothed posterior is initialized:

σ∗(SN) = µ∗(M∗
N , SN) (A.24)

To conclude the derivation, we note that the recursion (A.23) and associated

initialization (A.24) verify the corresponding relations in Section 3.7.1 (3.78, 3.79),

as was to be shown.



Appendix B

Learning the mode transition

dependence

The purpose of this appendix is to derive the expectation-maximization (EM) al-

gorithm steps discussed in Section 3.7.2. The appendix consists of two parts. First,

Section B.1 derives the overall approach as summarized by (3.84) and (3.85). However,

this approach depends on the smoothed pairwise mode posterior, P (Mt, Mt+1|Y1:N),

for all t ∈ 1:N − 1. To this end, Section B.2 derives the Bayesian inference method-

ology responsible for computing this posterior in an efficient manner.

B.1 Derivation of EM approach

To begin, define:

pk|j
∆
= P (Mt+1 = k|Mt = j) ∀j, k ∈ M

θM
∆
= Vec





⋃

j∈M

⋃

k∈Sj

{

pk|j

}



 (B.1)

where Sj ⊂ M denotes the set of possibilities for k for which pk|j represents a tran-

sition probability in the standard note evolution grammar (3.47), which we recall as

169
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follows:
′OT′ → ′CT′, ′CP′

′OP′ → ′CP′, ′N′

′CT′ → ′CT′, ′CP′

′CP′ → ′CP′, ′N′, ′OT′, ′OP′

′N′ → ′OT′, ′OP′

(B.2)

The generic EM algorithm, following [28], begins with an initial guess for θM ; i.e.

θ
(0)
M , and proceeds over iterations i, updating θM = θ

(i)
M . Each iteration comprises two

steps. The expectation step computes the expected log likelihood of M1:N , S1:N , and

Y1:N given θM where M1:N and S1:N are generated according to P (M1:N , S1:N |Y1:N).

That is, we form

Q(θM |θ(i)
M ) = E

P
“

M1:N ,S1:N |Y1:N ,θ
(i)
M

”[ log P (M1:N , S1:N , Y1:N |θM) ] (B.3)

The maximization step chooses θ
(i+1)
M as a value of θM maximizing Q(θM |θ(i)

M ).

First evaluating the expectation step, the log likelihood decomposes via the fac-

torization (3.42):

P (M1:N , S1:N , Y1:N) = P (M1)P (S1|M1)P (Y1|S1)

×
N
∏

t=2

P (Mt|Mt−1)P (St|St−1, Mt−1, Mt)P (Yt|St) (B.4)

Using (B.4), (B.3) may be written:

log P (M1:N , S1:N , Y1:N |θM) = const +

N−1
∑

t=1

log P (Mt+1|Mt, θM) (B.5)

where the “const” term absorbs terms which do not depend on θM . Hence, in place
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of Q(θM |θ(i)
M ), it becomes equivalent to maximize Q′(θM |θ(i)

M ):

Q′(θM |θ(i)
M )

∆
= E

P
“

M1:N ,S1:N |Y1:N ,θ
(i)
M

”

N−1
∑

t=1

log P (Mt+1|Mt, θM)

=

N−1
∑

t=1

E
P

“

Mt,Mt+1|Y1:N ,θ
(i)
M

” log P (Mt+1|Mt, θM)

=
N−1
∑

t=1

∑

j∈M

∑

k∈M

log pk|jP (Mt = j, Mt+1 = k|Y1:N , θ
(i)
M ) (B.6)

Since the terms in the inner summation where k ∈ M\Sj do not depend on θM , as

evident from (B.1), they may be neglected. Hence, it becomes equivalent to maximize:

Q′′(θM |θ(i)
M )

∆
=

N−1
∑

t=1

∑

j∈M

∑

k∈Sj

log pk|jP (Mt = j, Mt+1 = k|Y1:N , θ
(i)
M ) (B.7)

This maximization is constrained by the fact for each j ∈ M,
{

pk|j

}

k∈M
forms a

probability distribution, i.e.:

pk|j ≥ 0 ∀j, k ∈ M
∑

k∈M

pk|j = 1, ∀j ∈ M (B.8)

To accomplish the constrained minimization of (B.7), we form the Lagrangian:

J(θM ) = Q′′(θM |θ(i)
M ) +

∑

j∈M

λj

(

∑

k∈M

pk|j − 1

)

(B.9)

Differentiating J(θM) with respect to each free parameter, pk|j ∈ Sj (for all j ∈ M)

obtains as follows.

pk|j, k∈Sj =
−1

λj

N−1
∑

t=1

P
(

Mt = j, Mt+1 = k|Y1:N , θ
(i)
M

)

(B.10)
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If the {λj}j∈M are chosen to satisfy the constraints (B.8), we obtain for the max-

imization step:

θ
(i+1)
M =

⋃

j∈M

⋃

k∈Sj

{

p
(i+1)
k|j

}

(B.11)

with, for each j ∈ M, k ∈ Sj :

p
(i+1)
k|j =

∑N−1
t=1 P

(

Mt = j, Mt+1 = k|Y1:N , θ
(i)
M

)

∑

k∈M

∑N−1
t=1 P

(

Mt = j, Mt+1 = k|Y1:N , θ
(i)
M

) (B.12)

which verifies (3.84, 3.85), as was to be shown.

B.2 Computation of smoothed pairwise mode pos-

teriors

We now address the computation of the unknown terms in (B.12). In other words,

we need to compute, for all t ∈ 1 : N − 1 and Mt, Mt+1 ∈ M:

σ(2)(Mt, Mt+1)
∆
= P (Mt, Mt+1|Y1:N , θ

(i)
M ) (B.13)

The inference of σ(2)(Mt, Mt+1) proceeds as a result of the standard Bayesian pos-

terior inference of the hidden variables, P (Mt, St|Y1:N), for all t ∈ 1 : N , with a few

modifications. This inference proceeds in two stages, taking as input the conditional

distributions on the r.h.s. of the factorization (B.4). In the filtering pass, we compute

the filtered posteriors P (Mt, St|Y1:N) recursively for all t ∈ 1 : N . In the smoothing

pass, we compute the smoothed posteriors P (Mt, St|Y1:N) recursively for t = N down

to 1, in conjunction with the pairwise mode posteriors P (Mt, Mt+1|Y1:N), to satisfy

(B.13). Quantities propagated in filtering and smoothing passes as well as necessary

inputs are summarized in Table B.1.
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Symbol Quantity Description

π (M1, S1) P (M1, S1) Prior

P (Mt+1|Mt) Mode transition dependence

P (St+1|St,Mt,Mt+1) State transition dependence

P (Yt|St) Observation likelihood

τ (Mt, St) P (Mt, St|Y1:t−1) Predicted posterior

µ (Mt, St) P (Mt, St|Y1:t) Filtered posterior

σ (Mt, St) P (Mt, St|Y1:T ) Smoothed posterior

σ(2) (Mt,Mt+1) P (Mt,Mt+1|Y1:T ) Pairwise mode posterior

Ψ (Mt, St+1,Mt+1)
P (Mt,St+1,Mt+1)

P (Mt+1|Mt)
Intermediate

φ (Mt, St)
P (Mt,St|Y1:N )

P (Mt,St|Y1:t−1)
Intermediate

Table B.1: Quantities propagated in standard Bayesian posterior inference

The filtering pass is initialized accordingly:

µ(M1, S1) = P (M1, S1|Y1)

=
P (S1|M1)P (Y1|S1)

∑

S1
P (S1|M1)P (Y1|S1)

(B.14)

The updating of µ(Mt+1, St+1) proceeds in two stages; first, the time update com-

putes the predicted posterior τ(Mt+1, St+1), and by so doing computes also the pre-

cursor Ψ(Mt, St+1, Mt+1), which is not a distribution itself, but actually the ratio

of two distributions; second, the measurement update computes µ(Mt+1, St+1) from

τ(Mt+1, St+1). Now, for the sake of filtering alone it is not strictly necessary to

compute the precursor, as the time update computations can just as easily be re-

arranged to compute only τ(Mt+1, St+1). The main additional cost of computing

Ψ(Mt, St+1, Mt+1) is storage. However, caching the latter facilitates computation of

the pairwise mode posteriors in the smoothing pass. The time update is

τ (Mt+1, St+1) = P (Mt+1, St+1|Y1:t)

=
∑

Mt

P (Mt, Mt+1, St+1|Y1:t) (B.15)
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where

P (Mt, Mt+1, St+1|Y1:t) =
∑

St

P (Mt, St, Mt+1, St+1|Y1:t)

=
∑

St

P (Mt, St|Y1:t)[P (Mt+1|Mt, St, Y1:t)

× P (St+1|Mt, St, Mt+1, Y1:t)]
= P (Mt+1|Mt)

∑

St

P (Mt, St|Y1:t)P (St+1|St, Mt, Mt+1)

= P (Mt+1|Mt)
∑

St

µ(Mt, St|Y1:t)P (St+1|St, Mt, Mt+1)

(B.16)

The third step in (B.16) follows from the conditional independence relations indicated

by the factorization (B.4).

Then, by definition (Table B.1)

Ψ(Mt, St+1, Mt+1)
∆
=

∑

St

µ(Mt, St|Y1:t)P (St+1|St, Mt, Mt+1) (B.17)

the time update (B.15) may be written in terms of Ψ(Mt, St+1, Mt+1) and P (Mt+1|Mt):

τ(Mt+1, St+1) =
∑

Mt+1

P (Mt+1|Mt)Ψ(Mt, St+1, Mt+1) (B.18)

The measurement update follows Bayes’ rule:

µ(Mt+1, St+1) = P (Mt+1, St+1|Y1:t)

=
P (Mt+1, St+1, Yt+1|Y1:t)

∑

Mt+1,St+1
P (Mt+1, St+1, Yt+1|Y1:t)

(B.19)

where

P (Mt+1, St+1, Yt+1|Y1:t) = P (Mt+1, St+1|Y1:t)P (Yt+1|Mt+1, St+1, Y1:t)

= τ(Mt+1, St+1)P (Yt+1|Mt+1, St+1) (B.20)
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As a result, the measurement update becomes:

µ (Mt+1, St+1) =
τ (Mt+1, St+1) P (Yt+1|Mt+1, St+1)

∑

Mt+1,St+1
τ (Mt+1, St+1) P (Yt+1|Mt+1, St+1)

(B.21)

This completes the recursion for the filtering pass.

For the smoothing pass, we initialize the posterior σ(MN , SN), defined in Table

B.1, with the final-stage filtered posterior:

σ(MN , SN) = P (MN , SN |Y1:N)

= µ(MN , SN) (B.22)

Assuming that σ(Mt+1, St+1) has been computed, the update for σ(Mt, St) is

σ (Mt, St) = P (Mt, St|Y1:N)

=
∑

Mt+1,St+1

P (Mt, St, St+1, Mt+1|Y1:T )

=
∑

Mt+1,St+1

P (Mt+1, St+1|Y1:T )P (Mt, St|Mt+1, St+1, Y1:t) (B.23)
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where

P (Mt, St|St+1, Mt+1, Y1:t) =
∑

Mt+1,St+1

P (Mt+1, St+1|Y1:N)P (Mt, St|Mt+1, St+1, Y1:t)

=
∑

Mt+1,St+1

[P (St+1, Mt+1|Y1:N)

× P (Mt+1, St+1|Mt, St, Y1:t) P (Mt, St|Y1:t)

P (Mt+1, St+1|Y1:t)
]

= P (Mt, St|Y1:t)
∑

Mt+1

[P (Mt+1|Mt)

×
∑

St+1

P (St+1|St, Mt, Mt+1)
P (Mt+1, St+1|Y1:N)

P (Mt+1, St+1|Y1:t)
]

= µ(Mt, St)
∑

Mt+1

[P (Mt+1|Mt)
∑

St+1

φ(Mt+1, St+1)

× P (St+1|St, Mt, Mt+1)] (B.24)

where φ(Mt+1, St+1) is as defined in Table B.1.

Similarly, we obtain the pairwise mode posterior:

σ(2)(Mt, Mt+1) = P (Mt, Mt+1|Y1:N)

=
∑

St,St+1

P (Mt+1, St+1|Y1:N)
P (Mt+1, St+1|Mt, St, Y1:t)P (Mt, St|Y1:t)

P (Mt+1, St+1|Y1:t)

= P (Mt+1|Mt)
∑

St+1

φ(Mt+1, St+1)Ψ(Mt, St+1, Mt+1) (B.25)

To summarize, the filtering and smoothing passes consist of the following:

• Filtering pass

Initialize:

µ(M1, S1) =
P (S1|M1)P (Y1|S1)

∑

S1
P (S1|M1)P (Y1|S1)

(B.26)



APPENDIX B. LEARNING THE MODE TRANSITION DEPENDENCE 177

For t ∈ 1 : N − 1, compute:

Ψ(Mt, St, Mt+1) =
∑

St

µ(Mt, St)P (St+1|St, Mt, Mt+1)

τ(Mt+1, St+1) =
∑

Mt

P (Mt+1|Mt)Ψ(Mt, St, Mt+1)

µ(Mt+1, St+1) =
P (Mt+1, St+1, Yt+1|Y1:t)

∑

Mt+1,St+1
P (Mt+1, St+1, Yt+1|Y1:t)

(B.27)

For t ∈ 1 : N , store µ(Mt, St); for t ∈ 1 : N − 1, store µ(Mt, St+1, Mt+1); for

t ∈ 2 : N ; store τ(Mt, St).

• Smoothing pass

Initialize:

σ(MN , SN) = µ(MN , SN) (B.28)

Then for t = N − 1 down to 1, compute:

φ(Mt+1, St+1) =
σ(Mt+1, St+1)

τ(Mt+1, St+1)

σ(Mt, St) = µ(Mt, St)
∑

Mt+1

P (Mt+1|Mt)
∑

St+1

[φ(Mt+1, St+1)

× P (St+1|St, Mt, Mt+1)]
σ(2)(Mt, Mt+1) = P (Mt+1|Mt)

∑

St+1

φ(Mt+1, St+1)Ψ(Mt, St+1, Mt+1)

(B.29)

The pairwise mode posterior, σ(2)(Mt, Mt+1), may be substituted into (3.84) and

(3.85), to complete the EM iteration, as desired.
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