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1 Introduction 
 
In this paper we give an overview of existing audio content analysis approaches in the 
compressed domain and incorporate them into a coherent formal structure. We first examine the 
kinds of information accessible in an MPEG-1 compressed audio stream and describe a coherent 
approach to determine features from these. These features are generic enough to be further 
processed with standard audio content analysis approaches. We report on a number of 
applications that have been presented making use of the compressed domain features. Most of 
them aim at creating an index to the audio stream by segmenting the stream into temporally 
coherent regions, which are often classified into a pre-specified set of classes. We also discuss 
recognition and identification applications. 
 
 

2 MPEG-1 compressed data 
 
To understand the kind of features that can be extracted from an MPEG-1 compressed audio 
stream, we have to understand the meaning of the encoded fields (see [HAS97, ISA93, NUL97, 
PAN95]). To that end, we first briefly explain the encoding steps and the resulting field 
structures and then explain which fields contain useful information for content analysis. 
 

2.1 MPEG-1 audio encoding  
 
MPEG-1 audio encoding comes in three different flavours called Layers. They increase in 
complexity from Layer 1 to 3 yet all follow the same processing steps: 
 
1. The sampled sound data is broken up into analysis windows and transformed into the 

frequency domain. A polyphase filterbank calculates 32 frequency band magnitudes (called 
subband values) for each of the three Layers, which is further refined to 576 subbands for 
Layer 3 only. 
 

2. The resulting subband values are manipulated according to psychoacoustic models and the 
desired bitrate. The aim is to filter out sounds that are masked by other sounds and to arrive at 
a perceptually lossless compression. The extent of compression achieved by this 
psychoacoustic filtering is encoder-specific and not standardised. 
 

3. The remaining subband magnitudes are linearised into a bitstream according to the bitstream 
format standardised for the respective Layer. In this last step, further compression can be done 
(such as Huffman encoding) which is lossless and exploits redundancies of the data contained 
within several successive analysis windows. The data is then encoded in a so-called audio 
frames. The resulting files therefore consist of a sequence of (audio) frames containing Layer-
specific fields. 

 
Figure 1 displays the transformation that a sequence of 1152 PCM samples go through during 
encoding. Layers 1 and 2 stop after the first transform (a polyphase filterbank), while Layer 3 
goes through an additional Modified Discrete Cosine Transform (MDCT) step. Access of 
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transformation coefficients in Layer 3 can therefore be either at the filterbank or the MDCT 
level. 
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Figure 1: Frequency transformations of Layer 3 

Figure 2 displays the frame formats of all three Layers. The 32 subband values are encoded in 
groups of 12 (Layer 1 & 2) or 18 (Layer 3) subband samples. We call these groups granules. 
There is only one such granule in a Layer 1 frame, whereas a Layer 2 frame contains three 
granules and a Layer 3 frame two granules to exploit further redundancies. A granule in Layer 3 
can be viewed as either consisting of 18 values in each of 32 subbands or of one value in each of 
576 subbands depending on whether one accesses the filterbank coefficients or the MDCT 
coefficients. 
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Figure 2: Frame formats for all three Layers 

Except for the number of granules, Layer 1 and 2 encodings are the same. Their subband values 
are encoded in the quantised values field after having being normalised with scalefactors. The 
number of bits required for the quantised values is encoded in the bit allocation field. 
Additionally, the scalefactor selection field used by Layer 2 stores how many of the three 
scalefactors of each granule were different and thus had to be encoded. 
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Layer 3 is different. As mentioned above, it results in 576 subband values. These are further 
compressed mainly by use of a Huffman compression scheme after careful grouping of subbands 
(see Figure 3). 
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Figure 3: Layer 3 encoding of frequency bands 

 

2.2 Field information  
 
Without going back to decoding an MPEG audio file to PCM samples, there are two types of 
information that can be used as features on which to base audio content analysis approaches: the 
information encoded in the header-like fields (header, bit allocation, scalefactor selection, 
scalefactors, side information) and the encoded subband values. 
 

2.2.1 Header-type information 
 
Wang and Vilermo [WAN01] have used the window type information of Layer 3 to detect 
beats. Layer 3 uses four different kinds of analysis windows: long, long-to-short, short, and short-
to-long. The short windows are used for short but intensive sounds for which the long window 
would introduce too much pre-echo. They found that the window-switching pattern of pop-music 
beats for their specific encoder at bitrates of 64-96 kbps gives (long, long-to-short, short, short, 
short-to-long, long) window sequences in 99% of the beats. 
Our own research has also examined the header-type fields [BAR97]. We have used the 
following fields of Layers 1 & 2 with the given feature interpretation: 
• Bit allocation: stores the dynamic range of a sequence of subband values. 
• Scalefactors: stores information on the maximum loudness of a sequence of subband values. 
• Scalefactor  selection information (Layer 2 only): stores how the loudness changes on three 

subsequent groups; a value of 0 indicates no change, so the loudness is stable, a value of 2 



MPEG-1 audio features - 7 - S. Pfeiffer, T. Vincent 

indicates a transient change, and the values 1 and 3 indicate an unstable change. 
 

2.2.2 Subband values 
 
Basically all other published research on compressed-domain audio analysis has used the 
subband values as a starting point for feature calculation. Thus it is required to decode the 
MPEG audio stream enough to access the subband values. For all three Layers, the subband 
values are not available directly in the linearised file/stream but have to be reconstructed from 
the encoded fields implying some processing cost. The most time consuming step for decoding 
an MPEG audio stream is however the resynthesis of PCM samples and this is avoided as the 
subband values are still in the compressed domain. 
 
In Layers 1 and 2 the subband values may be approximated by directly using the quantised values 
in an encoded frame (which can only be extracted from the file with help of the bitallocation 
information). This however ignores the fact that the values are normalised by the scalefactors in 
each of the 32 subbands. So, to arrive at the subband values encoded in the file, one has to use 
the quantised values and denormalise them. 
 
In Layer 3 there are 576 subband values. To extract the frequency band magnitudes from the file, 
it is necessary to decode the quantised samples with a Huffman decoder. Then, scalefactors have 
to be readjusted, which served to colour the quantisation noise, and quantisation has to be 
reversed. After this, one reaches the alias reduced MDCT coefficients, which we call the 576 
subband values. To achieve features which are comparable independent of the encoded Layer, it 
is possible to further decode the 576 MDCT coefficients to the original 32 Polyphase Filterbank 
coefficients, but there is a processing cost associated and a loss of frequency resolution. One 
however gains on temporal resolution, which might be more appropriate in certain application 
areas. 
 
Subband values are in the following denoted by si (n), i being the subband number, 0 ≤ i ≤ I-1, 
(I=32 in Layers 1 and 2, and possibly 576 in Layer 3) and n the time index. In the following, all 
index values will start with 0. The time index n is viewed from a whole file perspective. As an 
example, if we take a Layer 2 encoded audio file, its 5th frame, its 2nd granule, and the 5th subband 
value (out of the 12) of the 10th subband, we access the value s9(160) (see Figure 4). 

Frame 0 Frame 1 Frame 2 Frame 3
Granule0 Granule1 Granule2

Frame 4
Granule1

S9(160)

0 12 24 36 72 108 144
n

0 1 2 3 6 9 12

t

Window t

0 M-1

 
Figure 4: Explanation of subband numbering scheme. 
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Depending on the required resolution of an analysis, one may choose to calculate features on the 
subband value resolution level, on the granule resolution level, or on the frame resolution level. 
A statistical analysis on a larger time window may thus be calculated on a multiplicity of any of 
these resolution levels. In our own research we have chosen the subband value or granule 
resolution, while many others prefer the frame resolution. 
 
Most analysis algorithms work on a window of samples. Independent of the choice of resolution, 
we denote the window size by M and the time position within a window by m, 0 ≤ m ≤ M-1. t 
will denote the window number while going over a file, which is closely related to the time 
position within a file. A subband value at window position m is accessed depending on the 
choice of resolution for analysis. For example, if we select a granule as window size, have 
consecutive non-overlapping windows only, and work on a subband value resolution level, the 
above subband value s9(160) will be in window number t=13 at position m=4 (M=12 is the 
implied window size for the Layer 2 granule here) (see Figure 4). 
 
Synopsis of used terms: 
 

 n Time index 0 ≤ n ≤ N-1 
 i Subband index 0 ≤ i ≤ I-1 
si(n) Subband value at time index n for subband I 
 m Time position within window 0 ≤ m ≤ M-1 
M Analysis window size 
 t Analysis window number 

 

 
3 Low-level audio features 
 
Going from the subband values to high-level analysis such as segmentation, classification, 
recognition and identification, requires firstly the calculation of low-level audio features on 
which the further analysis will be based. Most often information on the subband energies is used 
as a starting point for the analysis of the features. 

3.1 Pre-processed subband information  
 
Instead of using the subband values themselves to access subband energies, some researchers 
preprocess them to achieve different goals.  
 
• Tzanetakis et al. [TZA00] use the root mean squared (RMS) subband vector  on a frame 

resolution because this is a better measure of signal energy than the subband values 
themselves. A generalised formula for their approach, independent of granule, frame or any 
larger window, is given by: 
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This enables one to arrive at 32 or 576 subband values by averaging the M subband values in 
the window.  
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• Boccignone et al. [BOC99] use the subband mean value in a window of size M as feature as 

a way to go to a frame resolution. A generalised formula for their approach, independent of 
granule, frame or any larger window, is given by: 

∑
−

=

+=
1

0

).(
1

)(
M

m
ii mMts

M
tµ  

 
• Nakajima et al. [NAK99] calculate the normalised subband energy from the subband 

samples of a frame to absorb sound level dependency on audio source. The following 
formula normalises a single subband value on the maximum of all subband values at the 
same time index n: 
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Going to a lower resolution for a window of size M, we have also used the subband mean as 
a basis for calculation of a normalised subband energy: 
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• In our own work we have made use of the scalefactors in Layer 1 and 2 for a granule 

resolution subband energy measure [BAR97]. The scalefactors are the maximum value of 
the sequence of subband values within a granule: 

),10|:)(max(|)( −≤≤+= MmmMtstscf ii  with 0 ≤ i ≤ Ι−1. 

 

The two values si(n) and ςi(n) work at the subband value resolution, while )(tsi , µI(t),ςi(t) and 

scfi(t)  work on a granule, frame or any larger window resolution. In the following subsections, 
any of these values may be used in the formulas interchangeably. The choice depends on the 
goals of the analysis. As a placeholder we will use si(t). 
 

3.2 Cepstral features 
 
For speech and speaker recognition approaches it is standard to use a representation of the audio 
signal in the frequency domain as feature. Cepstral coefficients have proven to be particularly 
successful. They are calculated by performing another frequency transform on the logarithm of 
spectral coefficients. Both the 32 subband values of Layer 1 and 2, and the 576 subband values 
of Layer 3 are linearly spaced spectral coefficients and serve well as a basis for calculation of 
cepstral coefficients. 
 
• Venugopal et al. [VEN99] calculate linear  frequency cepstral coefficients from the 

subband values and use them for speaker identification. 
 
• Yapp et al. [YAP97] use the quantised values of the first nine subbands for their speech 

recognition system. To reach a higher frequency resolution they apply the Fast Fourier 
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Transform (FFT) on subband windows of size 25 ms using a Hamming window and padding 
the number of samples to a power of 2. They take the magnitude of the FFT values and 
assemble them over the subbands into one single frequency vector. This feature vector is 
now mel-warped and used to calculate cepstral, delta cepstral, and acceleration 
coefficients as features. 

 

3.3 Energy features 
 
Signal energy features are closely related to the human loudness perception. When calculating 
energy features in the compressed domain rather than from uncompressed PCM samples, the 
results are closer approximations of perceptual loudness because the subband values have been 
filtered by the psychoacoustic model and thus the influence of non-hearable frequencies is 
reduced. The disadvantage however is that signal energy is distributed over the frequency bands 
and  thus has to be added up requiring higher computational complexity than on uncompressed 
signals. Signal energy measures are often used for segmentation of an audio stream. A signal's 
start and end times are then usually determined by thresholding.  
 
• Patel et al. [PAT96] calculate signal energy for a window of size M from the subband 

values. Nakajima et al. [NAK99] restrict their loudness measurement to the energy in the 
lowest subband as this is the one where most energy is concentrated and this restriction 
provides a considerable efficiency increase. A generalised formula for signal energy is given 
by: 
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The window function h(m) may be e.g. a Rectangular, Hamming, Hanning, Welch or Bartlett 
window depending on the required narrowness or peakness of spectral leakage.  

 
• Tzanetakis et al. [TZA00] prefer to use the RMS of the signal energy for loudness 

approximation which achieves a better separation for low level values. 
 
• Another loudness approximation is the signal magnitude, which is less sensitive to noise 

than signal energy. It can be calculated analogously to signal energy [PAT96] via: 
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• In our own work we have used the sum of scalefactors on a granule resolution for a fast 

approximation of the signal magnitude on Layer 1 & 2 frames [BAR97, PFE99]. 
 
• Wang and Vilermo [WAN01] calculate the band energy of several subbands and use a 

threshold on them to determine a confidence for a pop-music beat in the granule: 
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3.4 Silence statistics 
 
Silence statistics are often used as indicators for classification of audio segments into different 
signal classes. Speech segments for example generally contain a lot more silence than music 
segments.  
• Therefore, Patel et al. [PAT96] propose pause rate as an indicator to separate speech from 

non-speech signals: 
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with Ts as the silence energy threshold. P counts the number of silent segments on a time 
interval of size M. 

 
• Similarly, Tzanetakis et al. [TZA00] use a low energy feature to separate speech from music. 

On a window of about 1 sec (M=40 frames) they calculate the percentage of frames that have 

less than the average energy )(tE : 
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• Nakajima et al. [NAK99] call their silence statistic energy density. It is also defined on a 

window of 1 sec and basically calculated as the log value of the variance of L(t). 
 

3.5 Spectral energy statistics 
 
Spectral energy statistics capture subband energy distribution features, which are indicative for 
specific types of sounds. 
 
• The spectral centroid is the balancing point of the subband energy distribution [BAR97, 

TZA00]. It is thus calculated as the first moment of the subband energy distribution: 
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It determines the frequency area around which most of the signal energy concentrates and is 
thus closely related to the time-domain zero crossing rate (ZCR) feature often used in speech 
recognition systems to determine exact start- and endpoints of talkspurts. It is also frequently 
used as an approximation for a perceptual brightness measure [BAR97]. Nakajima et al. 
[NAK99] use the squared subband samples in their spectral centroid calculation to better 
spread out the centroid values. 

 
• The spectral rolloff point R is determined where 85% of the window's energy is achieved: 
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It is used to distinguish voiced speech from unvoiced speech and music [TZA00], which 
have a higher rolloff point because their power is better distributed over the subband range. 

 
• Patel et al. [PAT96] propose a feature called band energy ratio, which sets the energy of the 

low frequencies (subbands 0 to J-1) in relation to the high frequencies (subbands J to I-1): 
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This is indicative of the voicedness of a sound. They claim that J=2 is a good choice because 
voiced signal energy concentrates below 1.5kHz while unvoiced signal energy is distributed 
over all subbands. 

 
• The spectral flux of two successive windows t and t+1 is calculated as the 2-norm of the 

difference between normalized subband value vectors at t and t+1 [TZA00]: 
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While the first three statistics calculated spectral energy distribution features on one window, 
the spectral flux determines changes of spectral energy distribution of two successive 
windows. 

 
• The subband central moments calculated by Boccignone et al. [BOC99] on the contrary 

calculate statistics within subbands over several frames. They capture how much a subband's 
energy is dispersed from its mean: 
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3.6 Bandwidth features 
 
• The bandwidth covered by a window is calculated from all subbands with sufficient energy: 

)).)(()10(:min()))(()10(:max()( sisi TtsIiiTtsIiitBW >∧−≤≤−>∧−≤≤=  
It is stipulated that the bandwidth of speech is usually narrower than that of music [NAK99, 
VEN99]. 

 
• Nakajima et al. [NAK99] propose to determine bandwidth information by counting the 

number  of subbands with significant level: 
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If a window’s content covers a lot of subbands such as music, SB(t) becomes large. In 
addition to measuring the subband range that a window contains, this also takes into account 
how strong the subbands in between are represented. 
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3.7 Pitch features 
 
Pitch is indicative of a speaker and thus an important property of a sound. 
 
• Patel et al. [PAT96] calculate the pitch of a sound signal in the compressed  domain by using 

the autocorrelation function of the values of the first subband on 30% overlapping windows. 
With an overlap of o samples, the related generic formula can be given via: 

∑
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They calculate the pitch only on windows of sufficient energy to reduce processing time on 
silences. In addition they perform nonlinear clipping of small subband values to avoid 
confusion of the first and second formants. They choose the largest autocorrelation peak 
value as the pitch if it contains more than 30% of the window's energy. 

 
• Venugopal et al. [VEN99] use the analysis-by-synthesis approach of the Multiband 

Excitation Vocoder  for pitch estimation. In it, speech is synthesised and an unbiased error 
measure is calculated by comparison to the original speech. The pitch period is the period 
used when the error is minimum. 

 
 

4 Segmentation 
 
When talking about segmentation of an audio stream, temporal segmentation is usually the 
subject. The identification of the sound components that belong to one specific sound event 
could be regarded as a spatio-temporal segmentation. This is a hard task and being researched in 
the field of “computational auditory scene analysis (CASA)” . We are not aware of any 
approaches toward CASA in the MPEG-1 compressed domain. So, here we concentrate on 
temporal segmentation in which specific temporal fragments of an audio stream are identified for 
their homogenous content according to some criteria. Existing segmentation approaches 
determine fragment boundaries based on e.g. strong changes of a specific feature or relative 
pauses. 
 
For such segmentation approaches, the presented features are often not used directly – instead 
their mean and variances are calculated on larger windows of about 1-4 sec. Additionally, log-
transforms of the results can be used to reduce the dynamic range and make the clusters in 
classification more compact [TZA00]. 
 

4.1 General segmentation 
 
• Tzanetakis et al. [TZA00] perform generic audio segmentation at “ texture”  change instants. 

They use the features low energy, and mean and variances of spectral centroid, spectral 
rolloff point, spectral flux, and RMS energy in a feature vector. They calculate the 
Mahalanobis distance between successive feature vectors, and differentiate it. Peaks are then 
picked as segment boundaries via an adaptive thresholding algorithm, which includes a 
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minimum duration condition to avoid small regions. They achieve up to 75% consistency 
with human segmentation results. 

 
• Our own approach to segmentation uses the signal magnitude as feature [PFE01] to calculate 

relative pauses. The segmentation algorithm also follows an adaptive thresholding approach 
on 2 sec intervals. Windows are determined as silence if their signal magnitude stays under 
the threshold. Segmentation uses a minimum duration and a maximum tolerated interruption 
parameter. A sequence of silence windows gets clustered into a pause segment if it covers at 
least the minimum duration and is not interrupted by non-silence windows longer than the 
tolerated interruption. We achieve hit rates between 46% and 97% when comparing to human 
segmentation results depending upon the SNR of the material. 

 

4.2 Scene change 
 
• Barrass [BAR97] calculates a running average of the spectral centroid called “brightness 

history” . Sudden changes in brightness are used for scene change detection. 
 
• Boccignone et al. [BOC99] calculate video scene changes based on audio and video breaks. 

Video analysis provides shot boundaries, which are scene change candidates. Audio analysis 
validates the candidates. They calculate the subband mean energy and four subband central 
moments on the first 8 subbands and accumulate these into one feature vector. Then, an 
Artificial Neural Network is trained to partition the feature space into silence, speech, music, 
and noise resulting in transition points between different sound classes. These are used to 
validate the shot boundaries. They achieve a hit rate between 62% and 93% for audio breaks 
in comparison to human results. 

 
 

5 Classification 
 
Although temporal segmentation is an important first step in determining the structure of an 
audio stream, automatic determination of more information on the actual content of the 
fragments is of higher value. Thus the next step is to classify the fragment content into a given 
set of sound classes. Generic classes are silence, music, speech, and noise. According to the 
requirements of the application, more specific classifications may be required, such as the 
determiniation of the type of sound effect or the separation of speakers. 

5.1 Silence determination 
 
• Patel et al. [PAT96] use a standard threshold approach on the average signal energy of a 

video clip to determine whether the clip contains silence. 
 
• Nakajima et al. [NAK99] use the variance of subband 0 energy to distinguish between 

silence and non-silence: 
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They choose M = 1 sec and use only one subband sample per frame. This sub-sampling 
increases calculation speed enormously. A silent segment is declared where σ2(n)<Ts with 
Ts as the silence energy threshold. They achieve a hit rate of 91% with 13% false hits. The 
false hits are mainly attributed to mixed signal 1 sec windows. 
 

 

5.2 Music/speech determination 
 
• Patel et al. [PAT96] classify audio segments determined by video shot boundary detection. If 

the band energy ratio lies above 0.8 or the pause rate is below 0.2 or there is no pitch found, 
the segment is classified as a musical clip, else as speech clip. 

 
• Nakajima et al. [NAK99] use the energy density and the average number of subbands with 

significant level on 1 sec windows to distinguish between music and speech. Music has a 
higher energy density than speech. Music also usually has significant subbands up to 
subband number 20, whereas speech rarely goes beyond subband 10. They use a multivariate 
Gaussian distribution to model the classes and achieve a hit rate of 93% for music (with 4% 
false hits) and of 88% for speech (with 16% false hits). The false hits for speech stem from 
intermittent sounds such as drum solo. 

 
• Tzanetakis et al. [TZA00] use the features low energy, and the mean and variances of the 

spectral centroid, spectral rolloff point, and spectral flux in a feature vector. They compare a 
multivariate Gaussian distribution classifier to a K-Nearest Neighbour classifier to 
distinguish speech from music. They evaluate them on about 2 hours of audio data and 
compare results on a frame basis achieving about 82% accuracy for the Gaussian distribution 
and about 85% accuracy for the K-NN. In comparison to the classification of PCM data, the 
results only degrade by about 2%. 

 
• Barrass [BAR97] determines music on Layer 2 files as a signal that exhibits long-term wide-

band stability. This stability is calculated from the scalefactor selection information. A signal 
is determined as long-term stable if more than 60% of the non-zero subbands of a frame have 
a repeated scalefactor. Coverage of the subbands must be at least 24 out of 30 subbands. In 
contrast, speech is determined as a signal with low- or mid-range brightness and stability. 
The brightness is calculated via the spectral centroid of the scalefactors. Low-range 
brightness indicates a male voice, mid-range brightness a female one and high-range 
brightness again signifies music. 

 

5.3 Sound effects 
 
Nakajima et al. [NAK99] use the average and variance of the spectral centroid on 1 sec windows 
to determine applause on their TV program sound tracks. Applause has a continuous self-
similarity and stable centre frequency. They achieve a hit rate of 74% with 15% false hits, which 
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occur mainly on mixed signal 1 sec windows. 
 

5.4 Noise 
 
Barrass [BAR97] determines noise on Layer 2 files as a signal that exhibits long-term wide-band 
transience. This transience is calculated from the scalefactor selection information. A signal is 
determined as long-term transient if more than 30% of the non-zero subbands of a frame have 
non-repeated scalefactors. Coverage of the subbands must be at least 1 out of 4 subbands. In 
addition, short, loud and bright signals are determined as a “clang”  and also classified as a noise. 
 

5.5 Speaker 
 
To distinguish between six different speakers, Venugopal et al. [VEN99] use normalised linear 
frequency cepstral coefficients and estimate Gaussian Mixture Model parameters using the 
Expectation Maximisation algorithm. 
 
 

6 Recognition and Identification 
 
On speech segments, recognition and identification of more specific sound content is possible 
such as the gender of a speaker segment, the speaker itself, and the content of his speech.  
 
On music segments, recognition of beats and identification of rhythms can be performed. We 
report on one beat recognition approach based on MPEG-1 compressed domain features. 
 

6.1 Gender 
 
• Venugopal et al. [VEN99] use the pitch estimation of the Multiband Excitation Vocoder and 

declare the speaker as male if the pitch is between 60 and 120 Hz and female between 120 
and 200 Hz. They achieve a hit rate of about 80%. 

 
• As mentioned above, Barrass [BAR97] determines the gender of a speech frame via the 

brightness of the signal, which is calculated from the spectral centroid of the scalefactors in 
Layer 2. If the spectral centroid lies below the second subband, it is determined as male, and 
between the third and sixth subband as female. 

 

6.2 Speech recognition 
 
Yapp and Zick [YAP97] implemented a speaker-dependent, small vocabulary speech recognition 
system that uses compressed domain features. They calculate cepstral, delta cepstral, and 
acceleration coefficients as described in Section 2.2.1. Then they train Hidden Markov Models 
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(HMMs) on 17 words. Training and recognition were both performed with continuously spoken 
sentences. A word-level accuracy of 99% was obtained on Layer 2 encoded data at 32 kbit/s. 
Their system works on Layer 1 and Layer 2 and interlayer training and recognition is possible. 
 

6.3 Beat recognition 
 
Wang and Vilermo [WAN01] presented a compressed-domain beat detector for pop-music with 
the aim of replacing beats that were lost during an Internet transmission of a pop-song with 
previously stored beat samples of that song. They use the window type information of Layer 3 
files and the band energy of four frequency ranges for beat detection. The four frequency ranges 
are: the full-band energy and the frequency intervals 0-459, 3405-7462, and 7463-22050 Hz. The 
middle frequency ranges usually give poor beat information because other instruments and 
singing are more dominant in these ranges. When restricting the search for beats to the most 
probable times after inter beat intervals (IBIs), they detect most beats.  
 
 

7 Conclusions 
 
In this paper we have given an overview of the kind of features that have been extracted in the 
MPEG-1 audio compressed domain. Considering the amount of MPEG-1 Layer 3 (MP3) files 
available nowadays, audio analysis on compressed files is bound to be in great demand soon. 
Research in this field is still in its infancy and there are still many opportunities to pursue for 
fundamental research. Audio analysis results can be used more powerfully when used in 
conjunction with video analysis results to achieve automatic extraction of more abstract 
concepts. On its own it can be used for sound-based audio search engines no more based on 
textual queries and filenames but on the audio content. 
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