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Error resilient audio coding is an essential enabling technology for on-line music delivery in wireless
networks. Three crucial requirements for the transmission of audio over mobile networks are compression
efficiency, computational simplicity and error resilience. This dissertation concentrates on the
development of novel solutions in these three areas.

The first contribution of this dissertation is the development of an equivalent rectangular band (ERB)
based masking model and its incorporation into an audio encoder. Most currently employed
psychoacoustic models are based on the Bark frequency scale. The proposed model enables performance
comparison of models based on ERB and Bark scales. The investigation reported in this dissertation has
shown that ERB based masking models work at least as well as the Bark based models. They improve the
relatively poor performance of current perceptual audio coding technology when applied to speech signals
at very low bitrates. Superior performance of the new model with speech signals may also suggest that
models based on the Bark scale may have introduced distortions at frequencies below 500 Hz, although
this does not necessarily reduce speech intelligibility. Additionally it is shown how excess masking can
be exploited to further improve coding efficiency in systems using perceptual models based on the ERB
scale.

The second contribution of this dissertation is the study of the modified discrete cosine transform
(MDCT) and its mismatch with the discrete Fourier transform (DFT) based psychoacoustic model.
Presentation of a signal in the MDCT domain has emerged as the dominant tool in high quality audio
coding because of the special properties of MDCT. In addition to the energy compaction capability
similar to the discrete cosine transform (DCT), the MDCT simultaneously provides critical sampling,
reduction of block effects and flexible window switching. However, perceptual models of the auditory
system often use a Fourier transform implemented by a DFT. Using a masking curve calculated with a
DFT based psychoacoustic model to quantize MDCT coefficients could present problems in certain
special cases. This dissertation provides a first step toward solving this mismatch and thereby simplifying
the encoder structure. A comparative study of the energy compaction properties of some relevant
transforms is presented. The integer-to-integer DCT can implement a lossless scheme preserving the
spatial structure of quantization errors, thus preventing possible binaural unmasking effects. A novel
method is presented to remove inter-channel redundancy in multichannel audio using the integer-to-
integer DCT.

The third contribution of this dissertation focuses on compressed domain audio processing for the purpose
of error concealment and improvement of existing audio coding technologies such as MPEG-1 Layer 3
(MP3) and MPEG-2/4 advanced audio coding (AAC). A novel compressed-domain beat-pattern based
error concealment algorithm is proposed to tackle packet loss in streaming music over error prone
channels such as Mobile Internet. Finally, schemes to recompress MP3 audio bitstreams are studied for
applications such as messaging, browsing and storage applications in mobile terminals.
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3G 3rd Generation Mobile Communications

AAC MPEG Advanced Audio Coding

AC-3 Audio Coding Technique from Dolby Laboratories Inc.

ARQ Automatic Repeat Request

ASPEC Adaptive SPectral Entropy Coding

BER Bit Error Rate

BMLD Binaural Masking Level Difference

BSAC MPEG-4 Bit Sliced Arithmetic Coding
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C/I Carrier-to-Interference

CPEs Channel-Pair-Elements

DAB Digital Audio Broadcasting

DFT Discrete Fourier Transform
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DVD Digital Video Disc

DWPT Discrete Wavelet Packet Transform

EPAC Enhanced Perceptual Audio Coding from Lucent Technologies

ERB Equivalent Rectangular Band

FEC Forward Error Correction Coding

FIR Finite Impulse Response

FFT Fast Fourier Transform

FV Feature Vector

GA General Audio in MPEG-4

GSM Global System for Mobile Communications

HDTV High Definition Television

Hi-Fi High-Fidelity

IBI Inter-Beat Interval

INT-DCT Integer-to-Integer DCT

IP Internet Protocol

ISP Internet Service Provider

KLT Karhunen-Loeve Transform

LAN Local Area Network

LC (AAC) Low-Complexity Profile

LFE Low Frequency Enhancement

LSB Least Significant Bit
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LSF Low Sampling Frequency

LTP Long Term Prediction

Mbone Internet Multicast Backbone

M-commerce Mobile Commerce

MDCT Modified Discrete Cosine Transform

MIDI Musical Instrument Digital Interface

MLT Modulated Lapped Transform

MPEG (ISO/IEC) Moving Pictures Expert Group

MP3 MPEG-1 Layer 3

MUSICAM Masking pattern adapted Universal Subband Integrated Coding And Multiplexing

NMT Noise Masking Tone

OA Overlap-Add

PAC Perceptual Audio Coding from Lucent Technologies

PCM Pulse Code Modulation

PNS Perceptual Noise Substitution

PQMF Pseudo Quadrature Mirror Filterbank

PQF Polyphase Quadrature Filterbank

PR Perfect Reconstruction

QoS Quality of Service

RSVP Resource reServation Protocol

RTCP Real-time Transport Control Protocol

RTP Real-time Transport Protocol

SDFT Shifted Discrete Fourier Transforms

SFB Scale-factor Band
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SNR Signal-to-Noise Ratio

SPL Sound Pressure Level
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TCP Transport Control Protocol
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TNS Temporal Noise Shaping

UEP Unequal Error Protection
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In the past couple of years, an explosive growth in the use of the Internet and mobile telephones has been
experienced. The convergence of these two technologies will open a wide range of new opportunities for
the already flourishing multimedia market [1].

Wideband audio is an important element of multimedia. The Internet transmission of compressed digital
audio, such as MP3, has already shown a profound effect on the traditional process of music distribution.

With increasing channel capacity available in the new generation of mobile networks, it is logical to
envision an interesting scenario that would bring music to a mobile terminal via the Internet. For
example, music or radio programs can be ordered for immediate or later listening; web-based services can
be accessed via the mobile network; music can be distributed from peer to peer; and interactive audio-
related games can be played with friends. These applications can be implemented within the different
technical requirements of the communication systems. Depending on the constraints on delay, three types
of communication modes can be employed. These are non-real-time messaging, near real-time browsing,
and two-way real-time rich call. Messaging does not have any constraint on delay. Browsing has some
constraint on delay to the degree that is not very annoying to the customers. Two-way real-time rich call
has the strictest constraint on delay, which should not exceed 250 ms [61].

These scenarios could provide added value to consumers and become an important form of mobile-
commerce (m-commerce) in the near future. However, the characteristics of mobile networks pose special
problems to making this vision a reality. This dissertation addresses some of the relevant technical aspects
and reports some advances.

/�/� �����6������*���������

The digital coding of high fidelity (Hi-Fi) audio has been commercialized since the 1970s in the form of
the compact disk (CD). However, the amount of data needed for a faithful digital representation of audio
signals is enormous. For example, the net bitrate for pulse code modulation (PCM) recordings on CDs is
705.6 kbps (= 44.1 kHz ���������	�
���
��������������������
�������������
���
�����
�
�������������

for many applications, especially for band limited transmission systems. The necessity for digital audio
coding/compression is obvious.

Most of the pilot research on Hi-Fi audio coding has been conducted during the development of digital
audio broadcasting (DAB) system [2], where near CD quality digital audio should be sent via radio
channels. This effort had an important impact on the first international standard (MPEG-1 audio) [3] for
the digital compression of Hi-Fi audio.
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Along with deployment of new generations of mobile communication networks, the transmission of
wideband audio is becoming more feasible. However, the price of channel capacity in the wireless
network is still significantly higher than its wired counterpart such as optical fibers, thus making wireless
channels a very scarce commodity. In addition, a mobile terminal usually has quite limited computing and
memory capacity. All these factors make it a challenging task to compress and to transmit wideband
audio over wireless networks.

Speech and music are two important classes of audio signals. For wireless audio content delivery, the
following features have to be considered carefully. 1) Coding efficiency is very important. Since lossless
coding techniques alone are inadequate for this application, lossy coding techniques become a natural
choice. 2) Computational complexity and memory consumption are critical for mobile devices. 3) Error
resilience is crucial to cope with the adverse conditions of different wireless systems.

With current audio compression technologies the bitrate and its associated price per bit could still limit
widespread acceptance of high quality music delivery in cellular networks, even in the 3rd generation
mobile communications (3G) systems. Improvements in compression efficiency are thus desired to foster
on-line music business in wireless networks. The second major problem in current audio coding
technologies is the poor performance with speech signals at low bitrates. Improved speech quality at low
bitrates would be a much-desired achievement in generic audio coding technology.

It becomes evident from this that current audio coding technologies do not provide all the answers to the
daunting task of high quality audio delivery over wireless networks. It is thus desirable to have more
efficient and error resilient coding algorithms optimized for mobile networks. This dissertation presents
some improvements and solutions within this perspective. The emphasis here is on coding efficiency,
reduction of computational complexity, memory consumption and error concealment.

/��� #��	��������5��������������

This dissertation consists of eight publications and an introductory review of the relevant audio coding
techniques and the error resilient transmissions. The introductory part is organized into five chapters. In
Chapter 2, the fundamentals of audio compression are reviewed. Chapter 3 focuses on compressed
domain audio processing with applications to error resilient transmissions and to enhance coding
efficiency of existing technologies. Chapter 4 summarizes the eight publications and presents the author’s
contribution to publications. Chapter 5 concludes the findings of the dissertation and outlines future
research perspectives.
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The problem of signal compression or source coding is to achieve a low bitrate in the digital
representation of an input signal with minimum perceived loss of signal quality [6]. There are two
fundamental ways to compress digital audio signals. The first method is to remove the 
��������& that is
not necessary for the reconstruction of the original signal. The operation of removing signal redundancy
is traditionally called entropy coding or lossless coding. An encoder structure in Figures 1 and 3 without a
psychoacoustic model represents a common configuration of such techniques. The configuration consists
of a decorrelation module such as prediction or a transform, which serves to reduce the redundancy of the
audio signal (due to the memory of the audio source [7]), as a primary stage, followed by a quantizer. The
quantized data usually exhibit some residual redundancy (due to a non-uniform probability density
function of the quantized symbols [7]), which can be further reduced by a Huffman or arithmetic coding
as a secondary stage. These types of methods are capable of compressing audio signals by a factor of two
or three. The merit is that they can reproduce the quantized signal exactly, not just approximately. It
should be noted, however, that the decorrelation module as well as the quantizer has to be designed
carefully to ensure lossless coding.

In order to achieve a more compact representation of digital audio, a second method is introduced to
remove the �

�
�����&. This class of methods is based on the incorporation of the limited time and
spectral resolution capability of the human auditory system. The irrelevant parts of the signal inaudible to
the human ear, need not be transmitted [5]. Applying knowledge of auditory perception leads to hearing-
specific codecs that perform remarkably well. This second approach needs a psychoacoustic model,
which is usually a simple estimation of the masking effect of the human auditory system. This type of
method is capable of compressing audio signals by a factor of ten without perceptible loss of quality.
Extensive reviews of perceptual coding can be found in [6][8].

��/�/� .������
�	�����	������

Essentially, all state-of-the-art low-bitrate audio coding technologies are based on the combination of the
two basic operations discussed above. The groundbreaking achievement in perceptual audio coding was
marked by the first international standard – MPEG-1 audio-coding standard [3] in 1992. In spite of some
proprietary technologies such as AC-3 from Dolby Laboratories, WMA from Microsoft, EPAC from
Lucent Technologies and ATRAC-3 from Sony in recent years, MPEG audio standards seem to remain
the mainstream of technologies. Since there is more information available regarding the MPEG Audio
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international standard, only the development of MPEG’s family of audio coders is briefly reviewed in this
dissertation.

The MPEG-1 audio [3] was developed for one or two audio channels (mono, stereo, or dual channel),
sampled at 32, 44.1 or 48 kHz. MPEG-1 Layer 3, commonly known as MP3, has become very popular in
the Internet world. A good tutorial on MPEG-1 audio can be found in [4]. In 1994 MPEG-2 audio [9] was
developed for low bitrate coding of multichannel audio, exemplified by the common 5.1 surround sound
format (front left, front right, center, two rear channels, and an optional low frequency enhancement
channel). Furthermore, MPEG-2 audio also provides the low sampling frequency (LSF) extension to
MPEG-1 audio. Due to the backward compatibility to MPEG-1, the MPEG-2 audio coding algorithm is
very similar to its predecessor. The backward compatibility, however, has limited the coding performance
of MPEG-2.

In 1994 it became obvious that, by giving up the backward compatibility and introducing new
technologies, much better quality at lower bitrates could be achieved [11]. As a result of the new efforts,
the MPEG-2 advanced audio coding (AAC) algorithm [12] was finalized in 1997 as the third generation
MPEG audio coder, which is formally an extension to the MPEG-2 standard. MPEG-2 AAC provides
monophonic, 2-channel and multichannel coding capabilities.

In parallel, the MPEG-4 audio standard [14] started its development in 1994/1995 and was finalized in
2000. An important aspect of the overall MPEG-4 audio functionality is covered by the so-called
“General Audio” (GA) part, ���� coding of arbitrary natural audio signals. MPEG-4 general audio coding
is built around the coder kernel provided by MPEG-2 AAC, which is extended by additional coding tools
and coder configurations [11]. AAC has a very flexible bitstream syntax that supports multiple audio
channels, subwoofer channels, embedded data channels, and multiple programs consisting of multiple
audio, subwoofer, and embedded data channels. AAC combines the coding efficiencies of a high-
resolution filter bank, backward-adaptive prediction, joint channel coding, and Huffman coding with a
flexible coding architecture to permit application-specific functionality while still delivering excellent
signal compression [15].

��/��� ����
�
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Modern perceptual audio encoders are conceptually similar in the sense that they consist of four basic
building blocks (see Figure 1): a transform or filterbank, perceptual model, requantization and coding,
and bitstream formatting.

The concept of perceptual audio coding (bitrate reduction) described from the viewpoint of quantization
noise shaping therefore turns into the following: initially a PCM signal, such as music on a commercial
CD, has the quantization noise uniformly distributed across the whole frequency band. A transform or
filterbank creates a frequency domain representation of this signal. A perceptual model usually uses the
original signal to estimate a time and frequency dependent masking threshold indicating the maximum
quantization noise inaudible in the presence of this audio signal. By requantization, a quantizer then
reduces the number of bits used to represent this signal resulting in an increase and shaping of
quantization noise to the limit of the masking threshold. This explains the significance of masking in
perceptual audio coding technologies.

The transform or filterbank and the perceptual model connect at the quantizer. For orthogonal transforms,
the coding reconstruction error variance equals that introduced by a set of coefficient quantizers [7].
Therefore, a coarser quantization of spectral coefficients corresponds an increased reconstruction error,
reducing the signal-to-noise ratio (SNR) of a reconstructed audio signal.
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In the case of non-orthogonal transforms, such as the modified discrete cosine transform (MDCT), the
relationship between the spectral quantization noise and the time domain reconstruction error is not so
straightforward. However, the same dependency exists, i.e., a coarser quantization of spectral coefficients,
consuming less bits, leads to reduced SNR of a reconstructed audio signal.

The general design philosophy is that the decoder is significantly simpler than the encoder (see Figure 2).
Without loss of generality, the focus of this dissertation is put on MPEG audio coding tools. In this
chapter, a review of the four basic tools is first presented and is then followed by a presentation of some
other complementary coding tools. In order to show how these coding tools are used in actual coding
systems, the MP3 codec structure is illustrated in Figure 3.

���� ��4
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A perceptual model is the heart of all perceptual coders. The single most important feature of this is the
exploitation of masking effects within the human auditory system such that the audibility of quantization
noise can be reduced. The masking threshold is computed using rules known from psychoacoustics.

Two key concepts are that the ear uses frequency division as a first step in the hearing process and that
the masking effect of stimuli presented to the ear can be understood from a relatively small number of
experiments using simple stimuli. One basic approach used in the design of these coders follows this
principle and uses the extension of the masking characteristics for simple signals to complex ones. This is
a bold assumption because typical music signals are often very complex, with many tonal or noiselike
components, and they are not at all like the simple stimuli used in basic psychoacoustic experiments [10].

It should also be noted that all psychoacoustical experiments are conducted with a group of people, who
are supposed to be “normal listeners” with “normal ears”. However, everyone has different hearing
characteristics. The results of psychoacoustical tests are usually presented as a statistical average.
Therefore, in applying theory to practical coding applications, a careful trade-off has to be chosen
between computational complexity and effectiveness.

����/� �5�����
��������������
�	�����

When a sine tone excites the ear, a region of the basilar membrane oscillates around its equilibrium
position. This region is fairly broad; however, there is a rather sharp point of maximum displacement. The
distance of this maximum from the end of the basilar membrane is directly related to the frequency [24].
In other words, frequency is mapped onto a particular place along the membrane with a limited frequency
resolution. This limit is closely related to an important characteristic of the perceptual mechanism known
as the �
�����
�+��� [25][26]. The critical band was first discovered in masking experiments by Fletcher
[27]. He measured the minimum level (“threshold”) at which a sinusoidal signal could be detected as a
function of the bandwidth of a bandpass noise masker. The noise was always centered at the signal
frequency, and the noise power density was held constant. Thus the total noise power increased as the
bandwidth increased.

This experiment has been repeated several times since then. An example of such experiments from Moore
����
. was presented in [28]. The threshold of the signal increases at first as the noise bandwidth increases,
but than flattens off so that further increases in noise bandwidth do not change the threshold significantly
[29].

To account for these results, Fletcher [27] suggested that the peripheral auditory system behaves as if it
contained a set of bandpass filters with continuously overlapping passbands. These filters are now called
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the auditory filters. When detecting a signal centered on a noise masker, the listener is assumed to focus
his attention on the output of the auditory filter centered at the signal frequency. Increases in noise
bandwidth result in more noise passing through the auditory filter provided the noise bandwidth is less
than the filter bandwidth. However, once the noise bandwidth exceeds the filter bandwidth, further
increases in noise bandwidth do not increase the noise passing through the filter. Fletcher called the
bandwidth at which the signal threshold ceased to increase the critical bandwidth (CB) [29].
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Figure 4. Estimated auditory filter bandwidths versus center frequencies. The one-third octave, the Bark
and the ERB scale are shown as a dotted line, dashed line and dash-dotted line respectively. The scale

factor bandwidth in AAC is shown as a solid line marked with dots. The one-third critical bandwidth in
the psychoacoustic model of AAC is shown as a solid line marked with stars.

The critical-band concept is based on the well-proven assumption that our auditory system analyzes a
broad spectrum in parts that correspond to critical bands [30]. Critical bands reflect the frequency
resolving power of the ear as a function of the center frequency. The ear blurs the various signal
components within a critical band. Empirical results show that our ears have a limited, frequency
dependent acuity. This acuity (critical band) is approximately 100 Hz at the lowest audible frequencies
and about 4 kHz at the highest. It is described by the following equation [31]:

( ) 69.024.117525 *�� ++=  (1)



18

where *  is the frequency in kilohertz and �� is the critical bandwidth. The critical bandwidth increases
monotonically with increasing frequency in a non-linear manner.

Adding one critical band to the next, so that the upper limit of the lower critical band corresponds to the
lower limit of the next higher critical band, produces the scale of the �
�����
2+����
����[31].

Because the critical-band concept became a well-established theory applied in so many models, a unit for
the critical-band rate was defined, which is one critical band wide. It is the +�
!, in memory of
Barkhausen, a scientist from Dresden, Germany, who introduced the ��	�, a unit describing the loudness
level for which the critical band plays an important role [30]. Zwicker ��� �
. developed a Bark-scale
loudness model [32][33][34]. Most of the perceptual models in perceptual audio coding and quality
measurement systems are based on Zwicker’s model and therefore the Bark scale.

Moore and Glasberg have presented a summary of experiments measuring auditory filter shapes using
symmetric/asymmetric notched noise maskers [35]. The equivalent rectangular bandwidth (ERB) of the
filters is defined by

( )137.47.24 += *$5� (2)

where *  is the frequency in kilohertz. The ERB and Bark scales are depicted with one-third octave
bandwidth as a reference in Figure 4. It should be noted that the ERB function differs somewhat from the
traditional critical band function, which flattens off below 500 Hz at a value of about 100 Hz.

For comparison, also scale-factor bandwidths and bands of one-third critical bandwidth used in AAC are
shown in the same figure as a function of center frequency.

In AAC using one-third of a critical bandwidth is significant as it accounts for the fact that we use fixed
bands. The human auditory system centers a critical band on the frequency of a masking component,
extending the maximum masking effect to plus and minus one-half the critical bandwidth from the
masking component frequency. Analysis methods employing fixed bands do not have this capability to
center their frequency of operation. Using one-third of the critical bandwidth in the AAC psychoacoustic
model is an engineering solution, which balances computational complexity with performance. For
accurate quantization using the masking threshold, a higher resolution than the critical bandwidth is
generally required in calculations. If fixed rather than adaptively setting bands are used, the characteristic
bandwidth in a coder has to be reduced to improve modeling resolution. Values of typically one-half to
one-third of a critical bandwidth are used. This helps to cope with the situation where a masking
component's frequency lies at the high frequency boundary of a fixed band and the noise component to be
masked is at its low frequency boundary [10].

On the other hand, AAC scale-factor bandwidth is used when quantizing the MDCT coefficients. The
design is a good compromise between several constraints. Firstly, the bandwidth should reflect the critical
bandwidth, so that the quantization noise can be set up to the masking threshold for an individual critical
band. Secondly, a finer bandwidth than critical bandwidth will enable more accurate quantization noise
tuning to the masking threshold, thus theoretically saving bits. However, this saving of bits in
representing frequency components may be offset by the increase in associated side information, such as
bit-allocation information. Finally, it is necessary to cope with other limiting factors such as
computational complexity and the requirement of the Hufman coding in MP3 or AAC. As a result, the
subband division presented in Figure 5 is codec dependent. For example, MPEG-1 Layer 1 and 2 employ
a polyphase filterbank dividing audio signal into 32 equal-width subbands, while MP3 and AAC employ
scale-factor bands that are more close to the critical bandwidth.
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It has been suggested [36] that Bark-scale based perceptual models perform better than ERB based
models. Our results [P2] cannot confirm these suggestions. Preliminary investigations performed in this
dissertation suggest that an ERB based model can be applied in audio coding with good results, especially
with speech signals.

������ *��8���

Masking is an important phenomenon for perceptual coding. Masking is a complex result of the
transducing and neural components of perception. It is highly adaptive and refers to the perceptibility of
one signal in the presence of another in its time or frequency vicinity. In other words, when one sound
makes another sound harder or impossible to hear, the former sound is masking the latter. Among the
huge amount of literature on masking are two good introductory books [31][47].

The effect of masking is normally classified into ����
����	�� and �	�2����
����	������!��� [31] that
are respectively frequency and time domain phenomena. Simultaneous masking has been studied
traditionally in the �
�����
2+���2
��� scale. An example for the simultaneous condition would be the case
where we have a conversation with a neighbor while a loud truck passes by. In this case, our conversation
is severely disturbed. To continue our conversation successfully we have to raise our voices to produce
more speech power and greater loudness. In music, similar effects take place. The different instruments
can mask each other and softer instruments become audible only when the loud instrument ceases.

In the following sections, a more detailed description is given on issues related to the masking.

��������  ��!�����������*
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Simultaneous masking is a frequency domain phenomenon where a low-level signal, ���., a pure tone (the
maskee) can be made inaudible (masked) by a simultaneously occurring stronger signal (the masker), ���.,
narrowband noise, if the masker and maskee are close enough to each other in frequency. A masking
threshold can be estimated below which any signal is likely to be inaudible. The masking threshold
depends on the sound pressure level (SPL) and on the time-frequency characteristics of the masker and
maskee.

Figure 5 shows the masking pattern of a pure tone at 1 kHz, where critical-band wide noise is masked by
the tone. It can also be seen that loud low-frequency sounds mask weaker high-frequency sounds much
more strongly than vice versa. The figure includes the absolute masking threshold (threshold in quiet) as a
baseline and illustrates the associated signal-to-masking ratio (SMR). To a large extent, existing
perceptual audio coders depend primarily on the masking of noiselike sounds (quantization noise) by
tonelike sounds (speech or music) [29].

A sound signal below the masking threshold of the masking sound will not be perceived and is therefore
irrelevant as far as the ear is concerned. This effect of “mutual masking” is particularly evident in
broadband sound signals with well-defined formant structures. If mutual masking is taken into
consideration for the coding of an audio signal, then it follows that the portion of the signal lying beneath
the masking threshold does not need to be coded and therefore does not need to consume transmission
capacity [5].

The concept of noise-masking tone, on the other hand, is a significant departure from models used earlier
in perceptual coding, where it was usual to test the coder with a tone input and model the coding
distortion as noise. In adaptive perceptual coding, we recognize that the signal in a critical band can be
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noiselike, while a distortion component could be very localized and tonelike. Results for tone-masking
noise tend to be more complicated [6].

The results from masking experiments are sometimes summarized by the following equations:

� '�;�$��2����3�2��,��- (3)
' ��;�$'�2�<�,��- (4)

where � '�and�' � represent respectively tone-masking-noise and noise-masking-tone, which estimate
the maximum energy of the masked signal in both cases.�$� and $' are tone and noise energies, � is the
critical band number which is given in the form of a table in MPEG standards. Various values in the
range of 3 to 6 dB for the parameter < have been proposed [6].

Simultaneous masking is most widely exploited in audio coding schemes. A fairly common practice is to
calculate the signal energy and masking level within each subband. Then the SMR is used to control the
quantization of the transform coefficients. This concept is illustrated with a single sinusoid as the signal in
Figure 5. The distance between the masker energy and the masking threshold is the SMR, which is used
to control the quantizer. The data used to depict the masking threshold are from [31].
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Masking effects can also be measured when the masker and the test sound are not simultaneously present.
When a short test signal is present before the masker stimulus is switched on, pre-masking/backward-
masking can be measured. If the test sound is present after the masker is switched off, post-
masking/forward-masking can be measured. In comparison with post-masking, pre-masking is weak and
short of less than 20 ms in duration. By contrast, post-masking is much more obvious and long. Its
duration can be as long as 200 ms. Figure 6 qualitatively describes pre- and post-masking effects. Both
pre- and post-masking are frequency-dependent [31].

Pre-
masking

Simultaneous
masking

Post-
masking

SPL
(dB)

Time (ms)350200-50 0

20

0

60

40

Figure 6. Illustration of temporal masking (pre- and post-masking). The rectangle filled with upward
diagonals represents the duration of the masker [31].
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In psychoacoustical studies, normally only simple maskers have been used to determine the masking
threshold. What about the more realistic situation with complex maskers? Can the masking threshold
produced by combining simple maskers (sinusoids or band-limited noise) be predicted from their
individual masking thresholds? These questions have not so far been answered clearly in published
literature. As a simple example of implementation, the two psychoacoustic models presented in the
informative part of the MPEG-1 standard take the simple sum of the individual masking thresholds.

However, several studies [43][44][45] have shown that the combined masking effect of two equally
effective simultaneous maskers is 3 to 15 dB greater than the masking predicted by the linear addition of
masker energies. This “additional” amount of masking is defined as excess masking. In order to take
advantage of these characteristics, some investigations were performed and are reported in this
dissertation. Excess masking exists not only in the frequency domain but also in the time domain [47].
However, time domain excess masking has not been studied in this dissertation.
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As a starting point, the two psychoacoustic models presented in MPEG-1 audio are briefly reviewed as
references, since there is very little publically available information about the state-of-the-art in this
aspect.

��������  #$%2��#�&��	��	������ 	��
��

A high frequency resolution in the lower frequency region and a lower resolution in the higher frequency
region should be the basis for an adequate calculation of the masking thresholds in the frequency domain.
This would lead to a tree structure of the filterbank. However, the uniform 32-band polyphase filterbank
of the MPEG-1 Audio standard, which is used for the subband filtering, has a parallel structure that does
not provide subbands of different widths. Nevertheless, one major advantage of subband filtering is given
by its high temporal resolution so that the quantization noise can be controlled with sufficient temporal
resolution. This helps to prevent audible pre-echo. The small delay and complexity give the second major
advantage.

To compensate for the lack of accuracy of the spectrum analysis of the filterbank, a 512-point fast Fourier
transform (FFT) for Layer 1, and a 1024-point FFT for Layer 2 are used in parallel to filtering the audio
signal into 32 subbands [37]. The output of the FFT is used to determine the relevant tonal, i.e. sinusoidal,
and nontonal, i.e. noise maskers, of the actual audio signal. It is well known from psychoacoustic research
that the tonality of both masker and maskee has an influence on the masking threshold. For this reason it
is worthwhile to discriminate between tonal and nontonal components [38].

The basic idea of the psychoacoustic model 1 is to divide the auditory spectrum into tonal and non-tonal
components. The total masking function is calculated by summing up the masking functions of these
components and the absolute hearing threshold in power domain [3]. The output of the psychoacoustic
model is the signal-to-masking ratio for each subband. The following sections explain how the
psychoacoustic model is implemented.

The calculation of the model is performed in every data block, which are 384 input PCM samples for
Layer 1 and 1152 input PCM samples for Layer 2 and 3. The input data is first windowed with a Hanning
window, followed by a FFT routine to calculate the signal spectrum.

For simplicity, psychoacoustic model 1 is designed to distinguish tonal and noise components in the
frequency domain in a rather simple way. In order to identify the tonal components, a list of all the local
maxima in the spectrum is compiled and then pruned by applying a set of searching rules. All the
remaining spectral lines are used for calculating the non-tonal components (����= noise maskers). They are
grouped into critical bands and within each critical band, a single non-tonal component, representing the
effect of these lines is computed.

The next step is the so-called decimation: The tonal and noise components which are below the absolute
hearing threshold or are less than one half of a critical bandwidth from a stronger neighboring component
are removed. In this operation a 0.5 barks sliding window is used and only the component with the
highest power is retained within the window.

Now the masking threshold of a tonal or a non-tonal component are calculated according to the following
formulas respectively:

)](),()([))(()(),( >��?>@�@��>@����>��?�>��1� −++= (5)
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where�1�,>=�- is the masking threshold at frequency index �, which is caused by a component at index >
with strength ?, and @ is a function for mapping frequency indices to the Bark scale. It is the sum of three
terms: the strength of the component ?  (on a linear scale), the masking index ( �� ) and the masking
function ( �� ). The masking index is an attenuation term, which depends on the critical band rate of the
component, and whether it is tonal or non-tonal. The masking function is another attenuation factor,
which depends on both the displacement of the component from the neighboring frequency and the
component’s signal strength. Since the masking function has infinite attenuation beyond -3 barks and +8
barks, the component has no masking effect on frequencies beyond those ranges.

The global masking threshold is computed for all spectral frequencies by adding the masking thresholds
computed above for all the neighboring tonal and non-tonal components with the absolute hearing
threshold in the power spectral domain.

In the next step, the minimum masking threshold is determined for each subband from the global masking
threshold. Then the SMR is calculated for the bit allocation.

��������  #$%2��#�&��	��	������ 	��
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The frequency domain representation of the data is calculated via a FFT with a window length of 1024
samples. The calculation is done for every 576 samples in parallel to the hybrid filterbank of Layer 3,
which is explained later in this chapter. The separate calculation of the frequency domain representation
is necessary because the hybrid filterbank values cannot easily be used to get a magnitude-phase
representation of the input sequence. The magnitude-phase representation is necessary to calculate the
tonality of the maskers of the current input block.

The tonality estimation works using a simple polynomial predictor, as described in [39]. The basic idea is
to use the predictability of the signal as an indicator for tonality. The prediction is done in the magnitude-
phase domain. The values from the last two blocks are used to predict the magnitude and phase of each
frequency line for the current block. The Euclidean distance between estimated and actual values in the
complex FFT domain (���. real and imaginary part) is normalized to maximum possible distance. The
normalized value is called the “chaos measure” and can assume values between 0 and 1. A logarithmic
mapping is used to map the chaos measure range between 0.5 and 0.05 to tonality values between 0 and 1.

The magnitude values of the frequency domain representation are converted to a one-third critical band
energy representation. A convolution of these values with the cochlea-spreading function follows. The
next step in the threshold estimation is the calculation of the just-masked noise level in the cochlea
domain using the tonality index and the convolved spectrum. A correction for the DC gain of the
convolution has to be applied. The last step to get the preliminary estimated threshold is the adjustment
for the absolute threshold. As the sound pressure level of the final audio output is not known in advance,
the absolute threshold is assumed to be somewhat below the least significant bit (LSB) for the frequencies
around 4 kHz. A more detailed description of the estimation of the masking threshold using spreading
convolution can be found in [40].

The final step in the calculation of the threshold is pre-echo control. Pre-echo is audible if the backward
masking of the signal is not sufficient to mask the error signal, which was spread in time due to the
limited time resolution of the synthesis filterbank. This is only possible if there is a sudden increase in
signal energy, at least for part of the signal bandwidth. From this a necessary (but not sufficient) condition
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for the absence of audible pre-echo can be derived. The estimated masking threshold is restricted not to
exceed the estimated threshold of the previous block. This condition on the final estimated threshold may
reduce the estimated threshold by a large amount. To keep the actual quantization noise below this
modified threshold, additional bits need to be available to the quantization and coding loop.

The masking threshold function has to be transformed back to the linear frequency scale. This is done by
spreading it evenly over all the spectral lines corresponding to the partition domain defined in the MPEG-
1 standard. The partitions are approximately one-third of a critical band. Finally, the SMR is computed
for the subbands (in Layer 1 or 2) or the scale-factor bands (SFBs) (in Layer 3) to control the
quantization.

����1� �5��$�7����
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One of the main contributions in this dissertation is the development of a new perceptual model based on
the ERB concept. In addition, the excess masking effect is also incorporated into the proposed model.
This combination seems to give quite satisfactory results in audio coding.

�������� ���$5�2+����� 	��


The incorporation of a psychoacoustic model into audio coding has significantly improved coding
efficiency. However, the psychoacoustic models used in established perceptual coders such as MPEG
audio are based on greatly simplified assumptions, which may compromise the accuracy of the
approximated masking thresholds. The MPEG audio standards give some examples in the informative
part showing how a psychoacoustic model can be implemented. They use a DFT of successive blocks of
the audio signal, which gives the associated spectral components of the blocks. For each spectral
component an individual masking threshold is generated. The overall masking threshold follows from
superposition of the individual thresholds, which is carried out by simply adding up the threshold at the
corresponding frequencies [3][9][12]. This masking threshold determines the maximum quantization
noise energy that can be added to the original signal so as to keep the noise inaudible. These models give
a rather rough approximation, when a complex target (quantization noise) has to be masked by a complex
masker comprising multiple spectral components (either speech or musical sounds) [48]. Further bit rate
reduction heavily depends on the accurate estimation of the masking threshold both in the time and
frequency domains.

For a better estimation of the masking threshold, some ear models have been developed [35][47][49][50].
The new model presented in this dissertation is based on Moore and Glasberg’s excitation level
calculation [35]. This is somewhat different from published psychoacoustic models in audio coding, and
it leads to some advantages in masking threshold estimation. The proposed psychoacoustic model (see
Figure 7) has been integrated into an audio coder similar to MPEG-2 AAC, which contains only the basic
coding tools. The model performs better than or as well as the psychoacoustic model described in the
MPEG-2 AAC audio coding standard for all the test signals. Almost transparent quality was achieved
with bitrate below 64 kbps for most of the monophonic critical test signals. Significant improvements
have been achieved with speech signals, which are always difficult for transform audio coders.
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Figure 7. Block diagram of the proposed ERB-based perceptual model

A possible explanation for the good performance of the new model with speech signal is that the human
ear has much better resolution in the low frequency range and the ERB approximates the ear better in
lower frequency bands than the traditional Bark [47]. Speech quality with a Bark based model is affected
by distortion at frequencies below 500 Hz, while speech intelligibility is not. This better match between
the ERB and the ear might explain the improved subjective quality of coded speech signal using ERB-
based model developed by Moore ����
�[35].
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A psychoacoustic model in a coder calculates the masking threshold to determine the maximum allowable
noise injection level without audible distortion. Such models simulate masking effects from
psychoacoustic studies. There is a major challenge however: Only simple stimuli such as sinusoids and
bands of noise have been used in most psychoacoustical studies. In audio coding we are dealing with real
life audio signals. That is, a multi-component complex masker (coded audio signal) must mask the
spectrally complex target (quantization noise).

The excitation-pattern model seems to underestimate the combined masking effects of multiple-
component maskers [41][42]. More specifically, it underestimates the combined effects of two maskers
both when the masker frequency components fall within the maskee auditory-filter bandwidth, and when
they fall outside this bandwidth [42]. Therefore, some initial work was conducted to exploit the excess
masking of two-tone maskers within the equivalent rectangular bandwidths (ERBs) [35] for audio
compression. The stepwise masking thresholds (estimated within each AAC scale-factor band) with and
without excess masking are shown together with the power spectrum of the signal in Figure 8. The AAC
scale-factor bandwidths are indicated with the stepwise masking thresholds.
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Figure 8. Spectrum (halftone) and stepwise masking thresholds estimated in AAC-SFBs. Masking
thresholds with and without excess masking are shown as a solid and dashed line respectively.
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Analysis-synthesis filterbanks or transforms are of particular importance in audio coding. They are used
to decompose the audio signal into a set of compact time-frequency components that are representatives
of the partition of audible spectrum as performed by the human auditory system. Given such a set, it is
possible to discriminate between the perceptually relevant and irrelevant elements when used in
conjunction with a perceptual model. Then various quantization techniques can be applied to represent the
relevant time-frequency components with as little precision as possible, without introducing perceptible
distortion.

The properties of the filterbanks should be matched to the characteristics of the incoming signal. This is,
however, a very challenging task, because the characteristics of the music signals can be very different
and may change abruptly. Therefore, some compromise must be found within engineering constraints. A
few types of filterbanks are commonly used in established perceptual audio coding technologies, among
which MDCT has played a dominant role. Three types of filterbanks are reviewed in the subsequent
sections.

The historical development in employing filterbank/transform into audio coding is illustrated in Figure 9.
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Figure 9. Development of filterbank/transform schemes applied in audio coding.

Historically, perceptual coding systems working in the frequency domain have been called either subband
coders or transform coders. Subband coders normally use a low number of frequency-selective channels,
processing samples, which are adjacent in time. Transform coders use a large number of channels and the
simultaneous processing of samples that are adjacent in frequency.

Fundamentally, filterbanks/transforms in audio coding can be classified into two major classes. These are
the quadrature mirror filterbank (QMF) and the modified discrete cosine transform (MDCT). The wavelet
approach is closely related to QMF.

QMFs were the first filters to be used for low-bit-rate coding of music signals. The QMF uses the concept
of frequency domain alias cancellation, while the MDCT uses the concept of time domain alias
cancellation. This can be described as the duality of QMF and MDCT. However, it should be noted that
MDCT also cancels frequency domain aliasing, while the QMF does not cancel time domain aliasing. In
other words, MDCT is designed to achieve perfect reconstruction (PR), while QMF is not.

Early examples of transform coding used DFT and DCT. Commonly used window functions are
rectangular and sine-taper functions. With a rectangular window the analysis/synthesis system is critically
sampled, ���., the overall number of the transformed domain samples is equal to the number of time
domain samples, but the system suffers from poor frequency resolution and block effects, which are
introduced after quantization or other manipulation in the frequency domain. Overlapped windows allow
for better frequency response functions but carry the penalty of additional values in the frequency
domain, thus not critically sampled. MDCT is currently the best solution, achieving the three important
requirements simultaneously. Those requirements are critical sampling, reduction of block effects and
flexible window switching. The concept of the window switching was introduced to tackle possible pre-
echo problems in the case of insufficient time resolutions [21][22].

To achieve backward compatibility and better coding performance with both stationary and transient
signals, various hybrid filterbanks have been introduced. Well-known examples of hybrid structures are
PQMF+MDCT in MP3 and Wavelet+MDCT in EPAC.
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A 32-channel PQMF filterbank, also known as polyphase quadrature filterbank (PQF) [16] has been
employed in all layers of MPEG-1 audio. It combines the filter design flexibility of generalized QMF
banks with low computational complexity. The polyphase filterbank used in the MPEG audio coding
system is described in [4]. For increased frequency resolution, Layer 3 employs a cascaded MDCT after
PQMF to form a hybrid filterbank.

��"��� *�����������
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The MDCT [18], also known as the modulated lapped transform (MLT) [19], was first proposed as a
transform coding scheme performing time domain aliasing cancellation (TDAC). The time window for
MDCT is constructed such that perfect reconstruction condition is satisfied [19]. The MDCT can be
viewed as a dual of a QMF approach performing aliasing cancellation in frequency domain.

In addition to good energy compaction property MDCT combines simultaneously critical sampling,
reduction of block effects and adaptive window switching capabilities. Therefore it has been widely
applied in perceptual audio coding. However, mismatch of the MDCT with DFT based psychoacoustic
models may be one reason behind a poor coding performance for some test signals.

This mismatch can be illustrated with a practical example of an MP3 audio coder. The output of a
psychoacoustic model is the signal-to-masking ratio (0 5) calculated in the DFT domain. The maximal

inaudible quantization error is calculated according to 
0 5
$0

$5545 �? =_ , where $0 is the MDCT

domain signal energy. Using a sinusoid as a test signal, the 0 5 is stable over time because DFT is an
orthogonal transform. However, $0 can fluctuate over time because it does not obey Parseval’s theorem,
thus causing an undesirable fluctuation of the $5545 �? _  over time. This phenomenon is referred to
as the MDCT-DFT mismatch phenomenon in [P4].

The direct and inverse MDCT are defined as [17][18]:
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where 
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��� =~  is the windowed input signal, 
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If an identical analysis-synthesis time window is assumed, the constraints of perfect reconstruction are
[19][20]:
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A sine window is widely used in audio coding because it offers good stop-band attenuation, provides
good attenuation of the block edge effect and allows perfect reconstruction. Other optimized windows can
be applied as well [20]. The sine window is defined as:

( )[ ]'!�
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The relationship between MDCT and DFT can be established via Shifted Discrete Fourier Transforms
(SDFT). The direct and inverse SDFTs are defined as [23]:
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where �  and �  represent arbitrary time and frequency domain shifts respectively. SDFT is a
generalization of DFT that allows a possible arbitrary shift in position of the samples in the time and
frequency domain with respect to the signal and its spectrum coordinate system.

It has been proven that the MDCT is equivalent to the SDFT of a modified input signal [S5][S6].
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The right side of (15) is 2/1,2/)1( +10�*� ( )2/1,2/)1( += 1

U
α  of the signal 

N
�̂  formed from the initial windowed

signal 
N
�~  according to (9). Physical interpretation of (9) and (15) is straightforward. MDCT coefficients

can be obtained by adding the 2/1,2/)1( +10�*�  coefficients of the initial windowed signal and the alias.

Another important physical interpretation of (15) is that the MDCT coefficients of a signal represent the
real part of the corresponding SDFT spectrum. This has a useful implication for the design of an MDCT
based audio encoder. That is, the frequency analysis in the psychoacoustic model and the MDCT can be
implemented in one single block, thus reducing the computational complexity of the encoder [P4].

As in (16), the matrix of the MDCT for transforming 2N input samples to N spectral components is of
size '' 2×  and therefore cannot be orthogonal. However, the underlying basis functions of MDCT
(corresponding to the rows of the matrix) are orthogonal.
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In the case of a continuous input stream, a block-diagonal matrix �  can be made of MDCT matrices #
on the diagonal and zeros elsewhere (see (17)). This block-diagonal matrix �  for transforming
( ) '� ⋅+1 input samples to '� ⋅  spectral components is of size ( ) ( )[ ]'�'� ⋅+×⋅ 1 . �  becomes an
orthogonal and square matrix if ∞→� .
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where 6  is the input vector of the signal, ?  is the output vector of the MDCT coefficients. The
orthogonality of � implies

A���� 77 =⋅=⋅ (18)

However, in the case of finite-length input signals, �  is not anymore orthogonal. In order to illustrate this
scenario in an intuitive way, let us observe a simple example with N=2 and n=5. In this case, the block-
diagonal matrix appears as follows:
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That is,
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and
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It is clear from (21) that the MDCT matrices of the first and last blocks are not orthogonal, though this
usually does not cause a serious problem in audio coding applications. However, one should keep this
effect in mind when manipulating audio signals in the compressed domain, such as editing, error
concealment, etc.

With a regular block transform, we simply require that the number of samples in the signal is a multiple
of the block size N. With MDCT, however, we need a slight modification in the computation of the
transforms of the first and last blocks. Otherwise, the corresponding MDCT basis function would extend
outside the region of support of the signal [19].

For a finite-length input vector, the infinite matrix �  in (17) would be replaced by the finite matrix
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Matrices of the first and last blocks are denoted as 
D
#  and 

E
#  respectively. The block-diagonal matrix �

becomes square only after some special handling of 
D
#  and 

E
# , which would generate basis functions of

length 3N/2, because there can be no overlapping outside the signal region of support [19]. N is an even

number. After this handling, the dimension of both 
D
#  and 

E
#  becomes 
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'  as illustrated in (19),

thus �  becomes a square matrix as shown in (22). It corresponds to the square matrix shown in dashed
line in (19).

This has some implications for practical applications such as compressed domain audio processing
discussed in the later part of this dissertation.

The following are some conclusions based on the author’s investigations of MDCT:

•   MDCT becomes asymptotically an orthogonal transform with increasing length of the signal. If the
signal length is infinite, MDCT is an orthogonal transform. This is different from the traditional
definition of orthogonality, which must satisfy (18) and requires a square transform matrix.

•   The MDCT spectrum of a signal is the Fourier spectrum of the signal mixed with its alias. This
compromises the performance of MDCT as a Fourier spectral analyser and leads to possible mismatch
problems between MDCT and DFT based perceptual models [P3][P4].  Nevertheless, MDCT has
been successfully applied to perceptual audio compression without major problems if a proper
window such as a sine window is employed.

•   The TDAC of an MDCT filterbank can only be achieved with an overlap-add (OA) process in the
time domain. Although MDCT coefficients are quantized in an individual data block (���. granule in
MP3), it is usually analyzed in the context of a continuous stream. In the case of discontinuity such as
editing or error concealment, the aliases of the two neighboring blocks in the overlapped area are not
able to cancel each other. This will be further discussed in Chapter 3.

•   MDCT can achieve perfect reconstruction only without quantization, which is never the case in
coding applications. If we model the quantization as a superposition of quantization noise to the
MDCT coefficients, then the time domain alias of the input signal is still cancelled, but the noise
components will be extended as additional “noise alias”. In order to have 50% window overlap and
critical sampling simultaneously, the MDCT time domain window is twice as long as that of ordinary
orthogonal transforms such as DCT. Because of the increased time domain window length, the
quantization noise is spread to the whole window, thus making pre-echo more likely to be audible.
Well-known solutions to this problem are window switching [21][22] and temporal noise shaping
(TNS) [52].

•   In very low bitrate coding, the high frequency components are often removed. This corresponds to a
very steep lowpass filter. Due to the increased window size, the ringing effect caused by high
frequency cutting is longer.
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A significant part of recent audio coding research has been work on time-varying signal adaptive
filterbanks constructed from DWPTs. A comprehensive review of this subject is given in [8] with many
relevant references. The DWPT based coding methods have two major attractive properties: 1) flexible
time-frequency tiling so that it is possible, for example, to approximate the critical band auditory
filterbank utilizing a wavelet packet approach; 2) flexible scalability can be achieved with proper
formatting. Due to its characteristics of multiresolution decomposition, DWPT is widely adopted in
scalable image coding. Considering the tree structure of DWPT, the low resolution components here can
be viewed as the low frequency components that normally represent the most important information,
while the high resolution components represent the less important details.

If we consider the scenario of delivering audio content over networks with different bandwidths, it would
be very advantageous to store or transmit only one high resolution bitstream, since it automatically
contains all possible lower resolution bitstreams to match the available network bandwidth. Theoretically,
DWPT based algorithms provide a framework with attractive features such as the possibility of almost
continuous bitrate scalability. However, the high computational complexity and a relatively moderate
coding performance have prevented widespread applications of DWPT in audio coding. It is worth noting
that MPEG-4 bit sliced arithmetic coding (BSAC) has also provided a framework for scalable audio
coding based on MDCT [14]. For these reasons, DWPT has not been a focus of this dissertation.
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The reduction in bitrate takes place in the quantization and coding of the audio signal. The spectral
components are quantized and coded with the aim of keeping the quantization noise below the masking
threshold. Depending on the algorithm, this step is done in very different ways, from simple block
companding to analysis-by-synthesis systems using additional lossless coding. As an example of this
latter approach, the quantization and entropy coding of MPEG-1 Layer 3 is explained as follows [51].
MPEG2/4 AAC uses a similar approach.

A system of two nested iteration loops is the common solution for quantization and coding in MPEG-1
Layer 3. Quantization is done via a power-law quantizer. In this way, larger values are automatically
coded with less accuracy and some noise shaping is already built into the quantization process.

The noise shaping is accomplished in the quantization process with the objectives to control the bitrate
and to keep the quantization noise below the masking threshold. In the established coding schemes such
as MP3 and AAC, a global gain value (determining the quantization step size) and the scale-factors
(determining noise level for each scale-factor band) are applied before actual quantization. The process of
finding the optimum gain and scale-factors for a given block, bitrate and output from the perceptual
model is usually done by two nested iteration loops in an analysis-by-synthesis way. The inner iteration
loop is designed to control the overall bitrate by adjusting the global gain. The outer iteration loop is
designed for shaping quantization noise according to the masking threshold by adjusting the scale-factors.

The quantized values are coded by an entropy-coding scheme. Huffman coding has been employed in
MPEG audio. To adapt the coding process to different local statistics of music signals, the optimum
Huffman table is selected from a number of choices. To achieve even better adaptation to signal statistics,
different Huffman tables can be selected for different parts of the spectrum. The Huffman coding works
on pairs and quadruples (only in the case of very small numbers to be coded) of quantized MDCT
coefficients.
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Frame formatting is used to assemble the bitstream, which typically consists of the quantized and coded
mapped samples and some side information, such as bit allocation information [38]. In an audio coding
standard, frame formatting is always in the normative part to ensure interoperability. Different audio
formatting directly affects its error resilience and adaptivity to channel conditions.
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To further improve coding efficiency of perceptual coding schemes including only basic tools, some
additional tools have been developed. Some of these tools are briefly summarized here.

��3�/� �������	�$������5������=�$�>

The TNS tool is used prior to quantization/coding of the spectral values to exercise some control over the
temporal fine structure of the quantization noise within each filterbank window [52][53]. TNS is effective
if we have distinct temporal structures in tonal signals such as speech. In this case, instead of switching to
short windows too often, thus sacrificing coding efficiency, we can employ TNS to control the temporal
envelope of the quantization noise. The basic concept of TNS is the application of a forward predictor in
the frequency domain (���. along the frequency axis). This leads to a correlation of neighboring
quantization error values. From time-frequency duality it follows that the corresponding convolution in
the frequency domain is equivalent to a multiplication in the time domain. The application of TNS makes
the correlations of the quantization noise similar to those of the signal spectral components, thus also
making their temporal envelopes similar in the time domain.
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The PNS tool [54] allows for a very compact representation of noise-like signal components and in this
way further increases compression efficiency for certain types of input signals. The concept of the PNS
technique can be described as follows:

•  In the encoder, noise-like components of the input signal are detected on a scale-factor band basis.
•  The groups of spectral coefficients belonging to scale-factor bands containing noise-like signal

components are not quantized and coded as usual but omitted from the quantization/coding process.
•  Instead, only a noise substitution flag and the total power of the substituted spectral coefficients are

transmitted for each of these bands.
•  In the decoder, pseudo random vectors with the desired total noise power are inserted for the

substituted spectral coefficients.
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LTP is a technique that is well-known in speech coding and has been used to exploit redundancy in the
speech signal, which is related to the signal periodicity as expressed by the speech pitch. While use of
long term prediction in common speech coders happens in a time-domain coder framework, the MPEG-4
audio LTP tool [55] has been integrated into the framework of a generic perceptual audio coder where
quantization and coding is performed on a spectral representation of the input signal.

As can be expected due to the underlying principle, the LTP tool provides considerable coding gain for
stationary harmonic tonal signals such as pitch pipe as well as some gain for non-harmonic tonal signals.
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After a discussion of most of the relevant audio coding tools, the MPEG-2 AAC codec structure (see
Figures 10 and 11) is illustrated here to show how different coding tools can be combined to perform
efficient audio compression.

In order to allow a tradeoff between the quality and the memory and processing power requirements, the
AAC system offers three profiles [12]:

•   Main profile, which provides the best audio quality at any given data rate at the cost of the highest
computational complexity and memory requirement;

•   Low-complexity (LC) profile, which provides very good quality performance, while having the lowest
memory and processing power requirements; This feature makes the LC profile attractive for many
applications;

•   Scalable sampling rate (SSR) profile, which can provide frequency scalability with four equally
divided bandwidths.

Based on the analysis so far, we can conclude that the four basic tools play a central role in perceptual
audio coding. Other tools are introduced to improve coding gain with specific profiles or signals. For
example, the gain control tool is only required in the SSR configuration. The preprocessing performed by
the gain control tool consists of a PQF, gain detectors and gain modifiers. The PQF splits the input signal
of each audio channel into four frequency bands of equal width, which are critically decimated. The
output of each filterbank has gain modification as necessary and is processed by the MDCT tool to
produce 256 spectral coefficients, for a total of 1024 coefficients. Gain control can be applied to each of
the four bands independently [13].

Intensity stereo coding/coupling and M/S stereo coding have been employed in AAC for coding
multichannel audio. Coupling is adopted based on psychoacoustic evidence that at high frequencies
(above approximately 2 kHz) the human auditory system localizes sound based primarily on the
envelopes of critical-band-filtered versions of the signals reaching the ears, rather than on the signals
themselves. MS stereo coding encodes the sum and difference of the signals in two symmetric channels
instead of the original signals in left and right channels [13]. Both MS stereo and intensity stereo coding
operate on channel-pair-elements (CPEs).

MPEG-2 AAC is a good representative of the current state-of-the-art technology in high quality audio
coding. It is also used as the kernel in the MPEG-4 General Audio coding, which is extended by
additional coding tools and coder configurations [11].
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Figure 10. Block Diagram for the MPEG-2 AAC Encoder [12].
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In comparison with the existing coding tools discussed previously, the INT-DCT tool has not been
included in any specific standard. Rather, it represents a relevant contribution of the author’s research.

The motivation for lossless coding of previously quantized multichannel audio spectral components is to
avoid the so-called “binaural unmasking” effect due to binaural masking level difference (BMLD)
[46][47]. This is characterized by a decreasing masking threshold when the masker is spatially separated
from the maskee, i.e., when the masker and maskee arrive at the ears from different directions.

An important feature of the proposed approach is that the spatial structures of the quantization errors are
not modified, thus it does not suffer from any binaural unmasking effect.
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The DCT is a well-known and effective decorrelation transform when used e.g. with speech or image
signals, since it exhibits an energy compaction property similar to that of the Karhunen-Loeve transform
(KLT) [7]. An INT-DCT approximates the DCT and is computationally very efficient. More importantly,
with the proposed INT-DCT tool the quantized multichannel MDCT coefficients can be perfectly
reconstructed at the decoder. The work performed in [P5] was to investigate how well the INT-DCT
performs interchannel decorrelation with real-life multichannel audio signals in terms of net bit-reduction
with regard to the associated side information. The scheme has been implemented based on an AAC
codec.
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Figure 12. A simplified block diagram of the INT-DCT based multichannel-coding scheme.
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The scheme is illustrated in Figure 12. The input signals to the comparison device are the total bits (BR1
and BR2) needed to represent the MDCT coefficients within each SFB for all channels before and after
the INT-DCT. The output of the comparison device is the control signal to indicate whether INT-DCT is
performed in that SFB. Therefore, the side information is only one bit for each SFB. The control signal
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needs to be transmitted as side information. The rationale for performing INT-DCT within each SFB as
illustrated in Figure 13 is to reduce side information.
The most widely adopted 5.1 multichannel configuration has been employed in the experiments. In Figure
13, the horizontal lines represent the MDCT coefficients of all channels, which refers to left (L), center
(C), right (R), left surround (LS), right surround (RS). The optional low-frequency-enhancement (LFE)
channel has not been used in the experiments. The dashed lines represent the SFB division.

Because of the energy compaction property of the MDCT, the MDCT coefficients in high frequencies are
mostly zeros. Therefore, the INT-DCT has been limited to low and middle frequencies for a reduced
computational complexity and side information.

Based on the relatively small scale of experiments, the net bitrate reduction is rather moderate by
employing INT-DCT tool. It will be interesting to investigate the coding performance of INT-DCT with
an increased number of channels, ���. 48 channels.
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With rapid deployment of audio compression technologies, more and more audio content is stored and
transmitted in compressed formats. The transmission of audio signals in compressed digital packet
formats, such as MP3, has revolutionized the process of music distribution. Consequently, compressed
domain audio processing is becoming a subject of study.

Compressed domain audio processing can be defined as the ability to perform modifications to coded
digital audio or to extract features directly in its compressed form. Examples are dynamic range
compression, time scale modifications, pitch scale modifications, audio segmentation, etc.

The focus of this chapter is on error concealment in streaming music applications. A compressed domain
beat detector has been developed as a part of the error concealment scheme. Re-compression of
compressed audio has also been investigated.

"���  ���������	�������	����4���������������
����

In the transmission of compressed audio, one of the most significant challenges today is the need to
handle errors in lossy channels. Lossy channels can arise in many different forms. In packet networks,
such as the Internet, packets can be dropped due to congestion at switches, they can be misrouted, or they
can arrive with such a long delay as to be useless. In wireless channels, a host of different mechanisms
including fading, interference, and additive white noise can cause bits to arrive in error [56]. For real-time
or near real-time audio transmission, some quality degradation is often acceptable, allowing a wider range
of solutions.

In the battle against errors, there are many different methods available to the system designer. For
example, retransmission of lost packets is an obvious means by which loss may be remedied. It is clearly
of value in non-interactive applications, with relaxed delay bounds, but the delay imposed means that it
does not typically perform well for interactive use. In addition to the possible high latency, there is a
potentially large bandwidth overhead for re-transmission, thus increasing the network congestion
probability and hence packet loss, leading to exacerbation of the problem the scheme was intended to
solve.

A suitable network transport system is vital for delivery of audio with acceptable quality of service (QoS).
A preferred architecture for delivering audio and other multimedia content over Mobile Internet is the



41

TCP/IPv6 protocol suite with its recent improvements, especially in QoS aspect. These new features are
RTP/RTCP, UDP as application transport part and DiffServ and RSVP as QoS system part. A well-
engineered application performing audio streaming on top of IPv4 or IPv6, is obviously necessary but not
sufficient to provide QoS. The system aspects and the network characteristics also have an important role
to play. It is worth mentioning that transforming the traditional best-effort Internet into a QoS Mobile
Internet is not so straightforward because of many practical reasons, such as the heterogeneous nature of
the Internet.

In this chapter, the channel error characteristics are presented. Then some primary methods to handle
channel errors such as interleaving; error detection/correction, error resilience, and error concealment are
reviewed. Error handling measures have costs in terms of complexity, and in terms of added bitrate.
Based on the channel characteristics and the cost/benefit analysis, an optimal combination of these
methods can be designed.

Error resilient audio transmission is of particular importance in wireless networks due to its error-prone
channel characteristics.

"���/� #������7�����5����	� ������5���
�������
�

If the objective is error resilient transmission of compressed audio over error-prone channels, it is
necessary to have some knowledge of the error characteristics likely to be encountered. In this section,
errors in three types of channels, namely mobile network, Internet and Mobile Internet are briefly
reviewed.
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Channel errors in wireless networks typically consist of statistically independent random errors and burst
errors. The quality of the received signal depends on many possibly interdependent factors, which,
however, are usually independent of the used system. These factors include channel coding methods,
modulation schemes, system bandwidth, antenna type and directivity, effective transmission power,
surrounding noise level, weather conditions, slow/fast fading, multipath propagation due to scattering,
reflection, refraction, or diffraction, hand-off handling, propagation loss, etc. ��
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,�BA- is a commonly used term to describe the minimum ratio of the desired signal levels (C) to the
interference levels (I).

����	��
� is a particularly important process in a cellular mobile network when a mobile terminal is
traveling from one cell to another. Improper handover can result in dropped calls and crosstalk.

The bit error rate (BER) in a realistic mobile network such as GSM can reach 1% or even higher with
possible burst errors in bad situations. The dominant errors in mobile networks can generally be assumed
to be random errors, especially when an interleaving scheme is employed. There are many good
references on mobile radio propagation and channel analysis [58][59][60].
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The dominant errors in the Internet are packet loss and excessive delay mainly due to congestion. Quite
extensive reviews on error characteristics in different networks can be found in [61][62][63]. The error
characteristics of different application scenarios/networks are significantly different. It is beyond the
scope of this dissertation to cover such a vast and fast developing area. For real-time audio streaming, IP
Multicast seems to be the choice and it is therefore outlined in this section.
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A number of studies have been conducted [64][65] on the loss characteristics of the Internet multicast
backbone (Mbone) and although the results vary somewhat, the broad conclusion is clear: in a large
conference it is inevitable that some receivers will experience packet loss [61][62]. Packet traces broadly
show a session in which most receivers experience loss in the range of 2-5%, with a somewhat smaller
number experiencing significantly higher loss rates.

It has also been shown that the vast majority of losses are of single packets. Burst losses of two or more
packets are around an order of magnitude less frequent than single packet loss, although they do occur
more often than would be expected from a purely random process. Longer burst losses (of the order of
tens of packets) occur infrequently. These results are consistent with a network where small amounts of
transient congestion cause the majority of packet loss. In a few cases, a network link is found to be
severely overloaded and a large amount of loss results.

The primary focus of a repair scheme must, therefore, be to correct single packet loss, since this is by far
the most frequent occurrence. It is desirable that losses of a relatively small number of consecutive
packets may also be repaired, since such losses represent a small but noticeable fraction of observed
losses. The correction of large burst loss is of considerably less importance.

It is necessary to define some terminology and protocol framework for consistency. A ���� is defined to
be a timed interval of media data, typically derived from the workings of the media coder, such as an
MP3 granule or an AAC frame. A packet typically comprises one or more units encapsulated for
transmission over the network. For example, many audio coders operate on 20 ms units, which are
typically combined to produce 40 ms or 80 ms packets for transmission. The framework of Real-time
Transport Protocol (RTP) is assumed. This implies that packets have a sequence number and timestamp.
The sequence number denotes the order in which packets are transmitted, and is used to detect losses. The
timestamp is used to determine the playout order of units. Most loss recovery schemes tackle primarily
the scenario that units are received out of order, so an application must use the RTP timestamp to
schedule playout [62].

It should be noted that many published works on streaming audio over various networks have
concentrated on PCM coded speech signals. If the unit length is fixed in bytes, the duration of the audio
then depends on the actual coding scheme with a certain bitrate and sampling frequency. For example,
assume that the payload of a packet is 800 bytes. If we use a PCM-based mono speech sample with 8
bits/sample and 8 kHz sampling frequency, the duration of the payload is then 100 ms. Keeping the
payload length of 800 bytes unchanged, we compress a stereo music sample from a commercial CD (16
bits/sample and 44.1 kHz sampling frequency) using MP3 with a bitrate of 128 kbps, and thus the
duration of the payload would be 50 ms. However, the duration would be about 4.5 ms, if the music
sample had not been compressed.
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This is a situation in which mobile terminals via Wireless LAN, 3G or Bluetooth access e.g. the Internet.
Since Mobile Internet is a rather vague term, it is considered here only as a mathematical model, in which
the channel errors are modeled as a simple combination of two independent error sources. In wireless
networks, losses are more commonly due to external factors such as those discussed in section �������,
rather than congestion in the Internet. It is evident from this that the errors in Mobile Internet will be more
severe than those in mobile networks or Internet alone, thus making it a challenging task to provide QoS
in such hybrid networks. Only a system level solution including a proper network protocol and a joint
sender-receiver based error recovery will be able to meet the challenge.



43

"����� ������9������ �������
����4

Sender-based error recovery techniques can be classified into two classes; these are active sender-based
methods such as retransmission and passive sender-based methods such as interleaving, forward error
correction coding (FEC) and other error resilient tools. The material in 3.2.2 and 3.2.3 is mainly borrowed
from [61].
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This is an active sender-based repair technique employing automatic repeat request (ARQ). Due to
potentially long delay, retransmission-based recovery is not the first choice for lost packets in real-time
applications such as media streaming. If large end-to-end delays can be tolerated, the use of
retransmission to recover from loss becomes a possibility [61].
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Interleaving is a process of rearranging the order of a sequence of binary or non-binary symbols in some
unique one-to-one deterministic manner. The reverse of this process is de-interleaving to restore the
sequence to its original ordering [57].

Interleaving is often employed between the channel encoder and the modulator to enhance the error
correction performance especially in wireless communications [57] as well as in the Internet [66]. Since
channel coding techniques are designed to combat random independent errors, interleaving is deployed to
disperse burst errors and to reduce the concentration of the errors that must be corrected by the channel
code. Thus interleaving effectively makes the channel appear like a random error channel to the decoder
[57].

A major advantage of interleaving is that it does not increase the bandwidth requirements. An obvious
disadvantage of interleaving is that it increases delay/latency. Therefore, a tailored tradeoff between error
performance and interleaving delay has to be made for a specific application.

Since the focus of this dissertation is on packet networks, the interleaving scheme is extended to packet
interleaving. For streaming audio, the data unit size is usually smaller than the packet size. The units
(instead of symbols) are re-sequenced before transmission so that originally adjacent units are separated
by a guaranteed distance in the transmitted stream and returned to their original order at the receiver.
Packet interleaving disperses the effect of burst packet losses.
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In the FEC approach, extra (redundant) bits are added to a coded audio bitstream. If some bits arrive in
error, the redundancy usually allows the decoder to detect that a portion of the stream is erroneous, and it
may allow the decoder to correct the errors. In a digital audio bitstream, especially compressed domain
bitstream, bits are normally of unequal importance. For example, side information is perceptually more
important than the main data. Therefore, unequal error protection (UEP) schemes are developed to give
more important bits more protection. UEP is an efficient method to improve error robustness of
compressed audio bitstreams and is widely used in various speech and audio coding systems designed for
error-prone channels such as mobile communication networks and digital audio broadcasting (DAB).
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In error resilience, we are concerned with mechanisms that do not directly correct errors, but which limit
the extent of the damage these errors cause. In the worst case, one might imagine a system in which a
single error in a bitstream can render the entire stream useless from beginning to end. With a resilient
system, an error is confined to just one or several data units. This may involve resynchronization words or
resynchronization points, so that the decoder can get back on track after an error occurs. It may also
involve the design of transform/quantization schemes and source reshaping such that the coded bitstream
becomes more robust to channel errors [56]. For example, MPEG-4 has error resilience tools, which are
designed for error prone channels.
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Error concealment is an important method to mitigate the degradation of audio quality in real-time
streaming applications. Error concealment usually refers to post-processing error concealment methods,
or those methods where the decoder, recognizing that an uncorrected error has occurred, seeks to hide or
minimize the distortion from the listener so that a subjectively more pleasant rendition of the decoded
audio can be obtained. For digital audio, post-processing error concealment can consist of time domain
methods, in which one typically tries to interpolate across missing samples, and frequency domain
methods, in which one tries to estimate lost transform coefficients. It is also possible to combine the time
and frequency domain methods. Existing methods are briefly reviewed in this section. A few commonly
used conventional error concealment schemes are depicted in Figure 14.

N-1 N N+1

? ? ?

Packet loss

Muting

Repetition

Interpolation

Figure 14. Examples of a few commonly used conventional error concealment schemes
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It should be noted that existing methods were tested extensively with uncompressed speech signals only.
To verify their effectiveness with compressed generic audio bitstreams, especially music bitstreams,
further research is clearly needed. One major contribution of this dissertation is some advances in this
direction.
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Insertion based repair schemes derive a replacement for a lost packet by inserting a simple fill-in. The
simplest case is splicing, where a zero-length fill-in is used; an alternative is silence substitution, where a
fill-in with the duration of the lost packet is substituted to maintain the timing of the stream. Better results
are obtained by using noise or a repetition of the previous packet as the replacement [61].

The distinguishing feature of conventional insertion-based repair techniques is that the characteristics of
the signal are not used to aid reconstruction, thus making these methods simple to implement but resulting
in generally poor performance.

A major contribution of this dissertation is to improve the performance of the insertion-based scheme by
exploiting beat-pattern characteristics of music signals. This will be further discussed in a subsequent
section.

•  Splicing

Lost units can be concealed by splicing together the audio on both sides of the loss; no gap is left due to a
missing packet, but the timing of the stream is disrupted. This technique has been evaluated by Gruber
and Strawczynski [67] and shown to perform poorly. Low loss rates and short clipping length (4-16 ms)
faired best, but the results were intolerable for losses above 3 percent.

The use of splicing can also interfere with the adaptive playout buffer required in a packet audio system,
because it makes a step reduction in the amount of data available to buffer. The adaptive playout buffer is
used to allow for the reordering of misordered packets and removal of network time jitter, and poor
performance of this buffer can adversely affect the quality of the entire system.

It is clear, therefore, that splicing together audio on both sides of a lost unit is not an acceptable repair
technique [61].

•  Silence Substitution/Muting

Silence substitution fills the gap left by a lost packet with silence in order to maintain the timing
relationship between the surrounding packets. It is only effective with short packet length (<4 ms) and
low loss rates (< 2%) [68], making it suitable for interleaved audio over low-loss paths.

The performance of silence substitution degrades rapidly as packet sizes increase, and quality is
unacceptably bad for the 40 ms packet size in common use in network audio conference tools [69].
Despite this, the use of silence substitution is widespread, primarily because it is simple to implement.

•  Noise Substitution

Since muting has been shown to perform poorly, an obvious next choice is noise substitution, where,
instead of filling in the gap left by a lost packet with silence, background noise is inserted instead.

A number of studies of the human perception of interrupted speech have been conducted, ���. [71]. These
have shown that phonemic restoration, the ability of the human brain to subconsciously repair the missing
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segment of speech with the correct sound, occurs for speech repair using noise substitution but not for
silence substitution.

In addition, when compared to silence, the use of white noise has been shown to give both subjectively
better quality and improved intelligibility. It is therefore recommended as a replacement for silence
substitution [70][71].

As an extension to this, a proposed future revision of the RTP profile for audio-video conference allows
for the transmission of comfort noise indicator packets. This allows the communication of the loudness
level of the background noise to be played, allowing for better fill-in information to be generated.

•  Repetition

Repetition replaces lost units with copies of the unit arriving immediately before the loss. It has low
computational complexity and performs reasonably well. The subjective quality of repetition can be
improved by gradually fading repeated units. The GSM system, for example, advocates the repetition of
the first 20 ms with the same amplitude followed by fading the repeated signal to zero amplitude over the
next 320 ms [72].

The use of repetition with fading is a good compromise between the other poorly performing insertion-
based concealment techniques and the more complex interpolation-based and regenerative concealment
methods.
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Interpolation-based error concealment techniques utilize packets from both sides of the lost segment to
produce a replacement for the lost packet. The advantage of these types of schemes over insertion-based
techniques is that they account for the changing characteristics of a signal. Most of the reported works
concentrate on speech signals.

•  Waveform Substitution

Waveform substitution uses audio before, and, optionally, after the failure to find a suitable signal to
cover the loss. The use of waveform substitution in packet voice systems has been studied by Goodman ��
�
. [73]. They examined one- and two-sided techniques that use templates to locate suitable pitch patterns
on either side of the loss. In the one-sided scheme the pattern is repeated across the gap, but with the two-
sided schemes interpolation occurs. The two-sided schemes generally performed better than one-sided
schemes, and both work better than silence substitution and packet repetition.

•  Pitch Waveform Replication

Wasem ����
. [74] presented a refinement on waveform substitution by using a pitch detection algorithm
on either side of the loss. Losses during unvoiced speech segments are repaired using packet repetition
and voiced losses repeat a waveform of appropriate pitch length. The technique, known as pitch
waveform replication, was found to work marginally better than waveform substitution.

•  Time Scale Modification

Time scale modification allows the audio on either side of the loss to be stretched across the loss. Sanneck
����
. [75] present a scheme that finds overlapping vectors of pitch cycles on either side of the loss, offsets
them to cover the loss, and averages them where they overlap. Although computationally demanding, the
technique appears to work better than both waveform substitution and pitch waveform replication.
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Regenerative repair techniques use knowledge of the audio compression algorithm to derive codec
parameters, such that audio in a lost packet can be synthesized. These techniques are necessarily codec-
dependent but perform well because of the large amount of state information used in the repair. Typically,
they are also somewhat computationally intensive.

•  Interpolation of Transmitted State

For codecs based on transform coding or linear prediction, it is possible for the decoder to interpolate
between states. For example, the ITU G.723.1 speech coder [77] interpolates the state of the linear
predictor coefficients from both sides of short losses and uses either a periodic excitation the same as in
the previous frame, or a gain-matched random number generator, depending on whether the signal was
voiced or unvoiced. These types of methods have the potential advantage of producing little boundary
effects.

•  Model-Based Recovery

In model-based recovery the speech on one or both sides of the loss is fitted to a model that is used to
generate speech to fill the gap. This type of approaches also assume that the lost block is short enough to
ensure that the speech characteristics of neighboring blocks are similar. An example of such methods is
presented in [76].

"�"� ��������9�������������� ��������
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For speech communications in a packet network, the use of repetition is recommended as offering a good
compromise between achieved quality and excessive complexity [61]. There are considerably fewer
publications on error concealment schemes for compressed music streams over packet networks, which is
one of the major focus areas of this dissertation. An MP3 and an AAC codec have been employed to
perform our investigations.

The rationales for conducting this reseach are as follows:

1) Music streaming over error prone channels such as Mobile Internet is becoming an important
application scenario. And music with a quite regular drumbeat structure such as pop, dance, rap,
etc. represents an important class of music in streaming applications.

2) Percussive sounds such as drums and hi-hats are very common in such music and represent the
transients. The transients in music are usually associated with beats, which are fairly stable and
repetitive. The beat characteristic is one of the most important features that makes the music flow
unique and differentiates it from other audio signals.

3) Examination of the MP3 and AAC audio bitstreams produced from pop music signals in
commercial CDs has shown that 20-50% of data units in our test signals represent the population of
the transients. These transients often appear in the form of window switching in most bitstreams of
the state-of-the-art audio codecs. Therefore, a proper handling of packet loss during transients
poses a real problem and greatly affects overall quality.

"�"�/� &�������������� 6�������*��5���

As a starting point, we have tested repetition and some other simple error concealment schemes,
employing MP3 or AAC compressed music bitsreams. The quality of simple repetition has been used as a
reference. During our investigations we have discovered a fundamental limitation of existing methods,
which is the assumption that the audio signals are short-term stationary. This assumption is not always
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valid for music signals, especially for music with percussive sounds such as drums, hi-hats, etc. As a
result, if the lost unit includes or is close to a short transient signal, such as a drumbeat in music, simple
repetition will not be able to produce satisfactory results.

Possible problems of the simple repetition approach are illustrated with the help of Figure 15.

( a )

( b )

Figure 15. Illustrating possible problems with the packet repetition. Shaded rectangles represent corrupted
packets. Light rectangles represent error-free ones. The thin arrows indicate the drumbeats and the thick

arrows indicate packet repetition operations. (a) drumbeat eliminated, (b) double-drumbeat created.

1)  If the drumbeat is replaced with other signals such as singing, the drumbeat is simply removed as in
Figure 15 (a).

2)  If the drumbeat is copied to its following packet, it may result in a subjectively very annoying
distortion defined as a �	�+
�2�
��+�����������by the author, as shown in Figure 15 (b). The degree of
annoyance of the double-drumbeat effect depends on the time-frequency structure of the drumbeat.
And it also depends on the distance between the original drumbeat and that generated due to packet
repetition.

(n -1 ) th

n  th

(n + 1 ) th

(n + 2 ) th

Figure 16. Illustration of a special problem with repetition scheme in the MDCT domain. Shaded
rectangles represent corrupted data units. Blank rectangles represent error-free ones. Dashed lines indicate
the window shape. The arrows indicate packet repetition operations. Heavily shaded rectangles represent

the uncancelled alias. n is an integer number that represents the data unit index.
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3)  Due to the special property of MDCT discussed in section �����, the repetition violates the TDAC
conditions. Consequently, the alias distortions in the overlapped parts cannot cancel each other out
(see Figure 16). However, the MDCT window functions enable a natural fade-in and fade-out in the
overlap-add operation in the time domain. The uncancelled alias is normally not perceptible if the
signal is stationary and the lost data unit is short enough.

4)  Simple repetition does not consider the window switching commonly used in state-of-the-art audio
codecs (see Figure 17). Therefore, it leads to a possible (���	(� �&������������ ����	���	� [P7],
which is illustrated with the help of Figure 18.

0 1 2 2 3 0

Figure 17. Illustration of the window switching pattern decoded from an MP3 audio bitstream. The four
window types (long, long-to-short, short and short-to-long) are indexed with 0, 1, 2, 3 respectively.

As discussed in section �����, window switching is an important concept to reduce pre-echo in an MDCT
based audio codec such as MP3 and AAC. Both MP3 and AAC use four different window types: long,
long-to-short, short and short-to-long which are indexed with 0, 1, 2, 3 respectively. The short window is
introduced to tackle transient signals better. In the case of MP3, the long window length is 36 subband
samples and the short window length is 12 subband samples. Therefore, the duration of a long window is
three times that of a short window as shown in Figure 17. 50% window overlap is used with the MDCT.
The data unit here is an MP3 granule. An MP3 frame consists of two granules where each granule
consists of 576 frequency components.

(n -1 )  th

n  th

(n + 1 ) th

(n + 2 ) th

Figure 18. An example of the window type mismatch problem

If the two consecutive short window granules indexed as 22 in a window-switching sequence of 1223 are
lost in a transmission channel, it is easy to deduce their window types from their neighboring granules. A
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previous short window granule-pair indexed as 22 could be used to replace them to mitigate the
subjective degradation. However, if we disregard the window-switching information available from the
audio bitstream and perform simple repetition, it will result in window-switching patterns of 1113 (see
Figure 18). In this case, not only are the TDAC conditions violated in the window overlapped areas, but
also we will have some undesired energy fluctuation, since the squares of the two overlapping window
functions do not add up to a constant [21]. This may create annoying artifacts. This phenomenon is
defined by the author as (���	(��&����������������	���	�.

These problems cannot be solved with existing methods. To overcome these shortcomings, two drumbeat-
pattern based error concealment schemes have been developed by the author, and are presented in the
subsequent sections.

The underlining principle of the drumbeat-pattern based error concealment is fairly simple and
straightforward: a segment around a drumbeat is subjectively more similar to a segment around a previous
drumbeat than to its immediate neighboring segment. Therefore, an erroneous audio segment around beat
(k+1) should be replaced with a corresponding segment from a previous beat as indicated by the thick
arrow (see Figure 19). k is a positive integer determined by the employed level of beat information (e.g.
quarter-note or half-note level). IBI stands for inter-beat interval. Rectangles filled with dots indicate
corrupted MP3 granules. Blank rectangles indicate error-free ones.

To avoid the (���	(��&����������������	���	�, window types of the neighboring data units should be
checked to ensure window type consistency after the replacement.

Beat 1 Beat k+1

k·IBI

Coming audio
bitstream

Copied segment

Lost segmentError-free segment

Figure 19. Concept of the drumbeat-pattern based error concealment method.
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A simplified block diagram of the system proposed in [P6] is illustrated in Figure 20. The principle of the
scheme is that we store both the beat information and a segment (e.g. an IBI) of already decoded data
units (history) in a buffer. If a burst packet loss occurs, we can use the buffered data to fill the gap
sensibly in a musical sense.
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MP3/AAC decoder

Beat detector

Error concealment  unit

PCM
sampleMP3/AAC bitstream

Channel

MDCT
coefficients

Reproduced
MDCT
coefficientsError

detector

Window
type

Figure 20. Block diagram of a receiver-based solution.

This scheme initially produced very promising results with music signals without singing, where regular
drumbeats are the single dominant component with weak accompanying instruments, but rather
disappointing results with more realistic situations, where drumbeat, singing and other musical
instruments are combined. Further investigations have revealed some serious limitations of the receiver-
based approach, especially if we focus on the single packet loss, which represents the majority loss in
streaming applications.

U n it  n
(c o p ie d
d ru m b e a t)

U n it  n -1 U n it  n + 1

Figure 21. Illustration of the �����
�
��������
����
�����
����	��������� The rectangle filled with upward
diagonals represents the harmonic structure around the copied drumbeat. The triangle represents the

drumbeat. The rectangles filled with horizontal lines represent the harmonic structures in the neighboring
units around the missing unit.

The first problem is illustrated with the help of Figure 21. When a lost unit n is replaced by a previous
drumbeat, it is likely to create a distortion, which is defined by the author as a �����
�
� ����� ��
����
�
���
����	��������. The spectral fine structure is particularly important for the harmonic and melodic parts
of the music, such as singing. Although a typical drumbeat lasts about 100 ~ 200 ms, it is not reasonable
to assume that a drumbeat in the entire duration of unit n is always loud enough to mask other signals
such as singing. The masking effect depends on the relative strength of the drumbeat and the singing.
Thus, if there is singing around the drumbeat, we can experience such discontinuity on the unit
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boundaries with the receiver-based fullband approach proposed in [P6]. This problem becomes even more
evident as we move from MP3 to AAC with the unit duration almost doubled from 576 to 1024 MDCT
(modified discrete cosine transform) coefficients, which affect about 26 ms and 46 ms time domain
samples respectively if the sampling frequency is 44.1 kHz.

Second, when a data unit containing a beat is lost, it will be difficult for the decoder to guess whether the
lost data contains a beat. In the case of a single packet loss, we may rely on the window type information
from the neighboring units to detect a beat on the lost data unit. However, the window switching patterns
are not a reliable cue for beat detection. It should be noted that AAC in general has much less window
switching than MP3, since more advanced codecs tend to use less window switching for improved coding
efficiency. This is an inherent problem of the receiver-based approach.

Third, in comparison to repetition the double-drumbeat effect is reduced but not eliminated with our
receiver-based method. Our recent investigations have shown that another inherent weakness has
contributed to this problem. That is, only MDCT coefficients are readily available on the decoder side.
This MDCT based feature is not very reliable due to a special property of MDCT – it does not preserve
time domain energy. This will be further discussed in a subsequent section.

Fourth, the (���	(� �&��� �������� problem has not been tackled in the receiver-based scheme. In
addition, its computational complexity is significantly higher than a simple packet repetition due to the
beat detection on the decoder side.

In order to achieve better error concealment performance, while reducing the decoder complexity to a
level similar to a simple packet repetition, a joint-sender-receiver-based approach is proposed.

"�"�"� 
�@����9������9��
�����9��������	�����

This method detects the drumbeat-pattern of music signals on the encoder side and embeds the beat
information as ancillary data in a preceding data unit in the compressed bitstream. The beat information in
this method consists of only the beat position. As a result, it significantly reduces the computational
complexity of the decoder. The embedded beat information is then used to perform an error concealment
task on the decoder side. The proposed method was implemented using an MPEG-4 AAC codec as shown
in Figure 22.

AAC
encoder

AAC
decoder

Beat
detector

Error concealment
unit

PCM
sample

PCM
sampleAAC bitstream

Channel

SDFT
coefficients Beat info Error &

Beat info

Reproduced
MDCT
coefficients

Figure 22. System overview.
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The overall system comprises the blocks illustrated in Figure 22. An incoming musical signal in PCM
format is fed to the AAC encoder. The AAC performs a frequency analysis in a form of shifted discrete
Fourier transform (SDFT)  [P4]. The beat detector uses SDFT based feature vector (FV) to detect beats
and then embeds the beat information within the compressed bitstream as ancillary data in a preceding
data unit. If the data unit of the beat is lost in the transmission channel, its position can still be determined
by the beat information embedded in a previous data unit, since the probability of the simultaneous loss of
two separate data units on the beats is low. The error concealment unit on the decoder side uses the
embedded beat information and error information to reconstruct the lost MDCT coefficients. The
reconstructed MDCT coefficients are then sent to the AAC decoder to produce the final PCM musical
samples.

The beat detector used here is similar to that in [P7]. However, it has been improved in several ways.
First, we have employed the SDFT coefficients alone as the input instead of both the window types and
the MDCT coefficients. Second, we have used the subband energy slope (derivative) as FV.

The detected beat position is embedded in a previous data unit (AAC frame) for application in the
decoder. This solution therefore implies an additional coding delay due to the necessity of a look-ahead.
If we focus on single packet loss, only 1 bit is needed for each data unit of the audio stream to indicate
whether the following data unit is on a drumbeat. If we want more protection of the beat position to tackle
burst packet loss, the beat position can be embedded in two separate previous data units, which can be the
preceding unit and a preceding drumbeat. In this case, some additional bits are needed to embed the
position of drumbeat 3 as ancillary data in the frame at the position of drumbeat 1. Likewise, the position
of drumbeat 4 is embedded in the frame at the position of drumbeat 2 as shown in Figure 23.

0 1 2 3 0 1 2 3

? ?

Drumbeat 1
(bass drum)

Drumbeat 4
(snare drum)

Drumbeat 3
(bass drum)

Drumbeat 2
(snare drum)

Buffer 1 Buffer 2 Check window
types and
replace MDCT
coefficients

Update
buffer 1

Update
buffer 2

Figure 23. Illustration of the proposed error concealment operation based on drumbeat pattern. The
numbers in the two drum buffers indicate the window types. The four window types (long, long-to-short,

short and short-to-long) are indexed with 0, 1, 2, 3 respectively.

We assume a time signature of 4/4, which is common in most music signals such as pop, dance and rap
music in streaming applications. According to their window types, the decoder saves the MDCT
coefficients on the drumbeats in two drum-buffers for the bass drum and snare drum respectively (see
Figure 23). The drum-buffers are updated if no error is detected on the drumbeat. When a packet loss is
detected, the error concealment unit first checks the embedded beat information and the window types of
the neighboring units. If the lost data unit (an AAC frame) is on the beat, it fetches the saved frame with a
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correct window type from the corresponding buffer as shown in Figure 23. This effectively eliminates the
(���	(��&����������������	���	��[P7].

In order to effectively reduce the �����
�
� ����� ��
����
�� ���
����	�� ������= we have adopted a subband
approach instead of the fullband approach in [P6]. The new subband approach is illustrated with the help
of Figure 24.

The entire frequency band is divided into 3 parts. The frequency band between F1 and F2 represents the
most relevant harmonic and melodic parts. The low and high frequency bands are more relevant for
drumbeats. By copying the stochastic parts (drums) from a previous beat and copying the spectral fine
structure from the neighboring data unit, we have achieved a very satisfactory overall subjective quality
in the case of packet loss on the drumbeat.

F1 and F2 were about 344 Hz and 4500 Hz respectively. They were chosen empirically based on the
spectrogram observation of the test signals and the constraints of the AAC standard. In the case of a long
window, F1 corresponds to the 16th MDCT coefficient, and F2 corresponds to the 208th MDCT
coefficient. In the case of the short window, F1 corresponds to the 2nd MDCT coefficient, and F2
corresponds to the 26th MDCT coefficient.

Harmonic structure copied from
the neighbouring data unit

Drumbeat copied from a drum buffer

F0 F1 F2 F3

Figure 24. Illustration of the subband based error concealment. The rectangle filled with upward
diagonals represents the fine spectral structure copied from a neighboring frame. The two blank

rectangles represent the drum data copied from a drum buffer.

Informal evaluations performed by the author and several expert listeners have shown that in comparison
with existing methods such as muting, simple repetition and frequency domain interpolation, the joint-
sender-receiver based method was clearly preferred if the packet loss includes drumbeats. In comparison
with the receiver-based method, this new method significantly reduced the �����
�
� ����� ��
����
�
���
����	�������� and the �	�+
�2�
��+�����������
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A block diagram of the compressed domain beat detector is shown in Figure 25. It uses the window type
information and MDCT coefficients decoded from the bitstream to detect the beat in the compressed
domain. The beat information is used for error concealment purposes.
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Figure 25. General structure of a beat detector

We have initially developed the compressed domain beat detector as an independent module. During the
process of integrating the beat detector to the error concealment system, we have discovered a few
problems with the method described in [P7].

As noted earlier, MDCT does not obey Parseval’s theorem, ����= it does not preserve time domain energy
[P4]. This compromises the FV quality in two ways. First, the MDCT based FV fluctuates excessively
over time (see the dashed line in Figure 26(b)). This makes it difficult to set a proper threshold for
selecting beat candidates. Second, the maximum positions of the MDCT based FV over time jitter around
the real beats by about one AAC frame, while the SDFT based FV is far more stable and consistent with
the position of the real beat (see Figure 26(b)).

In our implementation, the window switching mechanism is based on the SDFT domain information.
Switching beat information from two different domains will compromise its time resolution. This was the
rationale for us to use the SDFT based FV alone in the joint-sender-receiver based approach. As a result
of the improved time resolution, the double-drumbeat effect is notably reduced.
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Figure 26. Music waveform and its corresponding AAC FV. (a) Music waveform versus time in seconds,
(b) FVs versus AAC frame index. FVs in MDCT domain (dashed) and SDFT domain (solid).
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MP3 is a very popular audio format in both Internet and consumer products. But its coding performance
is rather modest in comparison to state-of-the-art coding technologies. The motivation for re-compressing
MP3 files losslessly is that it will be able to perfectly reconstruct the original MP3 files on the decoder
side. This dissertation presents two lossless schemes to exploit the redundancy of the MP3 parameters
such as scale-factors and MDCT coefficients in [P8]. The principle is very simple and straightforward;
after a subtraction in the spectral domain, the residual will be small if there is redundancy in the MP3
main data. Since the performance improvement is so marginal, these schemes are not discussed here in
detail.
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The self-similarity-coding scheme represents a small scientific adventure, which is designed to exploit the
similarity between consecutive drum patterns as illustrated in Figure 27 [P8].

As discussed in the drumbeat-pattern based error concealment method, music, especially pop music, is
highly repetitive perceptually. What we have attempted in [P8] is to take two consecutive MP3 granules
around all drumbeats, and then classify them into two classes – strong beats and weak beats, according to
a fixed energy threshold. Generally, what we need to transmit is only four granule MDCT data to
represent the drumbeats (two granule data for each class) in the whole piece of test music signal and one
bit index merely to indicate whether this drumbeat is a strong or weak beat. To our surprise, the
reproduced music is not so terribly bad, although it sounds a bit monotonous.

Strong beat
centroid

Weak beat
centroid

Strong
beat

Strong
beat

Strong
beat

Weak
beat

Weak
beat

Weak
beat

Figure 27. Concept of self-similarity based coding method
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This chapter summarizes the published work incorporated in this dissertation and describes the
contribution of the author. The publications are clustered into three modules. The first module consisting
of P1 and P2 describes two new psychoacoustic models with applications in audio coding. The second
module consists of P3, P4 and P5 and provides some new insights into a few relevant transforms and their
impact on audio coding. The third module, which consists of P6, P7 and P8, focuses on compressed
domain audio processing for the purpose of improving coding efficiency and of error concealment in
mobile terminals.

1�/� #������7����'��������	����	�
������

1�/�/� ���	�
������/

In order to improve audio coding performance, excess masking has been employed for the compression of
complex audio signals. A new algorithm has been developed to classify and pre-process maskers. A ERB
scale based psychoacoustic model is used to estimate the simultaneous masking threshold. This masking
threshold is used for quantizing audio signal coefficients in the frequency domain. Preliminary test results
show improved coding efficiency.

1�/��� ���	�
�������

This paper describes an excitation level based psychoacoustic model to estimate the simultaneous
masking threshold for audio coding. The system has the following stages: 1) a windowing function; 2) a
time-to-frequency transformation; 3) an excitation level calculation block similar to that in Moore and
Glasberg’s loudness model; 4) a correction factor for estimating masking threshold; 5) the inclusion of the
absolute masking threshold; 6) the output Signal-to-Masking ratio. We have evaluated the performance
by integrating the proposed psychoacoustic model into an audio coder similar to MPEG-2 AAC, which
contains only the basic coding tools. Our model performs better than, or as well as, the psychoacoustic
model suggested in the MPEG-2 AAC audio coding standard for all the test signals. We can achieve
almost transparent quality with bitrates below 64 kbps for most of the monophonic critical test signals.
Significant improvements have been achieved with speech signals, which are always difficult for
transform audio coders.
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This paper presents an experimental study addressing spectrum estimation using various types of
transforms and time-domain windows. The study concentrates in transform energy compaction properties.
Transforms studied are DFT, DCT, SDFT, MDCT and discrete sine transform (DST). Transform energy
compaction property is measured experimentally, and the influence of varying window size (256, 512 and
1024 samples) and window shape (rectangular and sine) is investigated. In addition to sinusoidal signals,
classical and pop music excerpts were used as test material.

The results can partially be explained by the fact that the main lobe width of a rectangular window
frequency response is '/4π  [7], while the main lobe width of the sine window is '/6π  [20]. This
paper is an initial investigation, and further work is needed to more precisely establish factors influencing
practical energy compaction properties of different transforms.

1�/�1� ���	�
������1

Most state-of-the-art audio encoders have two basic coding tools: an MDCT and DFT based
psychoacoustic model. The MDCT coefficients are quantized according to the masking threshold
calculated by the psychoacoustic model. However, this kind of encoder structure can fail for some test
signals. Research has been undertaken to find the reasons behind this failure, during which it has been
found that the failure may be caused by the peculiar properties of MDCT and the mismatch between
MDCT and a DFT based psychoacoustic model. We have established a direct and compact formulation of
the MDCT with the help of a SDFT. This formulation has a clear physical interpretation. It enables us i)
to clarify the symmetric properties of MDCT, ii) to illustrate the concept of the time domain alias
cancellation in a very intuitive and illustrative way, and iii) to show some peculiar properties of MDCT
which may affect the coding performance of an MDCT based audio codec. Based on these new
interconnections we propose a new encoder structure as a first step towards solving the mismatch. A
small, formal listening test was initiated to verify the relative performance of our optimized codec. The
mismatch between the two basic coding tools is relevant for multimedia codec design, watermark
embedding, etc. The improvement in computational efficiency discussed in this paper is essential for
hand-held devices such as mobile phones.

1�/�%� ���	�
������%

This paper presents a novel lossless multichannel audio-coding algorithm to remove inter-channel
redundancy. We employ an integer-to-integer discrete cosine transform (INT-DCT) to perform inter-
channel decorrelation after quantization of modified discrete cosine transform (MDCT) coefficients of
individual channels. When compared with a Karhunen-Loeve transform (KLT) based approach our new
method has three major advantages: 1) it avoids quantization noise spreading to other channels; 2)
computational simplicity; 3) it uses less overhead information (a quantized covariance matrix or
eigenvector is avoided in our algorithm), while maintaining a similar decorrelation capability.

1�/�3� ���	�
������3

Error concealment is an important method to mitigate the degradation of the audio quality when
compressed audio packets are lost in error prone channels, such as Mobile Internet and digital audio
broadcasting. This paper presents a novel error concealment scheme exploiting the beat and rhythmic
pattern of music signals. Preliminary simulations show significantly improved subjective sound quality in
comparison to conventional methods in the case of burst packet losses. The new scheme is proposed as a
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complement to prior solutions. It can be adopted to essentially all existing perceptual audio decoders such
as an MP3 decoder for streaming music.

1�/�)� ���	�
������)

This paper presents a novel beat detector that processes MPEG-1 Layer 3  (known as MP3) encoded
audio bitstreams directly in the compressed domain. Most previous beat detection or tracking systems
dealing with signals in the formats of musical instrument digital interface (MIDI) or PCM are not directly
applicable to compressed audio bitstreams, such as MP3 bitstreams. We have developed the beat detector
as a part of a beat-pattern based error concealment scheme for streaming music over error prone channels.
Special effort was used to obtain a tailored trade-off between performance, complexity and memory
consumption for this specific application. A comparison between the machine-detected results to human
annotation has shown that the proposed method correctly tracked beats in 4 out of 6 popular music test
signals. The results were analyzed.

1�/�+� ���	�
������+

This paper presents three schemes for re-compressing MP3 (MPEG-1 Layer 3) audio bitstreams. The first
two schemes are lossless and exploit the inter-frame redundancies of the main data (the scale-factors and
the quantized MDCT coefficients) of the MP3 bitstream. The third scheme is a lossy approach exploiting
the redundancies between consecutive beat-patterns. The aim is to study the potential of the new coding
schemes. Preliminary results are reported in this paper.
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The work in the first module was accomplished at Nokia Research Center with support from Prof. Brian
Moore, Cambridge University. The transform-related research in the second module is the result of
fruitful collaboration with Prof. Leonid Yaroslavsky, Tel Aviv University. The compressed domain audio
processing related work was conducted at Nokia Research Center in Finland and Cambridge University in
UK. Miikka Vilermo’s creative implementation of the proposed psychoacoustic models and the
multichannel audio coding algorithm proved very successful. Many of his suggestions have contributed to
improving the proposed algorithms. Juha Ojanperä’s fast implementation of the MP3 bitstream re-
compression schemes has been of great value in this and later studies. David Isherwood organized the
subjective listening tests for [P4]. However, the author’s contribution to all publications has been
essential. Moreover, in each case the present author prepared the manuscripts for publication and
performed a major part of research, simulations and experiments.

In particular, the author’s contribution to the publications is as follows: In Publication 1, the author
initiated the idea of exploiting the excess masking effect in the frequency domain for improving the
coding efficiency. The implementation and subsequent evaluations were performed jointly by both
authors.

In Publication 2, the author proposed the concept of employing an ERB based perceptual model for audio
coding. The implementation and integration of the model into an audio encoder similar to the MPEG-2
AAC were performed jointly by the authors. This proved experimentally that an ERB based perceptual
model can be used in audio coding applications with good results especially with speech signals.

In Publication 3, the author proposed a thorough study of the energy compaction property of the MDCT
in comparison with other transforms and performed almost all the experiments. The study showed that
MDCT could be used as a frequency analyzer in general, although it does not fulfil Parseval’s theorem.
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In Publication 4, the author initiated the study for reducing the computational complexity of an MDCT-
based audio encoder. The relationship between MDCT, SDFT and DFT was derived by the author in
cooperation with Prof. Leonid Yaroslavsky, which has led to a direct and compact formulation of the
MDCT with the help of a SDFT. This new formulation has a clear physical interpretation and provides
some new insights into MDCT. The subjective listening test was organized by David Isherwood.

In Publication 5, the author proposed a cascaded MDCT-DCT multichannel perceptual audio coding
scheme. In particular, the author initiated the idea of using an Integer-to-Integer DCT to remove the inter-
channel correlation. The implementation was mainly programmed by Miikka Vilermo.

In Publication 6, the author proposed a novel beat-pattern based error concealment scheme for streaming
music over error prone channels and performed all the simulations. This algorithm significantly improved
the subjective sound quality in the case of burst packet loss in comparison with existing methods. The
author was the sole writer of this paper.

In Publication 7, the author proposed a novel compressed domain beat detector as a part of the error
concealment scheme described in Publication 6 using MP3 audio bitstream. The implementation was a
joint effort by both authors.

In Publication 8, the author proposed and designed three new schemes for re-compressing MP3 audio
bitstreams and performed almost all the experiments. The implementation was mainly programmed by
Juha Ojanperä.
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Non-real-time downloading of compressed audio such as MP3 has boosted the application of audio
coding technologies, not only in the Internet world but also in consumer products. Near real-time
applications such as streaming audio have become a reality in the Internet and are penetrating mobile
networks. Delivery of high quality multimedia content such as music via future Mobile Internet will
become an important form of mobile service. Nevertheless, it is important to realize that many technical
problems to make this vision a reality are still unsolved. Several technical obstacles need to be overcome
before we can deliver mono/stereo, even surround sound music with sufficient quality of service.

Current audio coding technologies are not optimized for delivery of audio content in Mobile Internet
environment. The audio quality of low bitrate streams (���� 14.4 - 64 kbps) must be significantly
improved. New coding methodologies such as new transforms, new perceptual models, and fully
embedded and scalable bitstream formatting are needed to achieve the compression objective.

To combat errors on the channel, both sender and receiver-based methods must be deployed in an optimal
way in the sense of performance/complexity. Interleaving has been shown to be an effective tool in
applications such as VoIP. Its effectiveness should be tested in high quality music streaming. Error
detection/correction is generally necessary. In the context of audio streaming, a media-specific FEC is
recommended. Some error resilience tools are already available in MPEG-4 for example, and can be
deployed in a wireless audio content delivery system. However, it should be noted that MPEG-4 error
resilience tools are mostly designed for a circuit switched network with random bit errors, and therefore
are not necessarily effective for packet losses.

Error concealment, as the last resort, plays an important role in mitigating the degradation of subjective
audio quality in the case of packet loss. In order to keep the decoder structure simple, a simple and
effective error concealment method such as packet replacement, is recommended.

In this dissertation, three elementary technologies have been addressed. The first module is the
development of two improved perceptual models for audio coding. The second module is the MDCT
based audio codec optimization. The third module focuses on the compressed domain audio processing.

Current and future work will be system level integration. That is, selecting/developing the right
elementary technologies to build a system to meet the challenge – deliver high quality audio and
multimedia content to mobile terminals, which will further enrich people’s lives.



63

�������
��

[1] Haavisto, P., Castagno, R., Honko, H., “Multimedia Standardization for 3G Systems”, Proc. of 16th IFIP
World Computer Congress (WCC2000)/5th International Conference on Signal Processing, Beijing, August,
2000, pp. 32-39

[2] Plenge, G., “DAB – A new Sound Broadcasting System, Status of the development – Routes to its
Introduction”, EBU Review – Technical, No.246, April 1991

[3] ISO/IEC 11172-3 International Standard, “Information Technology - Coding of moving pictures and
associated audio for digital storage media at up to about 1,5 Mbit/s”, 1993

[4] Shlien, S., “Guide to MPEG-1 Audio Standard”, IEEE Transactions on Broadcasting, Vol. 40, No.4,
December 1994

[5] Theile, G., Stoll, G., Link, M., “Low bit-rate coding of high-quality audio signals – An introduction to the
MASCAM system”, EBU Review – Technical, No. 230, August 1988

[6] Jayant, N., Johnston, J., Safranek, R., “Signal Compression Based on Models of Human Perception”,
Proceedings of the IEEE, Vol.81, No.10, October 1993, pp. 1385-1422

[7] Jayant, N., Noll, P., “Digital Coding of Waveforms – Principles and Applications to Speech and Video”,
Prentice-Hall, Englewood Cliffs, NJ, 1984

[8] Painter, T., Spanias, A., “Perceptual Coding of Digital Audio,” Proceedings of the IEEE, Vol.88, No.4, April
2000, pp. 451-513

[9] ISO/IEC 13818-3, “Information Technology – Generic Coding of Moving Pictures and Associated Audio,
Part 3: Audio”, 1997

[10] Fielder, L.D., Bosi, M., Davidson, G.A., Davis, M., Todd, C., Vernon, S., “AC-2 and AC-3: Low Complexity
Transform-Based Audio Coding,” in Geilchrist, N. and Grewin, C. (ed.), Collected Papers on Digital Audio
Bit-Rate Reduction, AES, 1996, pp. 54-72

[11] Herre, J., Grill, B., “Overview of MPEG-4 Audio and its Applications in Mobile Communications”, Proc. of
16th IFIP World Computer Congress (WCC2000)/5th International Conference on Signal Processing, Beijing,
August, 2000, pp. 11-20

[12] ISO/IEC 13818-7, “Information Technology – Generic Coding of Moving Pictures and Associated Audio,
Part 7: Advanced Audio Coding”, 1997

[13] Bosi, M., Brandenburg, K., Quackenbush, S., Fielder, L., Akagiri, K., Fuchs, H., Dietz, M., Herre, J.,
Davidson, G., Oikawa, Y. “ISO/IEC MPEG-2 Advanced Audio Coding”, J. Audio Eng. Soc., Vol. 45, No.
10, October 1997

[14] ISO/IEC 14496-3, “Coding of Audio-Visual Objects: Audio”, 1999

[15] Johnston, J.D., Quackenbush, S.R., Herre, J., Grill, B., “Review of MPEG-4 General Audio Coding,” in Puri,
A., Chen, T. (ed), Multimedia Systems, Standards, and Networks, Marcel Dekker, Inc. New York, USA,
2000, pp. 131-155

[16] Rothweiler, J. H., “Polyphase Quadrature Filters – A New Subband Coding Technique”, Proc. ICASSP 1983



64

[17] Princen, J. P., Bradley, A. B., “Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing
Cancellation,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-34, No. 5,
October 1986.

[18] Princen, J. P., Johnson, A. W., Bradley, A. B., “Subband/Transform Coding Using Filter Bank Designs Based
on Time Domain Aliasing Cancellation,” IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1987, Dallas, USA, pp. 2161-2164

[19] Malvar, H., “Signal Processing with Lapped Transforms,” Artech House, Inc., 1992

[20] Ferreira, A., “Spectral Coding and Post-Processing of High Quality Audio,” Ph.D. thesis
http://telecom.inescn.pt/doc/phd_en.html, 1998

[21] Edler, B., “Coding of Audio Signals with Overlapping Block Transform and Adaptive Window Functions,”
(in German), *
�:���@, vol.43, pp.252-256, 1989

[22] Edler, B., “Äquivalenz von Transformation und Teilbandzerlegung in der Quellencodierung,” Ph.D. thesis,
Universität Hannover, 1995

[23] Yaroslavsky, L., Eden, M., “Fundamentals of Digital Optics,” Birkhauser, Boston, 1996

[24] Roads. C., “The Computer Music Tutorial,” The MIT Press, Cambridge, Massachusetts, 1998

[25] Scharf, B., “Complex Sounds and Critical Bands,” Psychological Bulletin 58, 1961, pp. 205-217

[26] Scharf, B., “Critical Bands,” In J. Tobias (ed.), Foundations of Modern Auditory Theory, Academic Press,
Orlando, 1970

[27] Fletcher, H., “Auditory Patterns”, Rev. Mod. Phys., vol. 12, 1940, pp. 47-65

[28] Moore, B. C. J., Shailer, M. J., Hall, J. W., and Schooneveldt, G. P., “Comodulation Masking Release in
Subjects with Unilateral and Bilateral Cochlea Hearing Impairment,” J. Acoust. Soc. Am., vol. 93, 1993, pp.
435-451

[29] Moore, B. C. J., “Masking in the Human Auditory System”, in Geilchrist, N. and Grewin, C. (ed.), Collected
Papers on Digital Audio Bit-Rate Reduction, AES, 1996, pp. 9-19

[30] Zwicker, E., Zwicker, U. T., “Audio Engineering and Psychoacoustics: Matching Signals to the Final
Receiver, the Human Auditory System”, J. Audio Eng. Soc., Vol.39, No.3, March 1991

[31] Zwicker, E., Fastl, H., “Psychoacoustics, Facts and Models”, Springer-Verlag, Berlin Heidelberg, Germany,
1990

[32] Zwicker, E., Feldtkeller, R., “Das Ohr als Nachrichtenempfänger,” Hirzel, Stuttgart, Germany, 1967

[33] Zwicker, E., “Procedure for Calculating Loudness of Temporally Variable Sounds,” J. Acoust. Soc. Am.,
vol.62, 1977, pp. 675-682

[34] Paulus, E., Zwicker, E., “Programme zur automatischen Bestimmung der Lautheit aus Terzpegeln oder
Frequenzgrouppenpegeln,” ACOUSTICA, vol. 27, Heft 5, 1972, pp. 253

[35] Moore, B. C. J., Glasberg, B. R., Baer, T., “A Model for the Prediction of Thresholds, Loudness, and Partial
Loudness”, J. Audio Eng. Soc., Vol. 45, No. 4, 1997



65

[36] Colomes, C., Schmidmer, C., Thiede, T., Treurniet, W. C., “Perceptual Quality Assessment for Digital
Audio: PEAQ – The New ITU Standard for Objective Measurement of the Perceived Audio Quality”, Proc.
of the AES 17th International Conference, Florence, Italy, September 1999

[37] Wiese, D., Stoll, G., “Bitrate Reduction of High Quality Audio Signals by Modeling the Ears Masking
Thresholds”, 89th AES Convention, Los Angeles, CA, September 1990

[38] Braundenburg, K., Stoll, G., “ISO-MPEG-1 Audio: A Generic Standard for Coding of High-Quality Digital
Audio”, J. Audio Eng. Soc., vol.42, October 1994

[39] Brandenburg, K., Johnston, J. D., “Second Generation Perceptual Coding: The Hybrid Coder,” 88th AES
Convention, May 1990

[40] Johnston, J. D., “Transform Coding of Audio Signals Using Perceptual Noise Criteria”, IEEE J. Selected
Areas in Communications, vol. 6, 1988, pp. 314-323

[41] Van der Heijden M., Kohlrausch A., “Using an Excitation-pattern Model to Predict Auditory Masking”,
Hearing Research 80, 1994, pp. 38-52.

[42] Espinoza-Varas B., Cherukuri S. V., “Evaluating a model of auditory masking for applications in audio
coding”, IEEE ASSP Workshop on Application of Signal Processing to Audio & Acoustics. New Paltz, New
York, 1995.

[43] Green D. M., “Additivity of Masking”, J. Acoust. Soc. Am., 41, 1967, pp. 1517-1525.

[44] Lutfi, R. A., “Additivity of simultaneous masking”, J. Acoust. Soc. Am., 73, 1983, pp. 262-267.

[45] Humes, L. E. and Jesteadt, W., “Models of the additivity of masking”, J. Acoust. Soc. Am., 85, 1989, pp.
1285-1294.

[46] Blauert, J., “Spatial Hearing”, MIT press, Cambridge, MA, USA, 1983.

[47] Moore B. C. J., “An Introduction to the Psychology of Hearing”, 4. Edition, Academic Press, London, 1997.

[48] Espinoza-Varas, B., Cherukuri, S. V., “Evaluating a model of auditory masking for applications in audio
coding”, proc. IEEE ASSP Workshop on Application of Signal Processing to Audio & Acoustics. New Paltz,
New York, 1995

[49] Beerends, J. G., Stemerdink, J. A., “A Perceptual Audio Quality Measure Based on a Psychoacoustic Sound
Representation”, J. Audio Eng. Soc., Vol. 40, No. 12, 1992

[50] Baumgarte, F., “A Physiological Ear Model for Auditory Masking Applicable to Perceptual Coding”, 103rd
AES Convention, New York, NY, September 1997

[51] Brandenburg, K., “MP3 and AAC explained”, Proc. of the AES 17th International Conference, Florence, Italy,
September 1999

[52] Herre, J., Johnston, J.D., “Enhancing the Performance of Perceptual Audio Coders by Using Temporal Noise
Shaping (TNS),” 101st AES Convention, Los Angeles 1996, preprint 4384

[53] Herre, J., Johnston, J.D., “Exploiting Both Time and Frequency Structure in a System that Uses an
Analysis/Synthesis Filterbank with High Frequency Resolution,” 103rd AES Convention, New York, 1997,
preprint 4519

[54] Herre, J., Schulz, D., “Extending the MPEG-4 AAC Codec by Perceptual Noise Substitution,” 104th AES
Convention, Amsterdam 1998, Preprint 4720



66

[55] Ojanperä, J., Väänänen, M., “Long Term Predictor for Transform Domain Perceptual Audio Coding,” 107th

AES Convention, New York 1999, Preprint 5036

[56] Chen, C.W., Cosman, P., Kingsbury, N., Liang, J., Modestino, J.W., “Guest Editorial Error-Resilient Image
and Video Transmission,” IEEE Journal on Selected Areas in Communications, June 2000

[57] Wong, K.H.H., Hanzo, L., “Channel Coding,” in Raymond Steele (ed.), Mobile Radio Communications,
Pentech Press, London, 1992, pp. 348-357

[58] Steele, R., “Mobile Radio Communications,” Pentech Press, London, 1992

[59] Correia, L., Prasad, R., “An Overview of Wireless Broadband Communications,” IEEE Communication
Magazine, January 1997, pp. 28-33

[60] Radha, H., Ngo, C.Y., Sato, T., Balakrishnan, M., “Multimedia Over Wireless,” in Atul Puri and Tsuhan
Chen (ed.), Multimedia Systems, Standards, and Networks, Marcel Dekker, Inc., New York, 2000

[61] Perkins, C., Hodson, O., Hardman, V., “A Survey of Packet-loss Recovery Techniques for Streaming Audio,”
IEEE Network, Sept/Oct 1998.

[62] Perkins, C., Hodson, O., “Options for Repair of Streaming Media”, http://www.ietf.org/rfc/rfc2354.txt under
www.ietf.org: RFC 2354.

[63] Carle, G., Biersack, E.W., “Survey of Error Recovery Techniques for IP-Based Audio-Visual Multicast
Applications,” IEEE Network, Nov/Dec 1997.

[64] Bolot, J.C., Vega-Garcia, A., “Control Mechanisms for Packet Audio in the Internet,” Proc. IEEE
INFOCOM'96, 1996.

[65] Yajnik, M., Kurose, J., Towsley, D., “Packet Loss Correlation in the Mbone Multicast Network,” Proc. IEEE
Global Internet Conference, Nov. 1996.

[66] Ramsey, J.L., “Realization of Optimum Interleavers,” IEEE Transactions on Information Theory, May 1970,
IT-16, pp. 338-345.

[67] Gruber, J.G., Strawczynski, L., “Subjective Effects of Variable Delay and Clipping in Dynamically Managed
Voice Systems,” IEEE Trans. Commun., vol. COM-33, no. 8, Aug. 1985, pp. 801-808.

[68] Jayant, N.S., Christenssen, S.W., “Effects of Packet Losses in Waveform Coded Speech and Improvements
due to an Odd-Even Sample Interpolation Procedure,” IEEE Trans. Commun., vol. COM-29, no. 2, Feb.
1981, pp. 101-109.

[69] Hartman, V. et al., “Reliable Audio for Use over the Internet,” Proc. INET'95, 1995

[70] Miller, G.A., Licklider, J.C.R, “The Intelligibility of Interrupt Speech,” J. Acoust. Soc. Amer., vol. 22, no. 2,
1950, pp. 167-173

[71] Warren, R.M., “Auditory Perception,” Pergamon Press, 1982.

[72] ETSI Rec. GSM 6.11, “Substitution and Muting of Lost Frames for Full Rate Speech Signals,” 1992.

[73] Goodman, O.J. ��� �
., “Waveform Substitution Techniques for Recovering Missing Speech Segments in
Packet Voice Communications,” IEEE Trans. Acoustics, Speech, and Sig. Processing, vol. ASSP-34, no. 6,
Dec. 1986, pp. 1440-1448.



67

[74] Wasem, O.J. ����
., “The Effect of Waveform Substitution on the Quality of PCM Packet Communications,”
IEEE Trans. Acoustics, Speech, and Sig. Processing, vol. 36, no. 3, Mar. 1988, pp. 342-348.

[75] Sanneck, H. ����
., “A New Technique for Audio Packet Loss Concealment,” IEEE Global Internet 1996,
Dec. 1996, pp. 48-52.

[76] Chen, Y.L., Chen, B.S., “Model-based Multirate Representation of Speech Signals and its Application to
Recovery of Missing Speech Packets,” IEEE Trans. Speech and Audio Processing, vol. 15, no. 3, May 1997,
pp. 220-231.

[77] ITU Rec. G723.1, “Dual Rate Speech Coder for Multimedia Communications transmitting at 5.3 and 6.3
kbit/s,” Mar. 1996.



68

 �����

•   In ([P2], p.402) the sentence “which are similar to traditional critical bands at low frequencies (see
below).” should read “which are similar to traditional critical bands except at low frequencies (see
below)”.

•   In ([P5], p.4) the sentence “Givens rotations are factorized into 3 matrices each, resulting the total of
15 matrix multiplications. However the internal structure of these matrices guarantees that only 15
multiplications and 15 rounding operations are needed in total.” should read “Givens rotations are
factorized into 3 matrices each, resulting the total of 30 matrix multiplications. However the internal
structure of these matrices guarantees that only 30 multiplications and 30 rounding operations are
needed in total.”

•   In ([P6], p.74) the sentence “In the case of packet-based network, the time stamp of the packet is a
reliable cue for missing packets.” should read “In the case of packet-based network, the sequence
number of the packet is a reliable cue for missing packets.”
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In order to improve audio coding performance, excess masking has been employed for the compression of complex
audio signals.  A new algorithm is developed to classify and pre-process maskers.  A psychoacoustic model is used to
estimate simultaneous masking threshold.  This masking threshold is used for quantizing audio signal coefficients in the
frequency domain.  Preliminary test results show improved coding efficiency.

INTRODUCTION

Auditory masking plays a major role in audio coding,
because all coding algorithms engender a certain level of
undesirable low-level quantization noise that occurs
simultaneously with the desired coded signal. All
perceptual audio encoders have a psychoacoustic model,
which calculates the masking threshold to determine the
maximum allowable noise injection level without audi-
ble distortion. These models simulate masking effects
from psychoacoustic studies. There is a major challenge
however: Only simple stimuli such as sinusoids and
bands of noise have been used in most psychoacoustical
studies. In audio coding we are dealing with real life
audio signals. That is, a multi-component complex
masker (coded audio signal) must mask the spectrally
complex target (quantization noise).

In our previous paper [1], we have applied an excitation-
pattern model to estimate the simultaneous masking
threshold for audio coding. This model performs fairly
well for narrow-band-noise masking, but may
overestimate the masking produced by tonal components
[2][3]. We have introduced a weighting function, which
includes the tonality measure to solve this problem [1].

On the other hand, the excitation-pattern model seems to
underestimate the combined masking effects of multiple-
component maskers [4][5]. More specifically, it
underestimates the combined effects of two maskers
both when the masker frequency components fall within
the maskee auditory-filter bandwidth, and when they fall
outside this bandwidth [5]. We hereby present some
initial work that we have done to exploit the excess
masking of two-tone maskers within the equivalent

rectangular bandwidths (ERBs) [3] for audio
compression.

Excess masking has been discussed in many
publications since 1960’s. In essence, the masking
produced by the combination of simple maskers
(sinusoids or bands of noise) is not a simple summation
of the masking produced by the individual maskers.
Several studies [6][7][8] have shown that the combined
masking effect of two equally-effective simultaneous
maskers is 3 to 15 dB greater than the masking predicted
by the linear addition of masker energies. This
“additional” amount of masking is defined as excess
masking. Excess masking exists not only in frequency
domain but also in time domain [9]. But the time domain
excess masking will not be covered in this paper.

1. MODEL DESCRIPTION

The model includes the following stages: 1) time-to-
frequency domain transformation, which is a FFT in our
case; 2) masker classification and pre-processing, in
which maskers are classified by their types and spectral
structure; 3) masking threshold estimation, including
excess masking as well as the absolute masking
threshold as employed in the MPEG-2 AAC standard; 4)
SMR (Signal-to-Masking Ratio) calculation, as the
output of the model, used to control the quantizer in the
audio encoder.

Because this is a modification of the model described in
[1], the basic structure is essentially the same.
Difference happens in stage 2 and 3. In stage 2, the
algorithm searches for components that are subject to
the following criteria: 1) The components must be local
maxima; 2) They have to be tonal (predictable) i.e. the
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unpredictability measure has to be under a certain
threshold; 3) They have to be greater than 10.0 dB.
Then the algorithm finds the first component that meets
the criteria. Afterwards it searches for other components
within one ERB that fulfill the criteria and that differ in
amplitude less than 3 dB. If such components are found,
then these components, together with the first one, are
marked to cause excess masking (refer to the circles on
top of some spectral lines in Figures 1, 2, 3). For every
marked component, a 6-dB excess masking is
introduced by modifying the weighting function
described in [1].

The weighting function is introduced to integrate the
tonality measure to the excitation-pattern model. From
psychoacoustical experiments, the masking threshold is
about 18 dB below the masker excitation level for a
tonal masker, but about 6 dB below for a narrow band
noise masker. For tonal components with excess
masking we have lifted the masking threshold by 6 dB.
That is, the masking threshold is about 12 dB below the
masker excitation level for a tonal masker with excess
masking. We have introduced this difference before
excitation level calculation. The weighting function is
described by

6SHFWUXPBZHLJKWHG� ����������&:�����6SHFWUXP�             (1)
if there is no excess masking for this component,

6SHFWUXPBZHLJKWHG� ����������&:���������6SHFWUXP����������(2)
if excess masking occurs for this component,

where CW is the unpredictability measure. The
weighting function requires further optimization. The
weighting function differs a bit from [1], because the
spectrum is an amplitude spectrum in that case, a power
spectrum in this paper.

2. EXPERIMENTAL RESULTS

For preliminary test purposes, we have used a pitchpipe
signal, which contains rich sinusoidal harmonics. Figure
1 shows its amplitude spectrum.  Then we have
produced a second signal from the previous one by
shifting all frequency components upward one semitone.
By mixing the above two signals together, we produce a
signal, which has equal amplitude component pairs that
are close in frequency (see Figure 2).  In addition, we
have created a major triad in root position with a similar
approach using the same pitchpipe signal.  These kinds
of signals are supposed to produce quite obvious excess
masking.

We have evaluated the performance by integrating the
modified excitation-pattern model into an MPEG-2

AAC type audio encoder, which contains only the basic
coding tools. We first code these mixed signals with the
original masking curve calculated with the excitation-
pattern model and then with the modified one
(exploiting excess masking). Without degrading the
subjective audio quality, the average bitrate can be
reduced by 5% for both pitchpipe and bagpipe signals,
10% for both two-pitchpipe-mixed signal and the major
triad in root position of pitchpipe signal. For many other
audio signals such as speech, harpsichord, castanets,
glockenspiel, plucked strings, trumpet concerto,
symphony orchestra and contemporary pop music, this
model seems to have little effect in bitrate and causes no
audible degradation in sound quality. Tests were
performed informally by the authors and two young
colleagues in the same lab.

Figure 1. Spectrum of a piece of pitchpipe signal.
Components that cause excess masking are marked with
circles on top of them.

Figure 2. Spectrum of a piece of two-pitchpipe-mixed
signal. Components that cause excess masking are
marked with circles on top of them.
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Figure 3. Spectrum of a piece of two-pitchpipe-mixed
signal (dotted line), circles indicate components that
cause excess masking, masking threshold without excess
masking (dashed line), with excess masking (solid line).
The masking thresholds are lifted parallel upwards for
better visibility.

3.� DISCUSSION

This work is only an initial work that utilises excess
masking for audio coding applications. We have used
only excess masking produced by pairs of sinusoids
within one ERB. The algorithm that identifies
components, which produce excess masking, is not
optimised. It helps to reduce bitrate only for a few
special audio signals such as pitchpipe, bagpipe and the
mixed signals described earlier.

In addition to sinusoidal pairs, maskers can be two
nearby narrow bands of noise, sinusoid combined with a
narrow band of noise, etc. Excess masking of 8 dB was
found for all masker configurations [7]. Even a pair of
maskers outside the maskee auditory-filter bandwidth
also produces some excess masking [5]. In addition,
excess masking has been found in the time domain as
well. That is, if the maskers are close enough in the time
domain, the combined masking effect in the arithmetic
center of the pair of maskers is not a linear combination
of forward and backward masking [9]. In principle, all
these excess masking phenomena can be utilised in
audio coding. It is however very difficult to find a
computationally efficient way to combine all excess
masking into a practical audio encoder. It is worthwhile
to point out that the maskees in almost all
psychoacoustical studies [6][7][8] were sinusoids. To
what extent these results can be utilised in audio coding
is still an open question, since the maskee of an audio
encoder is always the quantization noise, not sinusoids.
Essentially what we are looking for is the optimal

shaping of quantization noise according to the auditory
masking.

In most of the publications, excess masking was
measured at one particular point, most commonly in the
middle of the pairs of maskers. How about the overall
shape of excess masking (excess masking pattern) in the
nearby frequency region or time span between the
forward and backward maskers? This kind of overall
shape would be much more useful in practical
applications such as audio coding.

So far we have modified the weighting function to cope
with the masking of both tonal components [1] and pairs
of sinusoids. We have modified the amplitudes of these
components before excitation-pattern model calculation.
It is not obvious if this is the optimal way to solve these
problems, since the excitation-pattern model is level
dependent. In the case of reducing the amplitude of a
tonal component, the corresponding auditory filter shape
has been changed as well. More research is needed to
answer these questions.

4.� CONCLUSIONS

This preliminary test result proves that excess masking
of sinusoidal pairs within one ERB can be exploited to
compress at least some subclasses of audio signals more
efficiently, especially for low bitrate applications.
However, it is a challenging task to find technically
feasible algorithms to include all excess masking into
audio coding algorithms.
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This paper describes an excitation level based psychoacoustic
model to estimate the simultaneous masking threshold for audio
coding. The system has the following stages: 1) a windowing
function; 2) a time-to-frequency transformation; 3) an excitation
level calculation block similar to that in Moore and Glasberg’s
loudness model; 4) a correction factor for estimating masking
threshold; 5) the inclusion of the absolute masking threshold; 6)
the output Signal-to-Masking ratio. We have evaluated the
performance by integrating the proposed psychoacoustic model
into an audio coder similar to MPEG-2 AAC, which contains only
the basic coding tools. Our model performs better than or as well
as the psychoacoustic model suggested in the MPEG-2 AAC
audio coding standard for all the test signals. We can achieve
almost transparent quality with bitrate below 64 kbps for most of
the critical test signals. Significant improvements have been
achieved with speech signals, which are always difficult for
transform audio coders.

.H\ZRUGV
Psychoacoustic model, excitation level, masking threshold, audio
compression.
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Combining psychoacoustic models into audio coders significantly
improves the coding efficiency. However, the psychoacoustic
models used so far in perceptual coders are based on very
simplified assumptions, which may result in much less accurate
approximations of masking thresholds. For example, the
psychoacoustic models suggested in the audio parts of MPEG-1
and MPEG-2 use a DFT of successive blocks of the audio signal,
which gives the associated spectral components of the blocks. For
each spectral component an individual masking threshold is
generated. The overall masking threshold follows from
superposition of the individual thresholds, which is carried out by
simply adding up the threshold at the corresponding frequencies

[1]. This masking threshold determines the maximum quantization
noise energy that can be added to the original signal to keep the
noise inaudible. These models are quite approximate, when a
complex target (quantization noise) has to be masked by a
complex masker comprising multiple spectral components (either
speech or musical sounds) [11]. Further bit rate reduction heavily
depends on the accurate estimation of the masking threshold both
in the time and frequency domains.

To simulate the human ear better, some ear models have been
developed [4][5][6][10]. Our model is based on Moore and
Glasberg’s excitation level calculation. This is quite different from
psychoacoustic models commonly used, and it leads to some
advantages in masking threshold estimation.

��� 02'(/�'(6&5,37,21
Figure 1 shows the block diagram of our method. The following
steps are performed:

A windowing function is first applied to the input audio signal.
We apply the same window function as specified in MPEG-2
AAC. Depending on the signal, the model changes the
time/frequency resolution by using two different windows:
LONG_WINDOW = 2048 and SHORT_WINDOW = 256. We
have applied two different transition windows
LONG_START_WINDOW and LONG_STOP_WINDOW in
case of switching between long and short windows. The transition
windows have not been used in the psychoacoustic model
suggested in MPEG-AAC. Using the exactly same window
switching in both the psychoacoustic model and in the MDCT
(Modified Discrete Cosine Transform) helps to reduce some
coding artifacts.

Windowing

Transform
spectrum to ERB

Tonality measure Correction factor

Combine absolute
masking

Signal-to-Masking
ratio

PCM samples SMR

FFT

Calculate excitation
level

Figure 1. Block diagram of sequence of stages in the model



The reason for window switching is that Moore’s loudness model
is designed for steady sounds. It can not cope with transient
signals well, and at the moment, we solve this problem by
introducing window switching.

The FFT has been chosen for the time-to-frequency
transformation. The transform block length is 32768 (=215) for
practical reasons: Moore and Glasberg’s model uses the equivalent
rectangular bandwidths (ERBs), which are similar to traditional
critical bands at low frequencies (see below). To ensure that each
ERB has at least one frequency line, the FFT block length has to
be increased by padding with zeros after the actual data, which are
2048 points for the long window and 256 for the short window.
This increases the number of frequency lines, while preserving the
shape of the spectrum.

Because tonal and non-tonal components have very different
masking properties, we introduce the tonality measure as a
weighting function of the frequency components. Currently we
use unpredictability as a tonality measure similar to the method
specified in MPEG-2 AAC. However, our model predicts from
both the past and the future two frames. We choose the one with
less prediction error for calculating the unpredictability measure.
This remarkably improves the coding efficiency for some signals.

A critical problem is how to integrate the tonality measure with
the masking threshold. From psychoacoustical experiments, the
masking threshold is about 18 dB below the masker excitation
level for a tonal masker, but about 6 dB below for a narrow band
noise masker. We have introduced this difference before
excitation level calculation. The weighting function is described
by

Spectrum_weighted = 10-(12(1-CW))/20Spectrum,        (1)

where CW is the unpredictability measure. The weighting
function requires further optimization.

At moderate sound levels, the ERB width is described by

ERB = 24.7(4.3F+1),                                           (2)

where the ERB is in hertz and the center frequency F is in
kilohertz. This function is similar to the "traditional" critical
bandwidth (CB) function at medium to high frequencies, but gives
markedly lower values than the CB function at center frequencies
below 500 Hz. [5]

The next step is to transform from the frequency domain to the
ERB scale, which is described by

Number of ERBs = 21.4 log10(4.37F+1),            (3)

where the frequency is in kilohertz [5].

In our model we have not used the outer and middle ear transfer
function, because the final masking threshold for coding must be
transformed back to free field sound pressure level. We assume
that the forward and backward transfer function of outer and
middle ear cancel each other.

The excitation pattern for a given spectrum is calculated being the
pattern of outputs from the auditory filters. Each auditory filter is
assumed to be quasi-linear at a given level, but to change shape
with frequency and with level in a way similar to that described by
Moore and Glasberg [8].

It is assumed that the masking pattern should be parallel to the
excitation pattern of the masker, but shifted vertically downwards
by a small amount [9], we have introduced the &255(&7,21
)$&725 to represent that shift and tried to find out the optimal
correction factor experimentally. For all test materials used, 6 dB
is a suitable correction factor. We have also modified the
correction factor below 500 Hz according to [5]. The influence on
bitrate versus audio quality seems to be minimal.

Because Moore’s model does not cover the whole audible
frequency range up to 20 kHz, we combine the calculated masking
threshold with the absolute masking threshold as the global
masking threshold. Choosing the higher of the two thresholds
approximates this combination. Finally we output the Signal-to-
Masking ratio (SMR) for each scalefactor band.
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The psychoacoustic model is built into a codec similar to MPEG-
2 AAC. The test materials are provided by MPEG and commonly
used in audio coding evaluation. These include English and
German speech spoken by male and female, female singing in
English without instrumental accompaniment, harpsichord,
castanets, pitchpipe, bagpipe, glockenspiel, plucked strings,
trumpet concerto, symphony orchestra and contemporary pop
music. Our model performs better than the MPEG-2 AAC
psychoacoustic model for all signals. To achieve the same audio
quality, we can save 10-20% bits.

Moore and Glasberg’s loudness model is intended for stationary
signals, but we have used it for real audio signals, which
sometimes have strong transients. The transients should be tackled
by using e.g., window switch, more accurate detection of
transients, better exploiting temporal masking, short window
grouping etc. Preliminary tests show that an additional 10%
reduction in bit rate can be achieved through combining
simultaneous masking and forward masking. It should be noted
that we have not used any prediction for our test. Backward
adaptive prediction would improve coding efficiency for some
signals, such as the pitchpipe and bagpipe. However, it does not
help very much for other test signals.

Figure 2 Masking threshold with (solid) and without (dotted) the
tonality measure calculation for a noise-like signal



Figure 3 Masking threshold with (solid) and without (dotted) the
tonality measure calculation for a signal with significant
sinusoidal components

Figure 2 and 3 show the effect of the tonality measure. Figure 2
shows the spectrum of a piece of symphony orchestra signal and
its masking thresholds calculated with and without the tonality
measure. Figure 3 shows the spectrum of a section of pitchpipe
signal and its masking thresholds calculated with and without the
tonality measure. The symphony orchestra signal is more noise-
like and the difference between the two masking thresholds is
rather small. The pitchpipe contains rich sinusoidal harmonics and
the difference between the two masking thresholds is more
significant.

Figure 4 shows the spectrum of a section of the symphony
orchestra signal and its masking thresholds from the MPEG2-
AAC model (dotted) and our model (solid). Our model shows a
different distribution of the allowed quantisation noise compared
to the MPEG2-AAC model.

Figure 4 Masking threshold from the MPEG2-AAC model
(dotted) and our model (solid)

��� &21&/86,21�$1'�)8785(�:25.
The proposed psychoacoustic model can predict the masking
threshold quite well for most test signals. Particularly, the
performance with speech signals makes it very promising for a

future hybrid speech and audio coders. Based on experimental
codes in MATLAB, we have implemented our model in C
language with some optimization for real-time applications.

What could be done in the future is:

• To find some other tonality measure which is more reliable
than the unpredictability measure;

• In order to tackle transient signals better, the window switch
mechanism has to be improved;

• In order to squeeze the bitrate further, short window
grouping can be tested.
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Abstract - This paper focuses on the energy compaction properties of five different transforms: DFT, DCT,
SDFT((N+1)/2, 1/2), MDCT and DST. Energy compaction properties of these transforms are compared
experimentally. In addition to sinusoidal signals, sixteen classical and pop music pieces are used for the
experiments. The influence of different window sizes (256, 512 and 1024 samples) and different window shapes
(rectangular and sine) are investigated. The results of the experiments are presented and analyzed.

,�� ,1752'8&7,21

Signal Fourier spectrum analysis is one of the major tools of signal processing. For real-life continuous signals such
as audio signals and images, it is associated with signal integral Fourier transformation. In digital signal processing,
integral Fourier transformation is approximated by Discrete Fourier Transforms implemented via Fast Fourier
Transform algorithms. On the other hand, it has been found that in image and audio coding, restoration and similar
applications other transforms such as Discrete Cosine Transform (DCT), Discrete Sine Transform (DST), and
Modified Discrete Cosine Transform (MDCT) may be more suitable than DFT [1][2]. However, it is often necessary
to establish interrelations between DFT signal spectra and those of DCT, MDCT, and DST to evaluate their
applicability for signal Fourier analysis. Based on these interrelations, the energy compaction properties of these
transforms are investigated in this paper. This work is an extension of our previous paper [3].

In most state-of-the-art audio encoders, MDCT [4] is used to compress signals in the frequency domain. In this
context, it is necessary to examine how well the transform approximates the Fourier spectrum and why the MDCT
exhibits an energy compaction property. Although MDCT fails in some special situations [5] for spectral analysis, it
is commonly used in audio coding applications.

Transform energy compaction capability means the capability of the transform to redistribute signal energy into a
small number of transform coefficients. It can be characterized by the fraction of the total number of signal
transform coefficients that carry a certain (substantial) percentage of the signal energy. The lower this fraction is for
a given energy percentage, the better the transform energy compaction capability is.

There are different approaches to studying the energy compaction property of different transforms, because the
spectral discretization interval of the transforms may be different. In the case of stationary signals, the conventional
solution is to use different time-domain window sizes so that the spectral discretization intervals of different
transforms remain the same. However, if the signal is nonstationary it may be more reasonable to use the same time-
domain window size for all transforms, because time domain windows of different sizes may contain significantly
different frequency components. In addition there are certain constraints on the window size in different
applications. In our approach, we employ interpolation and normalization to align all transform spectra in the same
coordinate for a fair comparison.
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Purely analytical evaluation of the transform energy compaction capability is problematic since it is only feasible for
limited mathematical models of signals. Another option is to evaluate the energy compaction property
experimentally with a large number of test signals. In this paper, we first study the energy compaction property of
different transforms by comparing the spectral resolution of individual sinusoids. Then we present the results of such
an evaluation for a set of 8 pieces of classical music and 8 pieces of pop music. For these signals, the energy
compaction capability of transforms is investigated with different window sizes (256, 512 and 1024 samples) and
with different window functions (rectangular and sine) over 60*44100 samples. The sampling frequency was 44.1
kHz. The results are illustrated in frequency coordinates normalized to [0-1] by the Nyquist frequency.
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Discrete representation of signal integral transforms parallels that of signals.  For a signal ( )[D  and its Fourier

spectrum ( )Iα  represented in a discrete form by means of sequences of their samples { }
N

D  and { }
U

α taken at sets of

equidistant points ( ){ }[XN ∆+  and ( ){ }IYU ∆+ , ;,2,1,0,1,2, KK −−=N  KK ,2,1,0,1,2, −−=U such that

( ) ( )( )∑ ∆+−=
N

[N
[XN[D[D ϕ , (1)

( ) ( )( )∑ ∆+−=
U

IU
IYUII ϕαα , (2)

where [∆ and I∆ are discretization intervals and X  and Y  are shifts (in a fraction of the corresponding

discretization interval) of sample positions from the origin of the corresponding coordinates, discrete representation
of the Fourier integral

( ) ( ) ( )G[I[L[DI ∫
∞

∞−

= πα 2exp (3)

takes the form of “Shifted Discrete Fourier Transforms” (SDFT) [2]:
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the most wide known special case of which (for zero shifts X  and Y ) is DFT:
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Other well-known transforms in digital signal processing such as DCT, MDCT and DST are also special cases of
SDFT. From derivation it can be seen that signal spectra obtained by DCT, MDCT, DST are identical to Shifted
Discrete Fourier Transform spectra of certain permutation modifications of the original signal:
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These relationships mnemonically illustrated in Fig. 1 lucidly explain the interrelations between the above
trigonometric bases and their similarity and dissimilarity.
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In this section, we compare the above trigonometric bases in terms of their energy compaction capability and their
resolution power in Fourier spectrum analysis. This property is relevant for many applications, such as signal
compression/coding.

DFT, DCT, DST and MDCT all have different spectral discretization intervals. For an N-samples long real sequence
the independent DFT bins represent frequencies  2,...,0,2 1N1N = . The frequency ordinate is normalized to the

Nyquist frequency for simplicity. DCT bins represent frequencies 1,...,0, −= 1N1N , DST bins represent

frequencies ( ) ( ) 1,...,0,11 −=++ 1N1N , and MDCT bins represent frequencies ( ) 12,...,0,12 −=+ 1N1N . For

MDCT we assume N to be even since MDCT is a Lapped Orthogonal Transform (LOT). The discretization interval
I∆  of DFT is the basis of all comparisons described in this paper. Note that the discretization intervals of DFT and

MDCT are twice as long as that of DCT and DST.

7UDQVIRUP�5HVROXWLRQ�3RZHU�ZLWK�6LQXVRLGV

The transform resolution power in signal spectral estimation characterizes the sharpness of spectral peaks of
sinusoidal signals. It can be evaluated numerically as the width, in proportion to the discretization interval, of the
spectral peak within which a given (substantial) percentage of the energy of a sinusoidal signal is contained. From
sampling theory it follows that the width of the spectral peaks in the signal discrete spectrum is, in general,
proportional to the discretization interval in the frequency domain. However, the proportionality is different for
different discrete trigonometric transforms discussed in previous section.

Evaluation of transform spectral resolution power requires testing the spectral peak width of sinusoidal signals
having arbitrary frequencies within the frequency range defined by the signal discretization rate. Although the
evaluation can be carried out analytically in principle, the same results can be obtained by numerical simulation of
the transforms. As initial numerical simulations, sine test signals with frequencies uniformly distributed within the
corresponding frequency discretization interval were selected and the results of spectrum estimation for each central
frequency were published in [3]. Those results were averaged in such a way that the spectra within a discretization
interval were added and the resulting spectrum was used to measure the resolution power. 100 realizations were
used for each spectral discretization interval.
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In this paper, we have chosen an improved method to estimate the resolution power. Instead of adding the 100
spectra together, we measure the individual spectral width of the 100 realizations, and then average them within
each frequency discretization interval. In addition, we have tested cosine signals and cosine signals with random
phase shifts. Some new results are reported in this paper.

The principle of our method is illustrated in Fig. 2 and Fig. 3 using only 18 time domain samples for clarification.
The dashed lines in Fig. 2 represent the actual spectral lines of a sinusoid )2sin( IWπ  whose frequency changes within

one frequency discretization interval I∆ . DFT and DCT spectra (black and white respectively in Fig. 2) of

2/II
U

∆− , 4/II
U

∆− , 
U
I , 4/II

U
∆+ , 2/II

U
∆+  are illustrated in (a)-(e), where 

U
I  corresponds to one DFT

sampling point. In order to have the same spectral discretization interval, DFT is interpolated by a factor of 2 using
the lowpass interpolation algorithm described in [6]� Obviously these two spectra are different representations of the
same sinusoid. For more precision, both DFT and DCT spectra are further interpolated by a factor of 5 in Fig. 3.
Then we set the energy threshold at 50% and measure the normalized width of each spectrum and then take the
averaged value within each frequency discretization interval I∆ .

By increasing the realization from 5 to 25, the development of the DFT spectral shape of a cosine signal with a
frequency changing from 2/II

U
∆−  to 2/II

U
∆+  is illustrated in Fig. 4. Similarly, the development of the DCT

spectral shapes of the same cosine signal is illustrated in Fig. 5-7, MDCT spectral shapes in Fig. 9-11. Interestingly,
the pattern of the DFT spectral shapes within each I∆  remains the same in all frequency regions, while the patterns

of DCT and MDCT spectral shapes within each I∆  change with frequency.

The averaged frequency resolutions of the transforms are illustrated in Fig. 12-16 using sine, cosine and cosine with
a random phase shift respectively. On average in the whole frequency range [0-1] with rectangular window as in
Fig. 12, 14, 15, the frequency resolutions are I∆6635.0  for DFT, I∆7171.0  for MDCT, I∆525.0  for DCT and

I∆5286.0  for DST.  However, applying sine window has changed the frequency resolution landscape as illustrated

in Fig. 13, 16.

From (6) (8) it can be seen that the phase of 
N

D  has a direct impact on the DCT and DST coefficients. If 
N

D  is in

phase with the basis function, the frequency resolution of the transform is optimal. Conversely, a phase shift of 
2

π

corresponds to the most sub-optimal frequency resolution. This is verified by the experiments. To explain the
frequency-dependent resolution power of DCT, we take the DCT basis function from (6) and change the expression
to:
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The second term in the right hand side bracket is the phase of the basis function 
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This phase shift of the basis functions explains the frequency dependent resolution power of DCT in Fig 12, 14.

Similarly, we take the DST basis function from (8) and change the expression to:

( )( ) ( ) ( )
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1
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The second term in the right hand side bracket is the phase of the basis function 
( )

1

1

+
+=

1
Uπϕ , 1,...0 −= 1U , ⇒
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1
,..,

1 ++
=

1
1

1
ππϕ (12)

If N is big (512 in our experiments), the range of the phase is between 0 and π . This explains the DST frequency
dependent resolution power in Fig. 12, 14. Fig 13 illustrates the effect of the window function.

The basis function of DFT is an exponential function, which can be split into sine and cosine basis functions. The
sine and cosine basis functions complement each other in the resolution power. This explains why DFT frequency
resolution is not sensitive to the phase of the signal as illustrated in Fig. 12-16.

From Fig. 2 to 14 the sinusoids used are all of fixed phase. Fig. 15 and 16 show the frequency resolution of
sinusoids having random phase shifts. Because of the special properties of the MDCT [5], it is difficult to explain its
frequency dependent resolution analytically, and therefore it is omitted in this paper.

7UDQVIRUP�(QHUJ\�&RPSDFWLRQ�ZLWK�5HDO�OLIH�$XGLR�6LJQDOV

This section discusses the transform energy compaction property with real-life audio signals. 16 pieces of pop and
classic music signals were used in the experiment. Fig. 17 shows the energy compaction property with 8 pieces of
pop music signals. The window size is 256-1024 samples for all transforms. Rectangular and sine windows are used.
The length of the audio signals are 60*44100 samples and the sampling frequency is 44.1 kHz.

Fig. 18 shows a zoomed version of the comparison, but with a window length of 256 samples. In general, the DCT
performs better than other transforms, and the DST performs poorest. This is not very consistent in comparison with
the frequency resolution of sinusoidal test signals.

Fig 19 shows the comparison when a sine window is applied. This shows the effect of the window function. As in
Fig. 19 the energy compaction property gets more unified with the sine window. Similar comparison with classic
music signals is shown in Fig. 20 and 21.

We have also taken the conventional approach to compare the energy compaction property with different time
domain windows. The results are shown in Fig 22 - 23. Interestingly, DCT with a window length of 512 performs
better than MDCT with a window length of 1024, if rectangular windows are used. However, when keeping the
window size unchanged and applying a sine window to both DCT and MDCT or to MDCT only, the energy
compaction performance of MDCT is better than DCT. This comparison has been considered to be useful in audio
coding applications. Fig. 24 and 25 show the comparison for the case that DCT has a rectangular window length of
512 and MDCT has a sine window length of 1024. However, the different time window may contain significantly
different frequency components as noted earlier.

,9�� &21&/86,21

All above-mentioned transforms can be used for signal Fourier analysis.

The transforms exhibit different Fourier spectrum analysis resolution power and energy compaction property; the
resolution power is not uniform over the entire frequency range for DCT, DST and MDCT using sine and cosine test
signals. The averaged resolution power of DFT is uniform within the whole frequency range. On average, over the
whole frequency range, DCT and DST have the best resolution power, and MDCT has the poorest resolution power
using rectangular window. All these transforms have almost the same resolution power when a sine window is used.

For real-life audio signals, DCT, MDCT and DST exhibit, on average, over large signal sequences, effectively
similar energy compaction capabilities. More then 90% energy is concentrated within 10% of the normalized
frequency scale for most of the test signals for all transforms concerned. The energy compaction property of
different transforms gets more unified with increased window size.

9�� $&.12:/('*(0(17

Ye Wang wishes to thank Prof. Peter J. Sherman (Iowa State University, USA), Dr. Jilei Tian (Nokia Research
Center, Finland), Dr. Bernd Edler (Hannover University, Germany) and Dr. Juergen Herre (FhG-IIS, Germany) for



WANG ET AL. ENERGY COMPACTION PROPERTY OF TRANSFORMS

AES 109th CONVENTION, LOS ANGELES, 2000 SEPTEMBER 22-25 6

helpful discussions during ICASSP2000 in Istanbul. The financial support from Nokia Foundation and the Academy
of Finland is greatly acknowledged. Leonid Yaroslavsky wishes to thank Tampere International Center for Signal
Processing for supporting this research.

5()(5(1&(6

[1] Malvar, H., “Signal Processing with Lapped Transform”, Artech House, Boston, 1991

[2] Yaroslavsky, L., Eden, M., “Fundamentals of Digital Optics”, Birkhauser, Boston, 1996.

[3] Yaroslavsky, L., Wang, Y., “DFT, DCT, MDCT, DST and Signal Fourier Spectral Analysis”, X European
Signal Processing Conference (EUSIPCO 2000), Tampere, Finland, September 4-8, 2000.

[4] Princen, J. P., Bradley, A. B., “Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing
Cancellation”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-34, No. 5,
October 1986.

[5] Wang, Y., Yaroslavsky, L., Vilermo, M., Väänänen, M. “Some Peculiar Properties of the MDCT”,
WCC2000 – 16th IFIP World Computer Congress/ICSP 2000 – 5th International Conference on Signal
Processing, August 21 – 25, 2000, Beijing, China.

[6] Wiley John & Sons, “Programs for Digital Signal Processing”, IEEE Press, New York, 1979.



WANG ET AL. ENERGY COMPACTION PROPERTY OF TRANSFORMS

AES 109th CONVENTION, LOS ANGELES, 2000 SEPTEMBER 22-25 7

Fig. 1. Signal and its corresponding representations of DFT, DCT, MDCT and DST
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Spectra Comparison of a Moving Sinusoid within One Discretisation Interval, DFT (black), DCT (white)
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Fig. 2. DFT (black) and DCT (white) power spectra comparison using a sine signal whose frequency (indicated as
the dashed lines) changes within one DFT discretisation interval I∆ . DFT spectrum is interpolated by factor 2 to

have the same spectral discretization interval as DCT. The negative values of DFT power spectra are caused by
interpolations.
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Fig. 3. DFT and DCT power spectra comparison using a sine signal whose frequency (indicated as the dashed lines)
changes within one DFT discretisation interval I∆ . Both DFT and DCT spectra are further interpolated by factor 5

from Fig.2.
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Fig. 5. DCT power spectra of a cosine signal whose frequency changes within I∆  in low frequency range. Note that

I∆  is twice as long as DCT discretization interval. The dashed lines correspond to the DCT spectral sampling

points.

0.494 0.496 0.498 0.5 0.502 0.504 0.506

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

DCT Power Spectra of a Moving Sinusoid within One Discretisation Interval

Frequency Normalised to Nyquist

Nor
ma

lise
d P

owe
r

Fig. 6. DCT power spectra of a cosine signal whose frequency (around half of the Nyquist frequency) changes
within I∆ .
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Fig. 7. DCT power spectra of a cosine signal whose frequency (slightly below the Nyquist frequency) changes
within I∆ . This figure clearly shows a rather poor frequency resolution due to the phase shift of the DCT basis

function.
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Fig. 9. MDCT power spectra of a cosine signal whose frequency (in the low frequency range) changes within I∆ .
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Fig. 10. MDCT power spectra of a cosine signal whose frequency (around half of the Nyquist frequency) changes
within I∆ .
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Fig. 11. MDCT power spectra of a cosine signal whose frequency (slightly below the Nyquist frequency) changes
within I∆ .
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Fig. 12. Comparison of spectral resolutions (spectral peak width) of DFT, DCT, MDCT and DST using sine signals
of 512 samples (rectangular window) as a function of signal frequency. The normalized power spectral threshold is
0.5, which corresponds to 50% energy within the spectral peak width.
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Fig. 13. Comparison of spectral resolutions of DFT, DCT, MDCT and DST using sine signals of 512 samples (sine
window) as a function of signal frequency.
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Fig. 14. Comparison of spectral resolutions (spectral peak width) of DFT, DCT, MDCT and DST using cosine
signals of 512 samples (rectangular window) as a function of signal frequency.
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Fig. 15. Comparison of spectral resolutions (spectral peak width) of DFT, DCT, MDCT and DST using cosine
signals with random phase shifts (rectangular window length = 512 samples) as a function of signal frequency.
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Fig. 16. Comparison of spectral resolutions (spectral peak width) of DFT, DCT, MDCT and DST using cosine
signals with random phase shifts (sine window length = 512 samples) as a function of signal frequency.
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Fig. 17. Comparison of energy compaction property of DFT (star), 
2

1
,

2

1+16')7  (circle), DCT (diamond), MDCT

(triangle) and DST (square) using 8 pieces of pop music with a rectangular window size = 1024 samples. In this
scale, it is impossible to distinguish the difference between different transforms.
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Fig. 18. Comparison of energy compaction property of DFT (star), 
2

1
,

2

1+16')7  (circle), DCT (diamond), MDCT

(triangle) and DST (square) using 8 pieces of pop music with a rectangular window size = 256 samples. This is a
zoomed version for better illustration.
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Fig. 19. Comparison of energy compaction property of DFT (star), 
2

1
,

2

1+16')7  (circle), DCT (diamond), MDCT

(triangle) and DST (square) using 8 pieces of pop music with a sine window size = 256 samples. The sine window
clearly reduces the difference between different transforms.
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Fig. 20. Comparison of energy compaction property of DFT (star), 
2

1
,

2

1+16')7  (circle), DCT (diamond), MDCT

(triangle) and DST (square) using 8 pieces of classic music with a rectangular window size = 1024 samples
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Fig. 21. Comparison of energy compaction property of DFT (star), 
2

1
,

2

1+16')7  (circle), DCT (diamond), MDCT

(triangle) and DST (square) using 8 pieces of classic music with a sine window size = 1024 samples
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Fig. 22. Comparison of energy compaction property using 8 pieces of pop music with a rectangular window size of
512 samples for DCT (solid lines) and a rectangular window size of 1024 samples for MDCT (dashed lines).



WANG ET AL. ENERGY COMPACTION PROPERTY OF TRANSFORMS

AES 109th CONVENTION, LOS ANGELES, 2000 SEPTEMBER 22-25 21

0.04 0.05 0.06 0.07 0.08 0.09
0.6

0.65

0.7

0.75

0.8

0.85

0.9

(a)

0.05 0.1 0.15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

(b)

0.05 0.1 0.15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

(c)

0.04 0.06 0.08 0.1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

(d)

0.02 0.04 0.06 0.08 0.1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

(e)

0.05 0.1 0.15 0.2
0.6

0.65

0.7

0.75

0.8

0.85

0.9

(f)

0.1 0.2 0.3
0.6

0.65

0.7

0.75

0.8

0.85

0.9

(g)

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.6

0.65

0.7

0.75

0.8

0.85

0.9

(h)

Normalised Frequency to Nyquist Frequency

No
rm

al
ise

d 
Cu

m
ul

at
ive

 E
ne

rg
y

Pop Music, Sinusoidal Window, Size: 512(DCT) 1024(MDCT)

Fig. 23. Comparison of energy compaction property using 8 pieces of pop music with a sine window size of 512
samples for DCT (solid lines) and a sine window size of 1024 samples for MDCT (dashed lines).
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Fig. 24. Comparison of energy compaction property using 8 pieces of pop music with a rectangular window size of
512 samples for DCT (solid lines) and a sine window size of 1024 samples for MDCT (dashed lines).
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Fig. 25. Comparison of energy compaction property using 8 pieces of classic music with a rectangular window size
of 512 samples for DCT (solid lines) and a sine window size of 1024 samples for MDCT (dashed lines).
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$%675$&7
Most state-of-the-art audio encoders have two fundamental coding
tools: a MDCT and DFT based psychoacoustic model. The
MDCT coefficients are quantized according to the masking
threshold calculated by the psychoacoustic model. However, this
kind of encoder structure can fail for some test signals. Research
has been undertaken to find the reasons behind this failure, during
which it has been found that the failure may be caused by the
peculiar properties of MDCT and the mismatch between MDCT
and a DFT based psychoacoustic model. We have established a
direct and compact formulation of the MDCT with the help of a
6KLIWHG Discrete Fourier Transform (SDFT). This formulation has
a clear physical interpretation. It enables us to i) clarify the
symmetric properties of MDCT, ii) to illustrate the Time Domain
Alias Cancellation (TDAC) concept in a very intuitive and
illustrative way, and iii) to show some peculiar properties of
MDCT, which may affect the coding performance of a MDCT
based audio codec. Based on these new interconnections we
propose a new encoder structure as a first step towards solving the
mismatch. A small, formal listening test was initiated to verify the
relative performance of our optimized codec. The mismatch
between the two fundamental coding tools is relevant for
multimedia codec design, watermark embedding, etc. The
improvement of the computational efficiency discussed in this
paper is essential for hand-held devices such as mobile phones.

.H\ZRUGV
Modified Discrete Cosine Transform (MDCT), Time Domain
Alias Cancellation (TDAC), Shifted Discrete Fourier Transform
(SDFT), Discrete Fourier Transform (DFT), mismatch and audio
coding.

��� ,1752'8&7,21
Audio signal representation and the human auditory system
perceptual model are two fundamental tools of audio coding.
Signal representation in the Modified Discrete Cosine Transform
(MDCT) domain has emerged as a dominant tool in high quality
audio coding because of its special properties: in addition to the
energy compaction capability similar to DCT, MDCT combines
critical sampling, reduction of block effect and flexible window
switching.  However, auditory system perceptual models are often
based on the Fourier transform domain implemented by means of
DFT [1]. Using the masking curve of a DFT based psychoacoustic
model to quantise MDCT coefficients is problematic in some
special cases. This may be one reason behind the failure of MDCT
based audio codecs with certain test signals. In order to gain
improved understanding of the mismatch between DFT and
MDCT, we have recently studied the interconnections between
DFT and MDCT via SDFT [2][3], and discovered some peculiar
properties of MDCT [4]. Illustrative examples presented in this
paper will help the readers to understand the Time Domain Alias
Cancellation (TDAC) concept of the MDCT. Our new
formulation of MDCT via SDFT also clarifies the symmetric
property as well as some other peculiar properties of the MDCT.
The mismatch between the two fundamental coding tools exists in
most perceptual encoders (including image and video coding),
and has not been adequately addressed in literature. A good
understanding of the interaction between these two fundamental
tools in audio coding may lead us to further advances in coding
performance. It may help us to design an improved watermarking
algorithm in combination with compression.

The complex version of the MDCT has been investigated in
[5][6][7] in terms of filterbank theory. Our research has
approached the problem from a different perspective: Fourier
spectrum analysis. We believe that the analysis presented in this
paper is an elegant and hopefully clearer clarification of the often-
confusing concept of MDCT and TDAC.

In this paper we present a bridge between the MDCT and DFT via
SDFT((N+1)/2,1/2) in chapter 2. We then present some peculiar
properties of MDCT and the TDAC concept in a very intuitive
and illustrative way in chapter 3. A new SDFT((N+1)/2, 1/2)
based audio encoder structure is proposed as a further step
towards solving the mismatch and to improve computational



2

efficiency in chapter 4. Experimental results are discussed in
chapter 5. Concluding remarks are in chapter 6.
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The direct and inverse MDCT are defined as [8][9]:
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where 
NNN

DKD =~  is the windowed input signal, 
N

D  is the input

signal of 12  samples. 
N

K  is a window function. We assume an

identical analysis-synthesis time window. The constraints of
perfect reconstruction are [5][7]:

N1N
KK −−= 12 (3)

122 =+ +1NN
KK (4)

A sine window is widely used in audio coding because it offers
good stop-band attenuation, provides good attenuation of the
block edge effect and allows perfect reconstruction. Other
optimized windows can be applied as well [5]. The sine window
is defined as:
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The relationship between MDCT and DFT can be established via
Shifted Discrete Fourier Transforms (SDFT). The direct and
inverse SDFTs are defined as [10]:
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where X  and Y  represent arbitrary time and frequency domain
shifts respectively. SDFT is a generalization of DFT that allows a
possible arbitrary shift in position of the samples in the time and
frequency domain with respect to the signal and its spectrum
coordinate system.

We have proven that the MDCT is equivalent to the SDFT of a
modified input signal [2][3].
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The right side of (9) is 2/1,2/)1( +16')7 ( )2/1,2/)1( += 1

U
α  of the

signal 
N

D̂  formed from the initial windowed signal 
N

D~  according

to (6). Physical interpretation of (6) is straightforward. MDCT
coefficients can be obtained by adding the 2/1,2/)1( +1

6')7
coefficients of the initial windowed signal and the alias. In other
words, we can rewrite (9) as:
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U
α  in (1) is expressed as )(VLJQDO0'&7  in (10) for the sake of

explicitness. With reference to (6)(9) and Figure 1(f), the alias is
added to the original signal in such a way that the first half of the
window (the signal portion between points A and B) is mirrored
in the time domain and then inverted, before being subsequently
added to the original signal. The second half of the window
(signal portion between points B and C) is also mirrored in the
time domain and added to the original signal.

From (1)(2)(6)(9) and Figure 1(f) we can see that, in comparison
with conventional orthogonal transforms, MDCT has a special
property: the input signal cannot be perfectly reconstructed from
the MDCT coefficients, even without quantization. MDCT itself
is a lossy process (therefore not an orthogonal transform). That is,
the imaginary coefficients of the 6')7�1��������� are lost in the
MDCT transform. However, the lost information can be recovered
using the redundancy of the 50% overlap of neighboring frames to
gain perfect reconstruction. Applying a MDCT and then an
IMDCT converts the input signal into one that contains a certain
twofold symmetric alias (see (6) and Figure 1(f)). The introduced
alias will be cancelled in the overlap-add process (see Figure 5).

In comparison with the Odd-DFT concept discussed in [5], the
formulation in (9) is clearly different. The Odd-DFT is

2/1,06')7 of the initial windowed signal D~ .

The 2/1,2/)1( +1
6')7  can be expressed by means of the

conventional DFT as:
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To the right side of (11), the first exponential function
corresponds to a modulation of D̂ that results in a signal

spectrum shift in the frequency domain by ½ of the frequency-
sampling interval. The second exponential function corresponds
to the conventional DFT. The third exponential function
modulates the signal spectrum that is equivalent to a signal shift
by (N+1)/2 of the sampling interval in the time domain. The
fourth term is a constant phase shift. Therefore, 2/1,2/)1( +1

6')7
is the conventional DFT of this signal shifted in the time domain
by (N+1)/2 of the sampling interval and evaluated with the shift of
½ the frequency-sampling interval.
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2/1,2/)1( +1
6')7 coefficients exhibit symmetric properties:
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where ∗  is the complex conjugate of the coefficients.

Similarly, MDCT coefficients exhibit symmetric properties:
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whereby, the MDCT coefficients are odd symmetric, only if N is
even, which is often true in audio coding applications. However,
they are even symmetric, if N is odd. This new conclusion is more
general in comparison with [11].

We have proved that:
( ) ( )

U1U
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In order to illustrate the symmetric properties of MDCT and the
interconnection between MDCT and 2/1,2/)1( +1

6')7  in an

intuitive way, we have employed two artificial time domain
signals (N=18, 17 respectively) as shown in Figure 1(a) and
Figure 2(a). The 2/1,2/)1( +1

6')7  coefficients of the original

signals are shown in Figure 1(b) and Figure 2(b). The time
domain alias is illustrated in Figure 1(c) and Figure 2(c). Its

2/1,2/)1( +1
6')7  coefficients are presented in Figure 1(d), Figure

2(d). In both Figure 1(b, d) and Figure 2(b, d) the solid lines are
the real parts, the dashed lines are the imaginary parts. The
MDCT coefficients are shown in Figure 1(e) and Figure 2(e).
They are equivalent to the real parts of the 2/1,2/)1( +1

6')7
coefficients of the original signals in Figure 1(a) and Figure 2(a).
The dashed lines in Figure 1(e) and Figure 2(e) are odd/even
symmetric to the solid lines, and these dashed lines represent the
redundant coefficients, which are left out in the MDCT definition.
The alias embedded time signal is presented in Figure 1(f) and
Figure 2(f). It equals the IMDCT of the MDCT coefficients scaled
by factor two.
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)LJXUH� ��� ,OOXVWUDWLRQ� RI� WKH� LQWHUFRQQHFWLRQ� EHWZHHQ�0'&7
DQG� 2/1,2/)1( +1

6')7 ���D��$Q�DUWLILFLDO�WLPH�GRPDLQ�VLJQDO�RI���

VDPSOHV���E�� 2/1,2/)1( +1
6')7 �FRHIILFLHQWV�RI�WKH�VLJQDO�LQ��D����F�

7KH� WLPH�GRPDLQ� DOLDV�� �G�� 2/1,2/)1( +1
6')7 � FRHIILFLHQWV� RI� WKH

DOLDV��ZKHUH�WKH�VROLG� OLQHV�DUH� WKH�UHDO�SDUWV�� WKH�GRWWHG� OLQHV
DUH� WKH� LPDJLQDU\� SDUWV� LQ� ERWK� �E�� DQG� �G��� �H�� 0'&7
FRHIILFLHQWV�RI� WKH� WLPH� VLJQDO� LQ� �D���ZKHUH� WKH�GDVKHG� OLQH� LV
HYHQ�V\PPHWULF�WR�WKH�VROLG�OLQH��DQG�WKHUHIRUH�LW�LV�UHGXQGDQW�
�I��WKH�DOLDV�HPEHGGHG�WLPH�VLJQDO��ZKLFK�HTXDOV�WKH�,0'&7�RI
WKH�0'&7�FRHIILFLHQWV�VFDOHG�E\�IDFWRU�WZR�

���� 1RQ�2UWKRJRQDO�3URSHUWLHV�RI�0'&7
The MDCT differs somewhat from orthogonal transforms used for
signal coding. The main peculiar properties of MDCT are:
• MDCT is not an orthogonal transform. Perfect signal

reconstruction can be achieved in the overlap-add (OA)
process. For the overlap-add window of 21 samples, the first
1 and last 1 samples of the signal will remain modified
according to (6). One can easily see this from the fact that
performing MDCT and IMDCT of an arbitrary signal D~

reconstructs the signal D̂ defined in (6).

• If a signal exhibits local symmetry such that



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, (15)

its MDCT degenerates to zero: 0=
U

α  for 1,...,0 −= 1U .

This property follows from (6). This is a good example that
MDCT does not fulfill Parseval’s theorem, i.e. the time
domain energy is not equal to the frequency domain energy
(see Figure 3).

• If a signal exhibits local symmetry such that
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MDCT and IMDCT will perfectly reconstruct the original
time domain samples. This property also follows from (6).

• Nevertheless, on average, MDCT, similar to such orthogonal
transforms as DFT, DCT, DST, etc, possesses energy
compaction capability and acceptable Fourier spectrum
analysis.

In order to illustrate the special characteristics of the MDCT and
their impact on audio coding in an intuitive way, we have
designed a phase/frequency-modulated time signal in Figure 3(a),
which has two different frequency elements with the duration of
half of the frame size (frame size = 512 samples). Dashed lines in
Figure 3 (a) illustrate the 50% window overlap. However, MDCT
spectra of different time slots in Figures 3(b)(d)(f) are calculated
with rectangular windows for simplicity. The IMDCT time
domain samples of frame 1, 2, 3 are shown in Figures 3(c)(e)(g)
respectively. The reconstructed time domain samples after
overlap-add (OA) procedure is shown in Figure 3(h). With frame
2 the condition in (15) holds, and the MDCT coefficients are all
zero! Nevertheless, the time domain samples in frame 2 can still
be perfectly reconstructed after the overlap-add procedure. With
frame 3 the condition (16) holds, and the original time samples
are perfectly reconstructed even without overlap-add procedure.
These are, of course, very special occurrences, which are rare in

real life audio signals. If the signal is close to the condition in (15)
however, MDCT spectrum will be very unstable in comparison
with DFT spectrum. In this case, using the output of the DFT
based psychoacoustic model to quantise MDCT coefficients will
not be logical. This is an important limitation of MDCT.
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)LJXUH����,OOXVWUDWLRQ�RI�VLJQDO�DQDO\VLV�V\QWKHVLV�ZLWK�0'&7�
RYHUODS�DGG� SURFHGXUH� DQG� SHUIHFW� UHFRQVWUXFWLRQ� RI� WLPH
GRPDLQ�VDPSOHV���D��D�SKDVH�IUHTXHQF\�PRGXODWHG�WLPH�VLJQDO�
�E��G��I�� 0'&7� VSHFWUD� LQ� GLIIHUHQW� WLPH� VORWV�� LQGLFDWHG� DV
IUDPHV� ��� ��� �� LQ� �D��� �F��H��J�� UHFRQVWUXFWHG� WLPH� GRPDLQ
VDPSOHV� �ZLWK�,0'&7��RI� IUDPHV���� ��� �� UHVSHFWLYHO\�� �K�� WKH
UHFRQVWUXFWHG�WLPH�VDPSOHV�DIWHU�WKH�RYHUODS�DGG�SURFHGXUH�

Figure 4 shows the fluctuation of MDCT spectrum in comparison
with DFT and 2/1,2/)1( +1

6')7  spectra. With a frequency-

modulated time signal in Figure 4(a), the DFT power spectrum is
very stable despite a moving window. Conversely, the MDCT
spectrum is very unstable. The 2/1,2/)1( +1

6')7  spectrum is in

between. This is at least one evidence that the 2/1,2/)1( +1
6')7

can be used as a bridge to connect MDCT and DFT in audio
coding applications.
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)LJXUH� �� &RPSDULVRQ� RI� ')7�� 2/1,2/)1( +1
6')7 � DQG� 0'&7

VSHFWUD�LQ�GLIIHUHQW�WLPH�VORWV���D��D�IUHTXHQF\�PRGXODWHG�WLPH
VLJQDO��VROLG�OLQH��ZLWK�D�PRYLQJ�ZLQGRZ���E��F��G��')7��GRWWHG
OLQHV��� 2/1,2/)1( +1

6')7 � �GDVKHG� OLQHV�� DQG�0'&7� �VROLG� OLQHV�

VSHFWUD�RI�)UDPHV���������

���� ,QWXLWLYH�LOOXVWUDWLRQ�RI�WKH�&RQFHSW�RI
7LPH�'RPDLQ�$OLDV�&DQFHOODWLRQ��7'$&�
Based on (1) (2) (6) (9), we have used a similar artificial time
domain signal as in Figure 1(a) to illustrate the Time Domain
Aliasing Cancellation (TDAC) concept in an intuitive way. The
artificial signal of 54 samples is shown in Figure 5(a). The MDCT
coefficients of the signal in Window 1 are shown in Figure 5(b).
For simplicity we have used rectangular windows. Obviously the
coefficients are subsampled by 50% in MDCT (from 2N time
domain samples to N independent frequency domain coefficients),
and the alias is introduced as well. The IMDCT coefficients of the
signal in Figure 5(b) are illustrated in Figure 5(c). This step
introduces redundancy (from N frequency domain coefficients to
2N time domain samples). The MDCT coefficients of the signal in
Window 2 are presented in Figure 5(d). The corresponding
IMDCT time domain signal is shown in Figure 5(e). If the
overlap-add procedure is performed with Figure 5(c) and (e),
perfect reconstruction (PR) of the original signal in the
overlapped part (between points B and C) can be achieved.

It is clear that one cannot achieve perfect reconstruction (PR) for
the first half of the first window and the second half of the last
window as indicated in Figure 5.
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)LJXUH� ��� ,OOXVWUDWLRQ� RI� WKH� 0'&7�� RYHUODS�DGG� �2$�
SURFHGXUH� DQG� WKH� FRQFHSW� RI� WKH� 7LPH� 'RPDLQ� DOLDV
FDQFHOODWLRQ��7'$&����D��$Q�DUWLILFLDO�WLPH�VLJQDO��GDVKHG�OLQHV
LQGLFDWLQJ� WKH� ���� RYHUODSSHG� ZLQGRZV�� �E�� 0'&7
FRHIILFLHQWV�RI�WKH�VLJQDO�LQ�:LQGRZ�����F��,0'&7�FRHIILFLHQWV
RI�WKH�VLJQDO�LQ��E���WKH�DOLDV�LV�VKRZQ�E\�PDUNHUV�RQ�WKH�OLQH�
�G�� 7KH� 0'&7� FRHIILFLHQWV� RI� WKH� VLJQDO� LQ� :LQGRZ� ��� �H�
,0'&7� FRHIILFLHQWV� RI� WKH� VLJQDO� LQ� �G��� WKH� DOLDV� VKRZQ� E\
PDUNHUV�RQ�WKH�OLQH���I��7KH�UHFRQVWUXFWHG�WLPH�GRPDLQ�VLJQDO
DIWHU� WKH� RYHUODS�DGG� �2$�� SURFHGXUH�� 7KH� RULJLQDO� VLJQDO� LQ
WKH� RYHUODSSHG� SDUW� �EHWZHHQ� SRLQWV� %� DQG� &�� LV� SHUIHFWO\
UHFRQVWUXFWHG�

In order to illustrate the TDAC concept during the window
switching specified in the MPEG-2 AAC ISO/IEC standard [1],
we define two overlapping windows with window functions 

N
K

and 
N

J . The conditions for perfect reconstruction are [12]:

N1NN1N1
JJKK −−−−+ ⋅=⋅ 112 (17)

122 =++ NN1
JK (18)

Using (6) one can easily see one of the important properties of
MDCT: the time domain alias in each half of the window is
independent, which allows adaptive window switching [12]. The
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TDAC concept during window switching in MPEG-2 AAC is
illustrated in Figure 6.

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.5

1 W1 W4W3W2

(a)

Window Switching and Time Domain Alias Cancellation

0 500 1000 1500 2000 2500 3000 3500 4000

−1

−0.5

0

0.5

1

(b)

0 500 1000 1500 2000 2500 3000 3500 4000

−1

−0.5

0

0.5

1

(c)

0 500 1000 1500 2000 2500 3000 3500 4000

−1

−0.5

0

0.5

1

(d)

0 500 1000 1500 2000 2500 3000 3500 4000

−1

−0.5

0

0.5

1

(e)

)LJXUH� ��� 7'$&� LQ� WKH� FDVH� RI� ZLQGRZ� VZLWFKLQJ�� �D�� WKUHH
W\SHV�RI�ZLQGRZ� VKDSH� LQ�03(*���$$&� LQGLFDWHG�ZLWK�:��
:���:����E��ZLQGRZ�IXQFWLRQ�LQ�WKH�ORQJ�ZLQGRZ��VROLG�OLQH��
WLPH� GRPDLQ� DOLDV� �WKLQ� GDVKHG� OLQH��� WLPH� GRPDLQ� DOLDV� DIWHU
ZHLJKWLQJ� ZLWK� WKH� ZLQGRZ� IXQFWLRQ� �WKLFN� GDVKHG� OLQH��� �F�
ZLQGRZ� IXQFWLRQ� LQ� WKH� WUDQVLWLRQ� ZLQGRZ� �VROLG� OLQH��� WLPH
GRPDLQ� DOLDV� �WKLQ� GDVKHG� OLQH��� WLPH� GRPDLQ� DOLDV� DIWHU
ZHLJKWLQJ�ZLWK�WKH�ZLQGRZ�IXQFWLRQ��WKLFN�GDVKHG�OLQH����G��H�
ZLQGRZ�IXQFWLRQ�LQ�WKH�VKRUW�ZLQGRZ��VROLG�OLQH���WLPH�GRPDLQ
DOLDV��WKLQ�GDVKHG�OLQH���WLPH�GRPDLQ�DOLDV�DIWHU�ZHLJKWLQJ�ZLWK
WKH�ZLQGRZ�IXQFWLRQ��WKLFN�GDVKHG�OLQH��

��� $�6')7�%$6('�$8',2�(1&2'(5
6758&785(
Figure 1 shows the interconnection between MDCT and
6')7�1���������� when N is even, which is often the case in audio
coding applications. For practical reasons, we have considered
here only real-valued signals. In this case, one can prove that
MDCT coefficients are equivalent to the real part of the

2/1,2/)1( +1
6')7  of the input signal. That is

{ })()( 2/1,2/)1( VLJQDO6')7UHDOVLJQDO0'&7
1 += (19)

This result can be used for the optimization of our audio encoder
published previously [2]. The new encoder structure is illustrated
in Figure 7. 2/1,2/)1( +16')7  can be implemented via existing FFT

routines with some minor modifications as described in (11). The
structure in Figure 7 has obvious advantages in the sense of
system optimization. We can achieve the same coding
performance without a parallel FFT routine in the psychoacoustic
model [2]. In comparison with [2], we have used 2/1,2/)1( +16')7
instead of MDCT coefficients as the input of the psychoacoustic
model, because 2/1,2/)1( +16')7  provides the necessary phase

information for the psychoacoustic model, which has significantly
improved the coding performance. Another advantage is that FFT
routines are widely available for implementation. Conceptually,
our approach is similar to that in [5][6]. However, we have
tackled the problem from a different perspective – solving the
mismatch. This is only a first step and a partial solution.

SDFT
(N+1)/2,1/2

Quantizer

Psychoacoustic
Model

PCM
Samples Codes

Real
Part

Imaginary
Part

MDCT
Coefficients

)LJXUH����$�VLPSOLILHG�VWUXFWXUH�RI�WKH�SURSRVHG�DXGLR�HQFRGHU

��� (;3(5,0(17$/�5(68/76
This section describes the codec we have used for a listening test,
including details of the samples, test method and analysis of the
results.

���� &RGHF�GHVFULSWLRQ
A codec similar to MPEG-2 AAC using a psychoacoustic model
[13] is shown in Figure 8 and Figure 9. This codec was used to
encode the test samples for inclusion in a listening test. The
subjective comparison was done by comparing samples encoded
with the original codec in Figure 8 and Figure 9 to the modified
structure described in Figure 7. Essentially the only modification
is the DFT or SDFT((N+1)/2,1/2) as the input to the
psychoacoustic model. The prediction blocks were disabled
during the test.
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)LJXUH����%ORFN�GLDJUDP�RI�WKH�HQFRGHU
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)LJXUH����%ORFN�GLDJUDP�RI�WKH�GHFRGHU

���� /LVWHQLQJ�WHVW�GHVFULSWLRQ
A small formal listening test was initiated to investigate whether
the SDFT optimized encoder presents any subjectively
appreciable artefacts not inherent in the DFT-based encoder. An
A/B/X test [14] designed to find whether listeners could
distinguish between the two encoding methods was created and
implemented using the GuineaPig [15] subjective testing
software, developed jointly between NRC and Helsinki University
of Technology. The A/B/X test is a paired comparison paradigm
that utilizes a forced-choice grading method to tests whether a
listener can correctly differentiate between two sources. Two

audio samples (a reference and comparator) are assigned to the
three sample items, A, B, and X, by test rules such that;

• X is randomly assigned with the reference or comparator

• A is also randomly assigned with the reference or comparator

• B is assigned the alternative sample to A

A listener is required to identify and grade which sample item, A
or B, is identical to X; or described another way, which of the two
differential intervals (A-X, B-X) is imperceptible. This results in a
binomial score associated with a correct or incorrect grade.

The experimental design for this test presented each sample pair
(reference and comparator) eight times, split equally between two
test blocks for each listener. The GuineaPig software GUI used for
presentation of sample items and grading is shown in Figure 10.
Each sample is played in parallel synchronously with only the
sample associated with the chosen sample item being audible.
This allows subjects to listen to each sample item monadicly or to
crossfade between each sample simply by clicking alternate
sample items during playback. For this experiment a linear
crossfade lasting 20ms (equivalent to 960 samples for fS=48kHz)
was used. Grading was achieved by checking one of the boxes, A
or B, after which clicking ’Done’ progresses the subject onto the
next test item.

)LJXUH�����6RIWZDUH�*8,�IRU�UHSOD\�DQG�JUDGLQJ�RI�HDFK�WHVW
LWHP

All test data is saved automatically disk during the test.

For the test, a panel of seven listeners were chosen from the staff
of the Audio Coding group at NRC. Each had experience in
listening to coded audio material and its associated artifacts and
experience in subjective tests involving small impairments in
coded audio material. Results from previous tests had classified
the individuals as "expert" listeners in accordance with ITU-R
Rec. BS 1116 [16]. Verifying listener expertise in tests involving
forced-choice paradigms is difficult. Where no subjectively
detectable differences are present, which is a likely feature of
small impairment tests, a measure of a subjects grading reliability,
purely from the material under examination, will not be
achievable. A test to check intra-listener reliability based on the
grading error of a low-anchor sample having intentionally
appreciable coding artifacts was thus included as a sub-set of the
experiment. This was presented eight times randomly in the
second test block.
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The audio material used for the test was comprised of six stereo
16bit, 48kHz standard MPEG-4 audio test samples. Each was
summed to mono before encoding. The six samples were
classified as:

1. es01 - Solo female singing (Susanne Vega)

2. es02 - german male speech

3. sc03 - contemporary pop

4. si01 - harpsichord

5. si02 - castanets

6. si03 - pitchpipe

The codec applied to the test material was similar to the MPEG-2
AAC, with only the basic coding tools. The maximum average
bitrate for the coded samples was 64 kbps. Due to the difficulty in
estimating the errors inherent in the SDFT version, it was decided
to use sample ’es01’ encoded at 48kbps utilizing the DFT version
of the psychoacoustic model as the lower-anchor.

���� 5HVXOWV�DQDO\VLV
The statistical measures involved in analyzing forced-choice
paired comparison listening test data are extensively described
elsewhere [17-18]. The statistical hypothesis for the A/B/X test
states that

+0: S  =  0.5

+1: S  >  0.5

where S is the observed proportion of correct gradings. The null
hypothesis +0 states that the listener is unable to distinguish
between the two samples a significant proportion of the time.

The low-anchor test items were analyzed separately and found to
have S�= 1.0 for all listeners, indicating reliability at detection of
the intended artefact. The results of the test material are shown in
Table 1.

7DEOH���D�E���7HVW�UHVXOWV

6XEMHFW � � � � � � �

S .71 .67 .54 .50 .58 .69 .63

6LJ��OHYHO .002 .008 .097 .115 .059 .004 .026

�D�

6DPSOH HV�� HV�� VF�� VL�� VL�� VL��

S .71 .64 .45 .54 .71 .64

6LJ��OHYHO .000 .011 .077 .092 .000 .011

�E�

The results show that for  = .050 more than half the subjects
show a probable discriminatory ability, with the pooled S for all
grades being .62 with a  .000 significance level. The results for
each subject have pooled samples and for each sample the subject
grades are pooled. The number of trials and subjects are not so
large as to have confidence in any conclusions drawn from these
results. However, within the confines of this small test there
appears to exists appreciable differences between the encoding
methods that are dependent on the source material. Further tests
should be initiated to clarify the existence and nature of any
artefacts caused by the SDFT method.

��� &21&/86,21�$1'�)8785(�:25.
This paper has addressed the mismatch issue between the two
fundamental tools used in advanced audio coding, and has
examined the interconnection between MDCT, SDFT and DFT. A
direct and compact formulation of the MDCT has been
established with the help of a SDFT enabling us to clarify the
symmetric properties of MDCT, as well as illustrate the Time
Domain Alias Cancellation (TDAC) concept in a very intuitive
and illustrative way. We have also shown some of the peculiar
properties of MDCT affecting the coding performance of a MDCT
based audio codec. Based on this analysis we have suggested a
modified structure of audio encoder implemented via existing FFT
routines. The suggested encoder has demonstrated improved
coding performance. The optimization presented here is especially
important for applications with limited computational and storage
capacities, such as hand-held devices.

Our subjective examination of the SDFT implementation has
outlined the need for further study of the potential artifacts
inherent in this new process, and the tradeoff between QoS and
greater efficiency.

MDCT is an efficient and elegant concept in terms of signal
analysis and synthesis, especially with its Time Domain Alias
Cancellation (TDAC) characteristics. However, its mismatch with
the DFT domain based psychoacoustic model has limited its
coding performance. We believe that the encoder structure
proposed in this paper represents one step further to solve this
mismatch by introducing 2/1,2/)1( +16')7  as a bridge between

DFT and MDCT.

In recent years, more attention was paid to wavelet filterbank
based audio coding algorithms [19]. However, their rather
disappointing performance may be also caused by the mismatch
between the two fundamental tools of audio coding - audio signal
representation and the human auditory system perceptual model.
Therefore, it is hoped that further study on the interconnection
between discrete wavelet and Fourier transform may lead to a
breakthrough in wavelet domain based audio coding algorithms.

��� $&.12:/('*0(176
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ABSTRACT
This paper presents a novel lossless multichannel audio coding algorithm to remove inter-channel redundancy. We
employ an Integer-to-Integer Discrete Cosine Transform (INT-DCT) to perform inter-channel decorrelation after
quantization of Modified Discrete Cosine Transform (MDCT) coefficients of individual channels. When compared
with a Karhunen-Loeve Transform (KLT) based approach our new method has three major advantages: 1) avoids
quantization noise spreading to other channels; 2) computational simplicity; 3) uses less overhead information (a
quantized covariance matrix or eigenvector is avoided in our algorithm), while having a similar decorrelation
capability.
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INTRODUCTION
With rapid deployment of DVD, high-quality multichannel audio
compression has finally found its way from research labs to
widespread applications. In spite of a steady increase in storage
capacity and transmission bandwidth, multichannel audio could
still poise a problem to traditional and new media delivery systems.

Among several existing multichannel audio compression
algorithms, MPEG Advanced Audio Coding (AAC) is currently
the most powerful one in the MPEG family, which supports up to
48 audio channels and provides perceptually lossless audio at 64
kbits/s per channel [1]. The most widely adopted multichannel
configuration is the 5.1 channel configuration, which refers to left
(L), center (C), right (R), left surround (LS), right surround (RS)
and an optional low-frequency-enhancement (LFE) channel.

Some effort has been made on reducing the inter-channel
redundancy inherent in multichannel audio. In the established
technologies such as AAC, only “Intensity Stereo
Coding/Coupling” and “MS Stereo Coding” have been employed.
Coupling is adopted based on psychoacoustic evidence that at high
frequencies (above approximately 2 kHz) the human auditory
system localizes sound based primarily on the “envelopes” of
critical-band-filtered versions of the signals reaching the ears,
rather than on the signals themselves. MS stereo coding encodes
the sum and difference of the signal in two symmetric channels
instead of the original signals in left and right channels [2]. Both
MS stereo and intensity stereo coding operate on Channel-Pair-
Elements (CPEs). In the case of the most widely adopted 5.1
surround sound constellation, the diagram of the transform part is
as in Figure 1 (LFE channel has not been considered in this paper).

C

L

R

RS

LS

Figure 1. The pair structure of AAC surround sound coding

In order to further reduce inter-channel redundancy, an interesting
algorithm was proposed in [3], which utilizes a Karhunen-Loeve
Transform (KLT) for inter-channel decorrelation. A simplified
block diagram is illustrated in Figure 2. However, that algorithm
has a few unsolved challenges:

1) How to map the masking threshold requirements for each of the
original channels in the MDCT domain into the inter-channel
transformed (MDCTxKLT) domain?
2) How to quantize the inter-channel transformed MDCTxKLT
coefficients optimally so as to satisfy the masking threshold
requirements in the original channels in the MDCT domain?

This paper presents a new attempt to solve the problem. This
algorithm is especially efficient to the class II and III multichannel
audio material defined in [3], that is, when the audio material has
more than 2 correlated channels.

INTER-CHANNEL DECORRELATION USING INT-DCT

Generally, a N channel surround sound system, running with a bit
rate of M bps/ch does not necessarily have a total bit rate of MxN
bps, but rather an overall bit rate significantly less than MxN due
to inter-channel redundancy. The effect of adding more channels
will further increase the efficiency of the coding algorithm
described in this paper, in the case of multichannel correlated
material.

The only significant difference between our approach and the one
in [3] is that we put an INT-DCT unit between the quantizer and
Huffman coder instead of putting it directly after MDCT, so as to
yield a lossless approach. The block diagrams of the prior arts and
new method are illustrated in Figure 2 and 3 respectively.
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Figure 2. A simplified block diagram of prior arts. A KLT is
employed for inter-channel decorrelation.
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Figure 3. A simplified block diagram of the proposed method. A
INT-DCT is employed for inter-channel decorrelation.
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Figure 4. The new transform structure of surround sound. The
horizontal lines represent the quantized MDCT coefficients of each
individual channel.

DCT is a well-known decorrelation transform, which usually has
similar energy compaction property as that of KLT. The diagram
of the new method is illustrated in Figure 4. The horizontal lines
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represent the quantized MDCT coefficients of different channels
and the DCT is approximated by an Integer-to-Integer DCT (INT -
DCT) discussed in the next section.

INTEGER-TO-INTEGER DISCRETE COSINE
TRANSFORM (INT-DCT)

We use essentially the same approach as in [4]. Creating an
integer-to-integer transform starts by first factorizing the transform
matrix into matrices that have ones on the diagonal and nonzero
off-diagonal elements only in one row or column. If such a
factorization exists rounding the result after each intermediate step
results in an integer-to-integer transform that not only
approximates the original transform but that is also precisely
reversible.

The factorization is not unique. One straightforward method is to
use elementary matrices to reduce the transform matrix into unit
matrix (if possible) and then use the inverses of the elementary
matrices as the factorization. For orthogonal matrices, such as the
DCT matrix, one can also first factorize the transform matrix into
Givens matrices and then further factorize each of the Givens
matrices into three matrices that can be used as building blocks for
an integer-to-integer transform [4][5].

Lifting Scheme

A matrix that has ones on the diagonal and nonzero off-diagonal
elements only in one row or column can be used as a building
block when constructing an integer-to-integer transform. This is
called ’the lifting scheme’. Such a matrix has an inverse also when
the end result is rounded in order to map integers to integers.

Let us consider the case of a 3 x 3 matrix ( 5ED ∈, , =[
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Factorizing the DCT Kernel into Givens Rotations

A Givens rotation is a matrix of the form [6]:
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where )cos(θ=F , )sin(θ=V
A Givens matrix is clearly orthogonal and the inverse is
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Any m x m orthogonal matrix can be factorized into m(m-1)/2
Givens rotations and m sign parameters [5]. As an example:

Let $  be an orthogonal matrix.
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If 03,3 =D  then we simply choose 21 πθ =  i.e. ( ) 0cos 1 =θ ,

( ) 1sin 1 =θ . This matrix still has an inverse even when used to

create an integer-to-integer transform.
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Now, since both ( ) 1

1,3,2 −θ*  and ( ) 1
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orthogonal therefore &  has to be orthogonal and thus every row
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Since ( ) 1

3,2,1 −θ*  and C are orthogonal, ' has to be

orthogonal and similarly to (7)
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Taking '  as the sign matrix we have:
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Therefore A can be factorized as:
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For m x m matrices the operation is similar [5].

Factorizing a Givens Rotation

Givens rotations can in turn be factorized as follows [7]:
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when θ  is not an integer multiple of π2 . If it is then the Givens
rotation matrix equals the unity matrix and no factorization is

necessary. Let us denote these factors as ( )1,, θNL* , ( )2,, θNL*

and ( )3,, θNL* . A transform that behaves similarly to matrix $ ,

maps integers to integers and is reversible is then
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where [  is the integer 3 x 1 input vector.

Integer-to-Integer DCT (INT-DCT)

Now we have all the necessary building blocks to construct an
integer-to-integer DCT. DCT matrix is orthogonal, therefore we
can factorize it into Givens rotations. Givens rotations can in turn
be factorized into matrices that are the basic building block
matrices of the integer-to-integer DCT. The original integer input
is multiplied by each of these matrices and every intermediate
result is rounded to the nearest integer.

In our case the 5 x 5 DCT matrix is factorized into 10 Givens
rotations. Givens rotations are factorized into 3 matrices each,
resulting the total of 15 matrix multiplications. However the
internal structure of these matrices guarantees that only 15
multiplications and 15 rounding operations are needed in total.

THE EXPERIMENT

In order to evaluate the performance of the new algorithm, we have
used a mono MPEG-2 AAC encoder [8] to compare the bitrates
with and without INT-DCT inter-channel decorrelation. The block
diagram of the modified AAC encoder and decoder in our
experiment are illustrated in Figures 5 and 6, where both the
Intensity Coupling and MS Stereo Coding are disabled. The bitrate
of individual channel as well as total bitrate were compared with
and without inter-channel decorrelation. A 5-tap INT-DCT was
used on the quantized MDCT coefficients across the five channels
resulting in new coefficients to be Huffman coded and written to
bitstream.

On the decoder side the original quantized MDCT coefficients can
be perfectly reconstructed from the INT-DCT coefficients, due to
the invertibility of the INT-DCT. Scale factors and other original
AAC side information were unaffected by this process. The INT-
DCT was used on a scalefactor band basis. As a result, a flag bit
was needed for each scalefactor band based on the inter-channel
prediction gain. The flag bit indicated whether to use the INT-DCT
in a scalefactor band. This flag bit is the only extra side
information to be added to the bitstream. For the sake of simplicity
only long windows were used. The usage of the INT-DCT was
restricted for the first 40-scalefactor bands. The maximum bitrate
for the test was set for 64 kbps while the sampling rate of all the
five channel samples was 48 kHz. Since 40 extra bits were needed
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for each frame, the total amount of new side information was
40x48000/1024 = 1875 bps, which was ca. 0.5% of the total bitrate
of the 5 channels. Because the algorithm presented in this paper
was a lossless scheme, we were able to list the bitrate reduction in
table 1 using some 5-channel surround sound samples.

In order to show the energy compaction property of the INT-DCT
using an example, the original quantized MDCT coefficients and
inter-channel decorrelated coefficients are compared in Figure 7. It
is clear that the energy is concentrated into fewer channels. A
comparison of the original bitrate and the resulting bitrate after an
INT-DCT is illustrated in Figure 8. It can be seen the total bitrate is
reduced after the INT-DCT inter-channel decorrelation.
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Figure 5. Modified AAC encoder block diagram.
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Figure 6. Modified AAC decoder block diagram.
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and the inter-channel decorrelated coefficients
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Figure 8. Comparison of the original bitrate and the resulting
bitrate after an INT-DCT inter-channel decorrelation.

Sample index Total bitrate
reduction (%)

Sample description

1 7.0 Male speech
2 1.7 Guitar
3 2.1 Coffee table
4 4.0 Concert hall
5 3.3 Passing train
6 3.4 Bus stop
7 2.3 Cafeteria

Table 1. Bitrate reduction performance after an INT-DCT. 7 five-
channel surround sound samples were tested.

CONCLUSION

We have presented a novel lossless multichannel audio-coding
algorithm based on INT-DCT. The computational complexity of
the algorithm is negligible in comparison with the original AAC
codec.
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Error concealment is an important method to mitigate the
degradation of the audio quality when compressed audio packets
are lost in error prone channels, such as mobile Internet and
digital audio broadcasting. This paper presents a novel error
concealment scheme, which exploits the beat and rhythmic
pattern of music signals. Preliminary simulations show
significantly improved subjective sound quality in comparison
with conventional methods in the case of burst packet losses. The
new scheme is proposed as a complement to prior arts. It can be
adopted to essentially all existing perceptual audio decoders such
as an MP3 decoder for streaming music.
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The transmission of audio signals in compressed digital packet
formats, such as MP3, has revolutionized the process of music
distribution. Recent developments in this field have made
possible the reception of streaming digital audio with handheld
network communication devices, for example. However, with the
increase in network traffic, there is often a loss of audio packets
because of either congestion or excessive delay in the packet
network, such as may occur in a best-effort based Internet.

Under severe conditions, for example, errors resulting from burst
packet loss may occur which are beyond the capability of a
conventional channel-coding correction method, particularly in
wireless systems such as GSM, WCDMA or Bluetooth. Under
such conditions, sound quality may be improved by the
application of an error-concealment algorithm. Error
concealment is an important process used to improve the quality
of service (QoS) when a compressed audio bitstream is
transmitted over an error-prone channel, such as found in mobile
network communications and in digital audio broadcasts.

The focus of the new scheme is given to bitstream errors in the
compressed domain, because a compressed domain bitstream,
after removing most of the signal redundancy and irrelevance, is
more sensitive to channel errors in comparison with an
uncompressed domain bitstream.

With sufficient overhead and cost of the codec, it is theoretically
possible to devise a perfect error detection and correction
method. However, such a scheme would be impractical and
undesirable. A practical error-correction method balances those
limitations against the probability of uncorrected errors, and
allows severe errors to remain uncorrected [1]. Then, error
concealment methods are used as the last resort to mitigate the
degradation of the audio quality in case of uncorrected errors.

In principle, all error concealment methods exploit the
correlation of the signal and characteristics of human hearing to
reduce the effects of uncorrected errors or packet losses. Since all
perceptual audio codecs use frame-wise compression of audio
signals, the new scheme is designed as segment-oriented error
concealment in connection with an audio decoder.

Though error protection (detection/correction) and error
concealment methods are closely related, they are, however,
different concepts for tackling errors. A good system design
should include [2][3]:

• Detailed analysis of the channel status and error pattern.
This is the basis for choosing an appropriate error
concealment strategy. The error detection is a prerequisite
for error concealment.

• Careful consideration of the interdependency among
channel coding, source coding and error concealment, in
order to find the optimal trade-off between error resilience
and bandwidth efficiency.

This paper presents a new error concealment scheme to exploit
the beat and rhythmic pattern of music signals. This long-term
time domain correlation has not been exploited in any existing
perceptual audio-coding algorithm. Our preliminary simulation
shows promising results in comparison with conventional
methods in the case of long burst packet loss, which does happen
now and then in the Internet [4] and Wireless LANs [5]. Even
with one or two packet loss, the proposed method may produce
better results than prior arts.

This paper is organized as follows. A brief review of the prior
arts is given in section 2. Then our new concept and method are
described in section 3. Some preliminary evaluations of the new
scheme are presented in section 4. Finally, section 5 concludes
the paper with some discussions and indicates some future work.
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A lot of investigations into error concealment have been
conducted during the development of a digital audio
broadcasting (DAB) system within the EUREKA Project 147
[2][3][6]. A good summary of previous methods can be found in
[7]. A more recent method can be found in [8].

The most relevant prior arts for error concealment employ small
segments (typically around 20 ms) oriented concealment methods
including: 1) muting, 2) repeating prior packet, 3) interpolation,
and 4) time-scale modification. However, a fundamental
limitation of conventional error concealment systems is that they
all operate with the assumption that the audio signals are



stationary. Thus, if the lost or distorted portion of the audio
signal includes a short transient signal, such as a ‘beat,’ the
conventional system will not be able to recover the signal. This
paper presents a first attempt to solve this problem by exploiting
the beat and rhythmic pattern of music signals.
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The new error concealment scheme results from the observations
that a music signal typically exhibits rhythm and beat
characteristics, which do remain fairly constant. This is one of
the most important features that makes the music flow unique
and differentiates it from other audio signals.

A segment of audio data lost from one defined interval can be
replaced by a segment of audio data from a corresponding
preceding interval. By exploiting the beat pattern of music
signals, error concealment performance can be significantly
improved, especially in the case of long burst packet loss.

In western music, especially pop music, it is well known that beat
patterns are composed of regularly spaced strong and weak beats.
For the sake of brevity, we have considered only pop music with
clear time signature of 4/4 in this paper. The block diagram of the
proposed system is shown in Figure 1. An MP3 decoder is used
to perform all simulations.

FRAME UNPACKING
OR DECODING

Frame error
indicator

INVERSE MAPPING
OR FILTERING

RECONSTRUCTION

Frame replacement
decision unitChannel

decoding

Circular
buffer

Interbeat interval (IBI)
& Confidence score

Parameter (scale
factors and window
type, etc.) based
beat detector

Subband rhythmic integration
(e.g. variance beat detector)

Audio
bitstream

Data from
channel

CRC &
semantic
check

DATA

PCM

Compressed domain
beat detector

Basic structure of an
audio decoder

Figure 1. Block diagram of an extended audio decoder
system including an error detection section, a compressed
domain beat detector and a circular FIFO buffer in
accordance with the proposed error concealment
algorithm.
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The channel decoder is able to derive some information
concerning the reliability of the received frames (status-bit). The
Frame-CRC and semantic check in MPEG audio can also
provide frame error information. In the case of packet-based
network, the time stamp of the packet is a reliable cue for missing
packets. The frame error indicator in Figure 1 analyzes the type,
structure and duration of the errors. The determination of the

suitable error concealment technique is based on these results.
Optionally, the encoder should provide the determination and
transmission of some concealment control information. It could
directly point to the best error concealment strategy for a defined
error situation [2].
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Beat refers to a perceived pulse marking off equal duration units
[9]. Beats are usually created by certain instruments such as
drums and bass guitars.

The beat detector tries to determine the beat location, beat width
and inter-beat interval. A detailed description of the compressed
domain beat detector will be published elsewhere. The key ideas
are summarized in this section.

In this paper, beat detection is accomplished by two methods.
The more reliable method uses the energy of the music signal,
which is derived from decoded Modified Discrete Cosine
Transform (MDCT) coefficients available in an MP3 decoder.
This method detects primarily strong beats. An adaptive
statistical model is employed for improved detection accuracy.
The second method uses a window-switching pattern to identify
the beats present. The window-switching method detects both
strong and weak beats. However, the window-switching method
alone is not reliable, thus must be applied together with other
more reliable methods.
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Figure 2. A sample of a pop music recording from
ABBA. (a) time domain waveform, (b) window
switching pattern, the vertical axis values indicate the
window types: 0 – long window, 1 – long to short
window, 2 – short window, 3 – short to long window, (c)
energy of the signal and a threshold for beat detection.

In accordance with the energy method, the energy ( )τ(1  of the

music signal at time τ is calculated directly by summing the
squares of the decoded MDCT coefficients to give:
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;  is the jth MDCT coefficient decoded at time τ. The

location of the beats are determined to be those places where
( )τ(1  exceeds a pre-determined threshold value (see dashed

line in Figure 2 (c)).

A confidence score on beat detection is included to the
audio decoder system in Figure 1 to prevent erroneous beat
replacement. The confidence score measures how reliably
beats can be detected within an observation window.
Accordingly, a threshold value is specified. If the
confidence score is above the threshold value, the beat
replacement is enabled. Otherwise, the beat replacement is
disabled.
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After the error type and duration has been determined, and the
beat pattern has been detected, the error concealment is fairly
straightforward.

Beat 1 Beat k+1 Beat 2k+1

d d

Figure 3. The replacement of an erroneous audio segment
in an inter-beat interval using the system of Figure 1. k is
a positive integer.

Figure 3 illustrates the replacement procedure. In this case, the
audio frames making up the first inter-beat interval have been
found error-free. If errors are detected between beat (k+1) and
(2k+1) by the frame error indicator, the erroneous segment will
be replaced by a corresponding segment from the first inter-beat
interval as indicated by the arrow in Figure 3.

For music signals with time signature of 4/4, the error
concealment can be performed in consecutive bars as indicated in
Figure 4.

Bar 1 Bar 2

2 3 432 4 11

Figure 4. The replacement of an erroneous audio segment
in a bar of music using the system of Figure 1.

The above error concealment configuration would require
considerable memory consumption and delay in the decoder. In
order to save memory and to restrict delay, an alternative
configuration stores only selected audio frames around beats
rather than every audio frame in the coming bitstream as
illustrated in Figure 5. When the reduced memory capacity is
used, only the beat structure is preserved. In this case, it is
desirable to combine the new method and the conventional
method to achieve better error concealment.

Strong
beat 1

L=k·IBI

0 +1 +2

Offbeat 2

Coming
frames

Beat replacement Conventional error
concealment

Lost frames

-2 +3-1 +4

Figure 5. A scenario of burst error concealment with both
the new and conventional methods. IBI indicates the
inter-beat interval and k is a positive integer.
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As the aim of the concealment process itself is to avoid the
degradations in signal quality perceived by the listener, the
performance criterion can be formulated as the best restoration of
the distorted signals in terms of subjective signal quality [7].

The proposed method belongs to the non-estimating algorithm,
which does not attempt to give an optimum estimate but uses a
replacement signal which is close enough to the original data in
its structure [7].

The non-estimating technique substitutes a whole period of audio
data by some other, more or less similar segment, which is
available to the algorithm. Thus the processed signal is not
intended to approximate the original one and a measurement of
the output signal in respect to the reference signal makes no
sense.

Nevertheless, we have performed some informal listening tests to
evaluate the new algorithm in comparison to conventional ones.

Figure. 6 presents a comparison of the new method with some
conventional methods. An error-free audio segment is
represented in the top graph by two consecutive inter-beat
intervals.

Consider an audio data loss between the two dotted lines, it
corresponds to an interval approximately 520 ms in duration (i.e.,
approximately 20 MP3 audio data frames). Because most
conventional error-concealment methods are not intended to deal
with errors longer than one audio frame length used in the
applied transfer protocol in duration, the conventional error
concealment method will not produce satisfactory results. One



conventional approach, for example, is to mute the entire
segment, as shown in the next graph. Unfortunately, this
waveform will be objectionable to a listener as there is an abrupt
transition, and the second strong beat is missing.
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Figure 6. Comparison of the new error concealment
method with some conventional methods. (a) waveform
of original music signal; (b) muting the long burst errors
between the two dotted lines; (c) repeating the previous
MP3 frame in case 20 consecutive MP3 frames are lost;
(d) beat-pattern based error concealment method.

In another conventional approach, shown in the underlying
graph, an audio data frame occurring just before the lost segment
is repeatedly copied and added to fill the entire interval, resulting
in a monotonic waveform in Figure 6(c). This configuration will
also be objectionable to a listener, as there is little if any musical
content in the monotonic waveform, and the second strong beat
is also missing.

The proposed method exploits the beat pattern knowledge and
substitutes the missing audio segment from the previous inter-
beat interval as shown in the bottom graph. By casual evaluation
by some researchers at Nokia Research Center, the new method
provides very promising results.
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In this paper we have described a new error concealment
technique for streaming music via error prone channels. The new
method has demonstrated its capability to recover burst packet
loss, which may include transient parts such as beats in music
signals.

The experiments with different audio material have revealed that
the current algorithm is quite effective for pure music signals
with an obvious and constant beat pattern. If the signal does not

have a clear beat structure or if speech and singing are
considered, the current system cannot guarantee satisfactory
results, because the beat-pattern does not give sufficient
information about the similarity between different speech and
singing segments. However, it can serve as a basis for future
work in this direction.

Future research may include:

• The compressed domain beat detector employed in the
proposed system may be generalized into a multi-band
approach for improved beat detection.

• A segment similarity measure may be introduced in the
encoder side in order to reduce the “blind” segment
replacement. A good audio similarity measure should take
not only music but also speech and singing sounds into
account.

• An intelligent selection agent may be developed to choose
the right error concealment method in a given error
condition.

• Simulations with a realistic streaming channel such as
mobile Internet to give some quantitative information about
the subjective performance of the method.
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This paper presents a novel beat detector that processes
MPEG-1 Layer III (known as MP3) encoded audio
bitstreams directly in the compressed domain. Most
previous beat detection or tracking systems dealing with
MIDI or PCM signals are not directly applicable to
compressed audio bitstreams, such as MP3 bitstreams. We
have developed the beat detector as a part of a beat-pattern
based error concealment scheme for streaming music over
error prone channels. Special effort was used to obtain a
tailored trade-off between performance, complexity and
memory consumption for this specific application. A
comparison between the machine-detected results to the
human annotation has shown that the proposed method
correctly tracked beats in 4 out of 6 popular music test
signals. The results were analyzed.

.H\ZRUGV
Error concealment, Beat detection, Beat tracking,
Compressed domain processing, Bitstream processing,
MP3, MPEG audio.
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With rapid deployment of audio compression technologies,
more and more audio content is stored and transmitted in
compressed formats. The transmission of audio signals in
compressed digital packet formats, such as MP3, has
revolutionized the process of music distribution.
Consequently, compressed bitstream processing is
becoming a subject of study [1][2][3][4]. However,
compressed domain bitstream processing is still in its
infancy and many aspects such as beat detection remain
unaddressed.

Beat detection or tracking is an important initial step in
computer processing of music and is useful in various
multimedia applications, such as automatic classification of
music, content-based retrieval, audio track analysis in
video, etc.

Beat detection or tracking systems can be classified
according to the input data type. Most existing beat-
tracking systems deal with musical score information
(typically MIDI signals) [9][10][11], or PCM samples
[12][13][14][15][16][17]. Some are designed for real-time
applications.

None of the above-mentioned systems is directly applicable
to a compressed domain bitstream such as MP3 bitstream,
which has gained popularity not only in the Internet world,
but also in consumer products. In addition, existing
algorithms usually have such a high computational
complexity that it is beyond the capability of a normal
laptop computer (not to mention handheld devices) to
perform a real-time application task – beat-pattern based
error concealment for streaming music over error prone
channels having burst packet losses [5]. Our objective here
was not to develop a general-purpose beat detector, but to
develop a beat tracking method as a building block of the
error concealment system proposed in [5] with strict
constraints on complexity and memory requirement. The
proposed beat detector serves to segment music signals
according to beats. The ultimate goal is to define a
segment-similarity measure that relates closely to the
subjective similarity, which will enable us to perform beat-
pattern based error concealment and coding tasks better
[5][7].

This paper is organized as follows. The concept of beat-
pattern based error concealment is first outlined in section
2. It serves to clarify the necessity and requirements of such
a beat tracking method. A window-type based beat detector
is presented separately in section 3 due to its importance on
error concealment. A Modified Discrete Cosine Transform
(MDCT) domain beat detector is then detailed in section 4.
Some preliminary evaluations of the new scheme are
presented in section 5. Finally, section 6 concludes the



paper with some discussions and indicates some future
work.
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Error concealment usually serves as the last resort to
mitigate the degradation of the audio quality when
compressed audio packets are lost in error prone channels,
such as mobile Internet and digital audio broadcasts.

Conventional error concealment methods include muting,
interpolation or simply repeating a short segment
immediately preceding the lost segment. They are useful if
the lost segment is short (an usual assumption in the
literature is around 20 ms) and the signal is fairly
stationary. However, if these conditions do not hold,
conventional methods will not produce satisfactory results.

To solve this problem, a new scheme was proposed to
exploit the beat-pattern similarity of music signals to
recover a possible burst packet loss in a best-effort based
network such as the Internet. [5].

The beat-pattern based error concealment scheme results
from the observations that a music signal typically exhibits
rhythm and beat characteristics. And the beat-patterns of
most music, particularly pop, march and dance music are
fairly stable and repetitive.

The time signature of pop music is typically 4/4. The
average inter-beat interval (IBI) is about 500 ms, thus the
duration of a bar is about 2 s.  Such long-term similarity of
music has not been exploited in any existing audio coding
technology. The concept is quite simple and
straightforward. If the lost or distorted segment of the audio
signal includes a beat, it would be better to replace it with a
segment from a previous beat.

A conventional error concealment method and our new
approach are illustrated in Figure 1 and 2 respectively. The
small segments represent MP3 granules. An MP3 frame
consists of two granules where each granule consists of 576
frequency components.

Coming mp3
bitstream

Lost granules

Copied granules

Figure 1. Illustration of a conventional error concealment
method. Rectangles filled with dots represent corrupted
MP3 granules. Blank rectangles represent error-free ones.
The thin arrows indicate the repetitive copy of the
immediately preceding granule to fill the erroneous audio

segment.

Beat 1 Beat k+1

k·IBI

Coming mp3
bitstream

Copied segment

Lost granules

Figure 2. Concept of the beat-pattern based error
concealment method. It replaces an erroneous audio
segment around beat (k+1) with a corresponding segment
from a previous beat as indicated by the thick arrow. k is a
positive integer which is determined by the employed level
of beat information (e.g. quarter-note or half-note level).
IBI stands for inter-beat interval. Rectangles filled with
dots indicate corrupted MP3 granules. Blank rectangles
indicate error-free ones.

The assumption for this approach is that a segment around
a beat, which often corresponds to a transient produced by
a rhythmic instrument such as a drum, is subjectively more
similar to a segment around a previous beat than its
immediate neighboring segment. A possible psychological
verification of this assumption is explained by the
following example. If we observe typical pop music with a
drum sound marking the beat in a 3-D time-frequency
representation (see Figure 6), the drum sound usually
appears as a ridge, short in the time domain and broad in
the frequency domain, which masks all other sounds such
as singing and other instruments well. It is usually so
dominant in pop music that one perceives only the drum
sound during the event. In spite of some variations in
consecutive drum sounds, it is logical to propose that it
would be subjectively more pleasant to replace a missing
drum sound with a previous drum sound segment rather
than with any other sound, such as singing. It becomes
evident from this that a beat detector is a crucial element of
the scheme. And it is reasonable to perform the beat
detection directly in the compressed domains to avoid
redundant operations.

The requirement of such a beat detector depends on the
constraint on computational complexity and memory
consumption. In our current implementation, the beat
detector employs only the window types and the MDCT
coefficients decoded from the MP3 bitstream to perform
beat tracking. It outputs 3 parameters: beat position, IBI
and confidence score. However, if the constraint on
complexity and memory were relaxed, higher level
structure (e.g. bar-level structure) would improve error



concealment performance.
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MP3 uses 4 different window types: long, long-to-short,
short and short-to-long which are indexed with 0, 1, 2, 3
respectively (see Figure 3(b)). The short window is
introduced to tackle transient signals better. From our
experiments with pop music, short windows often coincide
with beats and offbeats since they are the most frequent
events to trigger window-switching. We have observed that
99% of the window-switching patterns in all of our test
signals appear in the following order: long => long-to-short
=> short => short => short-to-long => long. This pattern
can be indexed as a sequence of 012230 (see Figure 3(b)).

24 24.5 25 25.5 26 26.5 27 27.5 28
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Waveform and window type

Time in seconds

1850 1900 1950 2000 2050 2100
0

0.5

1

1.5

2

2.5

3

3.5

mp3 granule index

(a)

(b)

Figure 3. Comparison of music waveform and its
corresponding mp3 window-switching pattern. (a) music
waveform versus time in seconds, (b) window types
(vertical axis) versus mp3 granule index (horizontal axis).
The four window types (long, long-to-short, short and
short-to-long) are indexed with 0, 1, 2, 3 respectively.

It should be noted that the window-switching pattern
depends not only on the encoder implementation, but also
on the applied bitrate. Therefore, window-switching alone
is not a reliable cue for beat detection. For general purpose
beat detection, we could even completely discard the
window type information. A MDCT based method alone
would be sufficient.

However, for error concealment purposes window type
information plays an important role. Therefore, we take the
following strategy to handle the beat information from the
two separate sources. The MDCT based method serves as
the baseline beat detector due to its reliability. Then the
beat information (position and IBI) is checked with the
window-switching pattern. If the window-switching also
indicates a beat and its position departs from the MDCT
based one less than 4 MP3 granules (ca. 13x4 = 52 ms), we

take the beat information from the window-switching and
adjust the beat information accordingly. That is, the
window-switching method always has priority. The beat
information from MDCT based method is used only in the
absence of window-switching (see Figure 3, 5 and 6).

The rational of this strategy is that the window shapes in all
MDCT based audio codecs including MPEG-2/4 advance
audio coding (AAC) must satisfy certain conditions to
achieve time domain alias cancellation (TDAC) [6]. If
these conditions are violated due to the error concealment
operation, the time domain alias will not be able to cancel
each other during the overlap-add (OA) operation [6]. This
will result in clearly audible distortion as a consequence.

For example, if the two consecutive short window granules
indexed as 22 in a window-switching sequence of 012230
are lost in a transmission channel, it is easy to deduce their
window types from their neighboring granules. And a
previous short window granule pair should replace them to
mitigate the subjective degradation. However, if we
disregard the window-switching information available from
the audio bitstream and replace the short window with any
other neighboring window types, resulting in window-
switching patterns such as 011130, the TDAC conditions
will be violated. This will create annoying artifacts. We
define the phenomenon as ZLQGRZ� W\SH� PLVPDWFK
SKHQRPHQRQ.

To our best knowledge, this important issue has not been
addressed in any publications to date.

Let’s consider the same example of a MP3 granule
sequence of 012230 as discussed above. In case a segment
of four consecutive granules indexed as 1223 is SDUWLDOO\
corrupted in a communication channel, it is still possible to
detect the transient, if we can correctly decode only the
window type information (2 bits) of one VLQJOH granule in
the segment of four consecutive granules, even if their main
data is totally corrupted.

The above analysis clearly suggests why SDUWLDOO\ damaged
audio packets due to channel error should not be simply
discarded because they can still be utilized to improve
quality of service (QoS) in applications such as streaming
music. This clarifies the significance of the window type
information and the rational of our strategy to combine beat
information from the two separate detection methods.

�� 0'&7�'20$,1�%($7�'(7(&7,21
The MDCT coefficients based method has the following
building blocks (see Figure 4 and 5):

• Feature Vector (FV) calculation: calculates the multi-
band energy within each granule (ca. 13 ms) as a
feature, and then forms a FV of each band within a
search window. FV serves to separate beats and non-
beats as much as possible. An element to mean ratio
(EMR) can be used to improve the feature quality.



• Beat candidate selection: This process is performed in
two stages. Beat candidates are first selected in
individual bands based on a threshold method in a
given search window. Within each search window the
number of candidates in each band is either one or
zero. If there are one or more valid candidates selected
from individual bands, they are then clustered and
converged to a single candidate according to certain
criteria.

• Confidence score: A confidence score is calculated for
each beat candidate from individual bands to score
their reliability. Based on them, a final confidence
score is calculated, which is used to determine whether
a converged candidate is a beat.

• Statistical model: An inter-onset interval (IOI)
histogram is usually employed to select the correct
inter-beat interval (IBI) [13]. The idea is to use the IBI
derived from the IOI histogram to predict the next
beat. In our system a valid candidate in each individual
band is defined as an onset. A set of previous IOIs in
each band is stored in a FIFO for computing the
candidate’s confidence score of that band. Instead of a
usual histogram approach, our statistical model
employs a median in the FIFO buffer to predict the
position of the next beat, which works quite well.

• Mark and output beat information: Before a beat
candidate is finally marked and stored as a beat, it has
to pass a confidence test. Only a candidate with
sufficient confidence is selected as a beat (see Figure
9). Its position, IBI and confidence score are stored and
also fed back to calculate the confidence score of
future beat candidates. This beat information then is
checked with the window-switching information,
adjusted accordingly.

A high-level block diagram of the MDCT domain beat
detector is illustrated in Figure 4. More detailed
information about each block is given in the subsequent
sub-sections.

Feature
extraction

Beat candidate
selection:
threshold

Statistical model:
beat prediction &
confidence score

Mark and store
beat info:
position, IBI and
confidence score

Figure 4. Block diagram of a MDCT based beat detector

)HDWXUH�([WUDFWLRQ
We use subband energy or EMR of the subband energy in a
search window as a feature vector (FV). The FV is directly
calculated from decoded MDCT coefficients as illustrated
in Figure 5. We chose an approach, which extracts FV from
the full-band and individual subbands separately to avoid
possible loss of information. The frequency boundaries of
the new subbands are defined in table 1 and 2 for long and

short windows respectively for a sampling frequency of
44.1 kHz. For other sampling frequencies the subbands can
be defined in a similar manner.

Audio
Bitstream

MDCT
coef-
ficients

Full-band FV

Subband1 FV

Converge
and store
beat info:
position,
IBIs,
confidence
score (R)

Confidence RF

EMR thresholdF

SubbandN FV

EMR threshold1

EMR thresholdN

Confidence R1

Confidence RN

Window
 Type

Figure 5. Block diagram of a compressed domain beat
detector using MP3 bitstream. FV stands for feature vector.

Sub-
band

Frequency
interval (Hz)

Index of MDCT
coefficients

Scale factor
band index

1 0-459 0-11 0-2

2 460-918 12-23 3-5

3 919-1337 24-35 6-7

4 1338-3404 36-89 8-12

5 3405-7462 90-195 13-16

6 7463-22050 196-575 17-21

Table 1. Subband division for long windows

Sub-
band

Frequency
interval (Hz)

Index of MDCT
coefficients

Scale factor
band index

1 0-459 0-3 0

2 460-918 4-7 1

3 919-1337 8-11 2

4 1338-3404 12-29 3-5

5 3405-7465 30-65 6-8

6 7463-22050 66-191 9-12

Table 2. Subband division for short windows

MP3 employs a hybrid filterbank. In principle, the feature
extraction can also be performed after an Inverse Modified
Discrete Cosine Transform (IMDCT) step [8]. We chose
the decoded MDCT coefficients for feature extraction, in
order to make the algorithm more general and applicable to



other codecs such as MPEG2/4 AAC, which uses only a
MDCT.
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Figure 6. Music waveform of a 4 seconds segment and its
corresponding subband energy employing the same pop
music sample as in Figure 3. (a) music waveform versus
time in seconds, (b)-(h) energy in subbands 1-6 and full-
band versus mp3 granule index.

MP3 has an option to use long or short windows. The
window length is 36 subband samples in the case of long
windows and 12 subband samples in the case of short
window. 50% window overlap is used in the MDCT. In
order to have a consistent frequency resolution for both
long and short windows we grouped the MDCT
coefficients of each granule into 6 newly defined subbands
(see tables 1 and 2) for feature extraction. For other codecs
or configurations, similar frequency divisions can be
performed. This frequency division is different in

comparison to most previous beat detectors due to the
constraint of the MPEG standard and system complexity.

In Figure 5, each band gives only one value by summation
of the energy within a granule [8]. Thus the time resolution
of our beat detector is one MP3 granule (ca. 13 ms) as
opposed to a theoretical beat event, which has no duration.

The energy ( )Q(
E

 of band E in granule Q is calculated

directly by summing the squares of the decoded MDCT
coefficients to give:

∑
=

=
2

1

2)]([)(
1

1M

ME
Q;Q( (1)

where )(Q;
M

 is the jth normalized MDCT coefficient

decoded at granule Q, 11  is the lower bound index and
21  is the higher bound index of MDCT coefficients

defined in Table 1 and 2. Since the feature extraction is
performed in granule level, the energy in three short
windows (equal to one long window in duration) is
combined into one so that we have comparable energy for
both long and short windows.

Based on the observations of the extracted features from
different pop music, we have concluded that subbands 1, 5,
6 and the full-band features are generally reliable for pop
music beat tracking. The features extracted from a pop
music extract are illustrated in Figure 6.

For simplicity our current system only uses these 4 bands to
extract the feature vector. The reason that subbands 2, 3
and 4 usually give rather poor features is that singing and
instruments other than drums are mostly concentrated in
these bands. Consequently, the beat and non-beat
separation is usually rather difficult in these bands. As
illustrated in Figure 6, feature vectors are extracted in
multiple bands and then processed separately.

6HDUFK�ZLQGRZ
The search window size determines the FV size, which is
used for selecting beat candidates in individual bands. The
search window size can be fixed or adaptive. Based on our
experiments both methods are feasible. In the case of the
fixed window size, the minimal possible IBI (~325 ms) is
chosen as the search window size so that the maximal
number of possible beats within the search window is one.
The current system uses an adaptive window size because
of its slightly better performance. It is calculated as the
closest odd integer to the median of the stored IOIs, so that
we have a symmetric window around a valid sample:

  12/)(2__ += ,2,PHGLDQQHZVL]HZLQGRZ  (2)

The hop size is selected to be half of the new search
window size.

)2/__(__ QHZVL]HZLQGRZURXQGQHZVL]HKRS = (3)
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The basic principle of beat candidate selection is setting a
proper threshold for the extracted FV. The local maxima
within a search window, which fulfils certain conditions,
are selected to be beat candidates. This process is
performed in each band separately. There are two
threshold-based approaches for selecting beat candidates.
The first approach uses the primitive FV (multi-band
energy) directly and the second approach uses an improved
FV (EMR).

The first method is based on the absolute value of the
multi-band energy of beats and non-beats. A threshold is
set based on the distribution of beat and non-beat for
selecting beat candidates within the search window. This
approach is computationally simple but needs some
knowledge of the feature in order to set a proper threshold.
It has three possible outputs in the search window: no
candidate, one candidate or multiple candidates. In the case
of one or multiple candidates, it is desirable to have a
subsequent statistical model to determine the reliability of
each candidate as a beat. The beat detector in [5] was based
on this method.
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Figure 7. Histogram of beats (dashed line) and non-beats
(solid line) versus their first-band energy (feature vector
extracted with the first method) employing a pop music
sample (6 minutes in duration).

The second method uses the primitive FV to calculate an

EMR within the search window to form a new FV. That is,
we calculate the ratio of each element (energy in each
granule) to the mean value (average energy in the search
window). And then the maximum EMR is compared with a
given threshold. If the EMR is greater than the threshold,
this local maximum is selected as a beat candidate. The
beat candidate is sent to the next stage for further
processing as illustrated in Figure 5.

The second approach seems to be superior to the first
approach in most cases since it measures the relative
distance between the individual element and the mean, not
their absolute values. Therefore, the EMR threshold can be
set as a constant value, while the threshold in the first
method should be adaptive to cope with the wide dynamic
range in music signals. EMR is used in our current
implementation. Comparison of the two methods with an
identical sample (6 minutes in duration) is shown in
Figures 7 and 8. The beats were picked up manually by a
human subject. Although the EMR method has slightly
better separation between beats and non-beats, none of the
two FVs is good enough to separate beats and non-beats
reliably without a subsequent statistical model. The wide
signal dynamic range and relatively strong offbeats mainly
cause the bad separation.
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Figure 8. Histogram of beats (dashed line) and non-beats



(solid line) versus their EMR measure (feature vector
extracted with the second method) employing the same pop
music sample as in Figure 7.

In order not to miss a possible beat, we were forced to set a
threshold towards the lower end of the beat population,
which is about 0.005 in Figure 8. Thus the probability of
selecting non-beats as beat candidates is rather high.
Subsequent statistical models will eventually remove false
selections.

6WDWLVWLFDO�PRGHO
We define a valid candidate in each band as an onset and
store a number of previous IOI values in a FIFO buffer for
beat prediction in each band. Then we use the median of
the IOI vector to calculate the confidence scores of all beat
candidates in individual bands. This simple statistical
model has proven to be quite effective.

The IOI vector size is a tunable parameter for adjusting the
responsiveness of the beat detector. If the IOI vector size is
kept small, the beat detector is quick to adapt to a changed
tempo at the cost of instability. If the IOI vector size is
large, it becomes slow to adapt to a changed tempo, but it
can tackle more difficult situations better. In the current
implementation, the FIFO buffer size is 9. Since we store
the IOI as opposed to the final IBI in the buffer, the tempo
change is registered in the FIFO. However, the search
window size is only updated to follow the new tempo after
4 IBIs, which is about 2~3 seconds in duration.

&RQILGHQFH�VFRUH
The confidence score for an individual beat candidate is
calculated to measure its reliability:
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where N =1, 2, 3. N  is introduced to cope with the situation
that the current ,2, is 2 or 3 times longer than the predicted
value due to a decreased tempo or a missed candidate.

,2, is a vector of previous inter-onset intervals. The size of

,2, is an odd number. ( ),2,PHGLDQ  is used as a prediction

of the current beat. L is the current beat candidate index. 
L
,

is the MP3 granule index of the current beat candidate.

EHDWODVW
, _  is the MP3 granule index of the previous beat.
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where 
L

(  is energy of each candidate. ( )
L

(I  is introduced

to discard candidates having too low energy.

The confidence score of the converged beat stream R is
calculated by

{ }
1)

5555 ,,,max 1 L= (6)

where 1  indicates the number of subbands and )
indicates the full-band. The dashed line in Figure 9 shows
the converged confidence score of a pop music, which is
used to reject non-beats.
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Figure 9. Multi-band features of a pop music sample: full-
band energy (solid line), candidates from subband 1 (star),
subband 5 (squares), subband 6 (triangles), and full-band
(circles), converged beat candidates (hexagram), detected
beats (dotted lines). The dashed line indicates the
confidence score of the converged beat candidates, which is
used to discard non-beats at this stage. For illustration
purposes, the confidence score is shifted downwards by
0.5.

&RQYHUJH�DQG�VWRUH�EHDW�LQIRUPDWLRQ
Beat candidates together with their confidence scores from
all the bands are converged. The candidate that has the
greatest confidence score within a search window is
selected as a center point. If candidates from other bands
are close to the selected center point (less than 4 MP3
granules, for example), they are clustered. The confidence
of a cluster is the maximum confidence of its members and
the location of the cluster is the rounded mean of all
locations of its members. All other candidates are ignored.
As the final step, the candidate is accepted as a beat if its
final confidence score is above a constant threshold. Beat
position, IBI, and overall confidence score are sent to the
application module after checking with the window



switching pattern.
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We tested the proposed beat detector on 6 popular songs
with durations from 1 to 6 minutes. The input was
monaural audio signals sampled from a few commercial
compact discs. The signals are then compressed using a
MP3 encoder at bitrate of 64 ~ 96 kbps.

The system utilizes some basic musical knowledge to track
beats at the quarter-note level. It assumes that beats
generally have more energy than offbeats and the tempo is
constrained to be between 50 and 180 M.M. (Mälzel’s
Metronome: the number of quarter notes per minute) and is
roughly constant. Since the sampling frequency of all test
sounds is 44.1 kHz, the MP3 granule length is 576, the time
resolution of our system is ~ 13 ms (=576/44.1).

The beat annotation of the 6 test samples were performed
by the second author, who is a M.Sc. student at Tampere
University of Technology and a violinist at Tampere
Conservatoire. The reason to choose a musician for beat
annotation was that we wanted a more precise and
consistent result.

The machine-detected results were then compared to
human annotation. The criteria to count a failure were: (1)
if the detected beat position departs from the annotation by
or more than 4 MP3 granules that is ~ 52 ms; (2) if the
algorithm simply fails to detect a beat; (3) if the algorithm
picks up a non-beat as a beat.

The proposed method correctly tracked beats in 4 out of 6
popular music test signals.

We found that the algorithm worked almost without error if
there was a simple strong bass drum pattern marking the
beat such as songs from the band ABBA. However, the
algorithm failed completely, if there was no clear drum beat
or the beat pattern was rather complex. The algorithm often
made some mistakes at the beginning of each music sample
due to irregularity of the intro and at the end of each sample
where the signal was fading away. If we disregard the
beginning and the end for a few IBIs, the algorithm made
only one mistake (missed one beat) during a 6-minutes test
song, for example.

We discuss the reason why the beat tracker fails completely
in two of the test samples. The algorithm relies on the
assumption that the actual beats are in general stronger than
the offbeats for example. If this assumption does not hold,
the algorithm fails since it does not use any advanced
musical knowledge. In particular, one failed sample has no
drums and uses only a synthesized shaker sound marking
beats. Another failed sample has rather complex beat-
pattern. The bass drum beat varies a lot mixed with snare
drum and hi-hats.

These preliminary results show that the proposed algorithm
can deal with realistic music signals. However, some
improvements are still necessary.

�� ',6&866,21
A beat tracking system is developed as a building block of
an error concealment scheme. It should be noted that the
error concealment and beat detection concept could be
easily applied to cope with other audio bitstreams with
minor modifications.

The beat detector was implemented partly in C and partly
in Matlab. Its memory consumption and computational
complexity are modest.

Essentially, the beat detection and error concealment are
still two separate tasks. In order to reduce the complexity of
the decoder, it might be a better alternative to implement
the beat detector in the encoder side and to embed the
current beat information in its preceding beat as ancillary
data in the MP3 bitstream. The decoder could then directly
use the beat information for error concealment. In this way
we not only reduce the complexity of the decoder but also
know with certainty whether the missing segment has a
beat or not from the embedded beat information from its
previous beat. Otherwise the decoder would have
difficulties to guess a beat with damaged packets.

The algorithm does not work with signals such as speech
and classic music. It is just intended for pop music with
quite regular beat structure, which is an important class of
music in streaming applications.

We believe that it may be a better option to use the 32-
subband signal for beat detection instead of the 576-MDCT
coefficients of a MP3 granule. This will not only improve
the time resolution but also avoid the alias introduced by
MDCT [6]. After all a beat is more a temporal
phenomenon.

The current implementation is clearly an application
oriented work in nature. We intend to port a good PCM
domain beat tracker into the compressed domain to
examine its performance shift.

The implemented system is still in its early version. There
are many avenues open for further work. Because of its ad
hoc nature, all major building blocks (e.g. the subband
division, the statistical model and the confidence score) can
be further optimized.

Another possible extension is to include more high-level
musical knowledge into the system for better performance
at the expense of complexity.

For applications other than error concealment, some
modifications and optimizations may be necessary to
satisfy the specific requirements.
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ABSTRACT
This paper presents three schemes for re-compressing MP3 (MPEG-1 Layer III) audio bitstreams. The first two
schemes are lossless ones, which exploit the inter-frame redundancies of the main data (the scale factors and the
quantized MDCT coefficients) of the MP3 bitstream. The third scheme is a lossy approach, which exploit the
redundancies between consecutive beat-patterns. The aim is to study the potential of the new coding schemes.
Preliminary results are demonstrated in this paper.

INTRODUCTION
Since the acceptance of the ISO MPEG-1 international standard
[1], MPEG audio coding has been used in a variety of applications
for transmission and storage of high quality digital audio. The
MPEG-1 Layer III, commonly known as MP3, is the most
sophisticated coding method offered by MPEG-1 and it has shaken
the traditional model of audio distribution. However, as an
international standard, MP3 has been designed for various
applications, thus the frame sizes are kept small and redundancies
between samples in neighboring frames are not effectively
exploited. An algorithm to exploit such redundancies in quantized
MDCT domain is reported in [2].
The necessity to develop new algorithms on top of MP3 is based
on the consideration of the following scenarios:
1) Downloading MP3 files using an analogue modem is a time-
consuming process. If music delivery via wireless channels is
considered, it is even more necessary to have a better coding
scheme for bandwidth efficiency.
2) In addition to the use of MP3 files on PCs, portable MP3 players
have been introduced to the market, which store MP3 files on a

flash memory card. The limited size of flash memory cards
(typically 32 MB or 64 MB) places a limit on the amount of audio,
which can be stored on the device.
These are the motivations for us to investigate better coding
algorithms, which can result in reduced file size and in more
efficient use of channel or memory capacity.

Analysis of MP3
MP3 uses a bit reservoir technique that smoothes the bitstream
fluctuation to meet the requirement of a certain channel capacity
and thus makes a little inter-frame dependency. Bit reservoir does
not compress the amount of data but only changes the distribution
of bits among consecutive frames. What we have proposed in this
paper is a compression algorithm exploiting the inter-frame
redundancies by increasing the delay and the actual frame length.
The main reason why the inter-frame redundancy has not been
exploited in MPEG-1 Layer III is the need to keep the frame size
small and to lower the computational complexity of the decoder
[2]. The advantages of using smaller frames that usually do not
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match the natural characteristics of music signals, such as beat
pattern and verse, are:
1) Less buffer memory (RAM) required in the decoder.
2) Lower computational complexity.
3) Increased robustness to channel errors.
4) Lower coding delay.
However, the falling price/capacity of memory (RAM) and CPU
means that memory and computational complexity have become
less of an issue. Additionally, robustness to channel errors and low
coding delay are less critical in some applications. The coding can
be performed offline and the files are reliably transmitted over
Internet or saved in the flash memory.
Scheme 1 & 2 are lossless methods. Scheme 3 is a lossy method,
which aims to achieve bits reduction with little additional
degradation of the subjective audio quality.

PROPOSED SCHEME 1: LONG-TERM ZERO-ORDER
PREDICTION + FIXED LENGTH CODING FOR THE
SCALE FACTORS
In this section we propose a coding scheme for lossless encoding
of MPEG-1 layer III encoded scale factors in the main data.
In MP3 bitstream, the main data consists of scale factors and
quantized MDCT coefficients. The scheme results from the
observation that patterns of the scale factors in consecutive
granules are quite similar (see Fig. 1).
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Fig. 1. Scale factors in consecutive granules. Test signal is a piece
of pop music.

In order to exploit the inter-granule redundancy, we have
developed a long-term zero-order prediction (LTZP) algorithm to
re-compress the MP3 scale factors. The residual signal after the
LTZP is shown in Fig. 2 using the same test signal as shown in
Fig.1. Essentially, this algorithm has compressed the dynamic
range of the MP3 scale factors.

The structure of the proposed scheme is depicted in Fig. 3. Since
we aim to re-compress only the main data, the MP3 side
information is kept intact and is sent directly to the output
bitstream so that it can be used for MP3 decoding.
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Fig. 2. The residual of the scalefactors after LTZP and lifting.
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Fig. 3. Block diagram of the proposed scheme 1

After decoding the scale factors from each granule, we buffer scale

factors of 
G

6  consecutive granules in a FIFO working memory for

re-compression. Search depth 
G

6 of 32 seems to be a good

compromise to balance the prediction gain and additional side

information. 
G

6 of 32 requires 5 bits additional side information to

be represented. We perform a simple subtraction of the scale
factors in the current granule from a previous granule within the

search window 
G

6  and find the residual that needs least bits. In

case the residuals in the entire search window can not achieve any
net bit-reduction, no subtraction is performed and a flag-bit is set
to 0. Consequently no additional side information is needed in this
case.

In order to limit the amount of side information, we divide the 21
scalefactor bands of each granule into two parts according to
MPEG-1 standard. That is, the first part is scalefactor bands 0-10,
the second part is scalefactor bands 11-20. In case any of the two
parts has negative values, it is lifted to non-negative values with a
lifting-offset. Each part has its own lifting-flag (one bit), that
indicates whether a lifting is necessary for that particular part. If
the lifting-flag is 0, no lifting is performed, if the lifting-flag is 1, a
lifting is performed. In order to reduce the side information, the
minimum residual is limited to be –2. Therefore only 1 bit is
needed to represent the lifting-offset. Lifting-offset of 0 represents
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lifting by 1 e.g. from –1 to 0 and lifting-offset of 1 represents
lifting by 2.

      SCALE FACTORS

      SCALE FACTORS

   Lift-offset if necessary

Granule j

Residual i

Granule i

Fig. 4. Illustration of the differential coding of scale factors.

The residual after LTZP and lifting is then coded with the same
fixed length coding method as in MP3.

With this simple coding scheme, we have achieved an average
lossless bit reduction of 1.5 %. The price for the bit-reduction is a
coding delay of roughly 32x13 ms and a buffer memory to save the
scale factors of previous 32 granules. The bitrate in the test was 64
kbps and the sampling frequency was 44.1 kHz.

PROPOSED SCHEME 2: CODEBOOK-BASED
DIFFERENTIAL CODING + HUFFMAN CODING FOR THE
SCALE FACTORS
In certain applications such as handheld devices, the working
memory is quite limited. To reduce the memory requirements of
the decoder in scheme 1, we have developed a second scheme to
reduce the dynamic range of the scale factors.
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Fig. 5 Average MP3 scale factors of a test signal. Horizontal axis is
the index of the scale factor bands.

The mean of the scale factors in all granules of the signal is
calculated and transmitted as side information. An example of the
mean is shown in Fig. 5. A subtraction is performed between the
current granule and the mean (centroid). The residual is coded with
the Huffman tables in MPEG-1 Layer III standard. Since the
Huffman tables in MPEG-1 Layer III are always multidimensional
(quadruples or pairs), zeros are appended in the end for Huffman
coding. With scheme 2 we have achieved a similar bit-reduction as
with scheme 1. However, the working memory and computational
complexity in the decoder is reduced by a factor of 32.
Although it is possible to combine schemes 1 & 2 to achieve better
results, the improvement will still be marginal at this bitrate, since
the number of bits needed to encode the scale factors takes only ca.
8 % of the total MP3 bitstream. The potential for re-compressing

the scale factors is rather limited. Nevertheless it can serve as a
complement to the algorithm proposed in [2].
We have also tried a scheme similar to scheme 1&2 to re-compress
quantized MDCT coefficients. However, the performance is far
behind the reported bit-reduction in [2].

PROPOSED SCHEME 3: SIMILARITY MEASURE BASED
CODING OF STRONG AND WEAK BEATS
This scheme results from the observation that a music signal
typically exhibits characteristics of self-similarity. This is
particularly true for certain types of music such as pop, march,
dance music etc.
In western music, especially in pop music, it is well known that
beat patterns are composed of regularly spaced strong and weak
beats as shown in Fig. 6. The beat-patterns are highly repetitive for
a large amount of music. This is the basis for scheme 3.
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Fig. 6. (a) Waveform of a piece of a pop music signal, (b) window
types in the corresponding MP3 bitstream, (c) Huffman bits
fluctuation.

The short window segments are mostly associated with beats,
which we classify to two classes: strong and weak beats. The total
energy of the decoded MDCT coefficients in one granule is used as
a simplified similarity measure. We calculate the average (mean)
energy of all short window granules and take it as a threshold.
Using this threshold short window granules are divided into strong
and weak beats. Then the average of the strong beats and the
average of the weak beats will be used as centroids.

We store the two centroids of decoded MDCT coefficients as a
codebook to approximate all short window segments. Since there
are only two elements in the codebook, we need only 1 bit for
indexing (0 represents a strong beat and 1 represents a weak beat).
The concept is illustrated in Fig. 7.
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Fig. 7. Concept of self-similarity based coding method
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In this way, we can achieve 4-8% bitrate reduction with little
additional degradation in the subjective audio quality. Informal
listening tests have confirmed that this concept is viable.

Our original intention was to design the codebook on inter-beat
interval (IBI) based segment similarity measure, so that we could
represent similar IBIs with a relatively small codebook.
Unfortunately we have not yet found a satisfactory segment-
similarity measure that relates closely to the subjective similarity.

As a starting point, we have implemented a similarity measure
proposed in [3] in MP3 compressed domain. This similarity
measure in MP3 compressed domain is good enough for beat
recognition, but is not good enough to distinguish subjectively very
similar and clearly different segments.
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Fig. 8. Similarity matrices for a piece of ABBA song.
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Fig. 9. Beat spectrum of a piece of ABBA song.

The similarity measure is based on the distance matrix, which is a
two-dimensional embedding of the audio self-similarity [3]. Firstly
the audio is parameterized on a granule-by-granule basis. These
parameters are directly calculated from the MP3 bitstream. The
scalefactor band energies of each granule form our feature vectors.

Secondly a similarity measure '  between feature vectors 
L
Y  and

M
Y  is calculated from granules L  and M .

( )
ML

ML

YY

YY
ML'

•
≡, (1)

( )ML' ,  can be visualized in two dimensions as a square image as

shown in Fig. 8, where each pixel L , M  is given a gray scale value

proportional to ( )ML' , .

To compare the similarity between two IBIs, we calculate a
measure similar to the “beat spectrum” [3]. Adding values of the

similarity measure ( )ML' ,  diagonally over the granules in one

IBI does this. This is calculated as

( ) ∑
=

+≈
E

E

(QG

6WDUWN

ONN'O% ),( (2)

where 
E

6WDUW  and 
E

(QG  are the first and last granule in IBI E .

( )O%  is then a comparison between IBI E  and subsequent

segments of the signal in a running window of equal duration. O is

the relative distance in MP3 granules to the running window  E .
The approximation in the equation comes from the fact that the
granule boundaries in mp3 don’t usually match with the real IBI

boundaries. An example of ( )O%  is shown in Fig. 9.

The disadvantage of this similarity measure is its huge
computational complexity and memory consumption. For the
purpose of beat detection in MP3 compressed domain, a much
simpler algorithm is reported in [4].

CONCLUSION
In this paper we have investigated a few coding schemes for re-
compressing MP3 audio bitstreams. It was demonstrated that it is
possible to achieve some additional coding gain by exploiting
inter-frame redundancies.

The investigations we have performed with scheme 1 & 2 seem to
suggest that the room for further bits reduction is rather limited.
Further effort in this direction will only produce marginal
improvements.

Scheme 3 has shown some promising results. However, it will
eventually degrade the subjective audio quality. It may be more
useful to utilize the beat-pattern redundancies for error
concealment as suggested in [5].
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